Simulazioni ibride (fluide/Particle-in-cell) - Enea
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Simulazioni ibride (fluide/Particle-in-cell) per la fusione termonucleare G. Vlad, S. Briguglio, G. Fogaccia, V. Fusco ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati (Roma), Italy ICT E SUPERCALCOLO AL SERVIZIO DI RICERCA E IMPRESE RISULTATI E PROSPETTIVE 17 marzo 2015 ENEA – Via Giulio Romano n. 41, Roma Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 1 EUROfusion
Introduction • Controlled thermonuclear fusion is one of the most promising energy sources for the next near future. • Reproducing in laboratory the nuclear processes which take place in the core of stars is one of the major challenges of the present day research. • Thermonuclear fusion occurs when light elements (like Hydrogen or its isotopes) fuse together into new elements, like Helium, releasing in that process a large amount of energy. • In order to fuse the light elements together, it is necessary to heat them to energies of the order of several tens of KeV: in this condition, the gas is highly ionized. If also high density and good thermal insulation is obtained, the ionized gas (“plasma”) will undergo a large amount of fusion reactions and the process will become energetically favourable. • The most promising approach considered by the fusion community is the so- called “Magnetically Confined Fusion”, and the most advanced experimental devices are the “Tokamaks”. Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 2 EUROfusion
ITER ~ 40 m The plasma is confined in a Once the plasma, which The next International toroidal chamber by a very curries a strong toroidal Thermonuclear Fusion high (~6T) magnetic field current (~10 MA), is experiment (ITER) produced, the topology of the magnetic field ITER is under construction in Saint Paul-lez-Durance becomes helicoidal (France). First plasma: ~ 2020; D-T operation: ~ 2027 Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 3 EUROfusion
Ignition device • The plasma will be heated to the required temperature (~10 KeV) by joule heating, strongly energetic neutral beams, radio frequency waves, … • Several challenging issues are faced on the way of controlled thermonuclear fusion: - technology (high magnetic fields, superconductor coils, …) - materials (heat exhaust, wall loading, blanket, tritium breeding, …) - physics (plasma heating, energy confinement, MHD, turbulent transport, …) • Once the thermonuclear reactions become dominant, the plasma temperature will be sustained by the high energy α particles (Helium nuclei, 3.5 MeV) • It is crucial to have well confined energetic particles (α’s, beams particles, radio frequency accelerated particles, …) to allow them to slow down and release their energy by collisions thus heating the bulk plasma • Typical velocity of α particles in an ignited device is of the same order of the Alfvén velocity (the velocity of propagation of a magnetic field perturbation) • If an electromagnetic perturbation growths in time, because of the resonant interaction with the energetic particles, the confinement of the energetic particles themselves can be strongly reduced, before they are able to release their energy to the bulk plasma, avoiding the “ignition” of the device. Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 4 EUROfusion
Theory and modelling • The development of theoretical and computational models for the study of the physical phenomena which determine the plasma dynamics is of significant importance for the success of future experiments (“ignition” regime not yet observed in present devices, extrapolation from present “sub-ignited” regimes is required). • We focus our activity in studying the interaction between Alfvén waves and energetic particles (as, e.g., fusion α’s, beams particles, radio frequency accelerated particles, …): linear dynamics, turbulent transport, non linear saturation. • The computational model considered is the so-called “hybrid model”, where a thermal component of the plasma is treated as a fluid, described by MagnetoHydroDynamics equations (MHD) and the energetic particles are treated kinetically Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 5 EUROfusion
Single particle motion in torus • The single particle motion in a tokamak can be very complicated: particles rapidly gyrate perpendicularly to the equilibrium magnetic field (“gyro-motion”) while transiting along the torus (“circulating particles”) or experiencing a almost closed orbits bouncing back and forth (“trapped particles” and “banana orbits”) because of the characteristic magnetic well of the tokamak configurations; moreover, those trapped particles experience also a precession motion along the torus. • Thus several characteristic frequencies of energetic particles are present, which can resonate with the frequencies of the Alfvénic waves, eventually driving them unstable: kinetic treatment is important! circulating particle (“transit frequency”) Precession of a trapped particle projection of (“bounce and precession frequencies”) motion on the poloidal plane Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 6 EUROfusion
