Simulazioni ibride (fluide/Particle-in-cell) - Enea

Page created by Justin Fuller
 
CONTINUE READING
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Simulazioni ibride (fluide/Particle-in-cell)
      per la fusione termonucleare
                  G. Vlad, S. Briguglio, G. Fogaccia, V. Fusco
 ENEA for EUROfusion, via E. Fermi 45, 00044 Frascati (Roma), Italy

                                             ICT E SUPERCALCOLO
                                       AL SERVIZIO DI RICERCA E IMPRESE
                                           RISULTATI E PROSPETTIVE
                                                  17 marzo 2015
                                       ENEA – Via Giulio Romano n. 41, Roma
                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   1   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Introduction
 •    Controlled thermonuclear fusion is one of the most promising energy sources
      for the next near future.
 •    Reproducing in laboratory the nuclear processes which take place in the core of
      stars is one of the major challenges of the present day research.
 •    Thermonuclear fusion occurs when light elements (like
      Hydrogen or its isotopes) fuse together into new elements,
      like Helium, releasing in that process a large amount of
      energy.

 •    In order to fuse the light elements together, it is necessary to heat them to
      energies of the order of several tens of KeV: in this condition, the gas is highly
      ionized. If also high density and good thermal insulation is obtained, the ionized
      gas (“plasma”) will undergo a large amount of fusion reactions and the process
      will become energetically favourable.
 •    The most promising approach considered by the fusion community is the so-
      called “Magnetically Confined Fusion”, and the most advanced experimental
      devices are the “Tokamaks”.
                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   2   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
ITER

        ~ 40 m                                         The plasma is confined in a                                   Once the plasma, which
 The next International                                toroidal chamber by a very                                    curries a strong toroidal
 Thermonuclear Fusion                                   high (~6T) magnetic field                                     current (~10 MA), is
  experiment (ITER)                                                                                                  produced, the topology
                                                                                                                      of the magnetic field
ITER is under construction in Saint Paul-lez-Durance                                                                   becomes helicoidal
(France). First plasma: ~ 2020; D-T operation: ~ 2027
                                                                                                                                    Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   3      EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Ignition device
•    The plasma will be heated to the required temperature (~10 KeV) by joule
     heating, strongly energetic neutral beams, radio frequency waves, …
•    Several challenging issues are faced on the way of controlled thermonuclear
     fusion:
     - technology (high magnetic fields, superconductor coils, …)
     - materials (heat exhaust, wall loading, blanket, tritium breeding, …)
     - physics (plasma heating, energy confinement, MHD, turbulent transport, …)
•    Once the thermonuclear reactions become dominant, the plasma temperature will
     be sustained by the high energy α particles (Helium nuclei, 3.5 MeV)
•    It is crucial to have well confined energetic particles (α’s, beams particles, radio
     frequency accelerated particles, …) to allow them to slow down and release their
     energy by collisions thus heating the bulk plasma
•    Typical velocity of α particles in an ignited device is of the same order of the
     Alfvén velocity (the velocity of propagation of a magnetic field perturbation)
•    If an electromagnetic perturbation growths in time, because of the resonant
     interaction with the energetic particles, the confinement of the energetic particles
     themselves can be strongly reduced, before they are able to release their energy to
     the bulk plasma, avoiding the “ignition” of the device.                     Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   4   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Theory and modelling
 • The development of theoretical