Particle orbit - 1 Trapped particle (“banana” orbit) with precession motion Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 7 EUROfusion
Particle orbit - 2 Trapped particle (“banana” orbit) with zero precession Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 8 EUROfusion
Particle orbit - 3 Circulating particle Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 9 EUROfusion
Alfvén wave (TAE) frequency spectrum (ω,r): global mode (TAE) Alfvén continua poloidal cross section (R,Z) constant flux surface (φ,χ) Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 10 EUROfusion
Hybrid model • Hybrid model: extend MHD equations by adding a coupling term with energetic particles (EPs) • The coupling term between bulk specie and EP • The EP term needs to keep the details of the D+ divergenza specie tensore pressione is the divergence of the EPparticelle pressure tensor energetiche: wave-particles resonances: thus, we need a @% kinetic formalism + r · (%v) = 0 , (9) • fE is the EP distribution function described @t dv 1 by Vlasov eq. (collisionless Boltzmann eq.): % = rP r · PE + J ⇥ B , (10) ✓ ◆ dt c d P @fE q = 0, + v · r +(11) (E + v ⇥ B) · rv fE = 0 dt % @t r m 1 E + v ⇥ B = ηJ, 0, • solved using the (12)so-called “gyrokinetic c formalism” 1 @B Z r⇥E = , (13) c @t Pi,j;E ⇠ vi vj f (r, v, t) dv 4⇡ r⇥B = J, (14) c • E(t), B(t) are the solution of the MHD r · B = 0. eqs. and provide (15) the forces in the Vlasov d @ eq. = +v·r • vi, vj are the(16) EP velocity components dt @t Fusion Unit law: G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 11 EUROfusion
Computational models MHD models (field solver) Gyrokinetic model HMGC: HMGC • Reduced MHD • k ρE
Computational requirements Goal: ITER relevant case, e.g., n = -30 TAE driven by energetic particles MHD (field solver) module of HYMAGYC Gyrokinetic module of HYMAGYC • axisymmetric (2D) equilibrium • PIC model; • discretization scheme: FE in radius (s), Fourier in • # particles: np=ns,χ,φ ✕ nppc; generalized poloidal (χ) and toroidal (φ) angles • # particles per cell: nppc=512 (v space); • linear MHD: ! single toroidal mode number: ntor= -30 • # poloidal mesh points: nχ≈ 8 ✕mpol,max=800; • # MHD eqs.:14 eqs. • # toroidal mesh points: nφ≈ 8 ✕ ntor=240; • # radial mesh points: ns= 1000; • ns,χ,φ= ns✕nχ✕nφ= 192✕106; • # poloidal Fourier components: mpol= 100; • # particles: np= ns,χ,φ ✕ nppc≈ 100 G • linear system with # eqs.: ns✕mpol✕14 = 1.4✕106 • ! particles memory Mp: 7 double real • matrix elements (double complex): (# eqs.)2 = 1.96✕1012 variables per particle, Mp=5.5 Tb • maximum non-zero matrix (block tridiagonal) elements: • ! Gyrokinetic module parallelized using 456✕ns✕(mpol)2=4.56✕109 Hierarchical MPI+OpenMP scheme (MPI • parallelization of the field solver done in collaboration inter-node, OpenMP intra-node) with EFDA-HLST using MUMPS (MUltifrontal • typical cpu time/particle/step: 3x10-6 s Massively Parallel sparse direct Solver), mainly to gain • typical simulation: nsteps=5x104 memory availability • runs on CRESCO4 (also on HELIOS (IFERC), Japan) Memory cpu time (4576 cpu time (72000 cores) Memory cpu time (256 cores), MUMPS cpu time sequential solver cores) CRESCO4 HELIOS(estimate) (estimate) 72.96 Gb tinversion≈ 200 s (inversion) tinversion≈ 3350 s (inversion) 5.5 Tb tsimulation≈ 40 gg tsimulation≈ 2.5 gg tbs ≈ 1 s (backsolve per step) tbs ≈ 29 s (backsolve per step) Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 13 EUROfusion
ITER TAE example n = - 30 poloidal cross section (R,Z) constant flux surface (φ,χ) Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 14 EUROfusion
JET model equilibrium • n=4 non-linear simulation, • soliton avalanches, n4_soliton_avalanches.m4v • energetic particles displaced toward the outer edge of the torus, • critical phenomenology, ! possibly preventing ignition! movie caption: Electrostatic potential energetic particle ϕ Fourier pressure radial profile components vs r Electrostatic potential frequency spectrum ϕ structure in (R,Z) (ω,r): Energetic particle driven mode (EPM) + Alfvén continua Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 15 EUROfusion
Non-linear dynamics studies Energetic electron driven internal kink instability: “e-fishbone”: • MHD mode driven by energetic electrons (observed in present devices, similar dynamics of certain energetic-ion instabilities driven in ignited plasmas) • HMGC suited for detailed studies of non-linear saturation by Hamiltonian mapping techniques • plots of energetic particles in the plane (Θ,Pϕ), with Θ the wave phase seen by the energetic particles and Pϕ the toroidal angular momentum. peaked-off_eps0.1_pphi_phase_den_power_res_grande-desktop.m4v Fusion Unit G. Vlad Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede 16 EUROfusion
You can also read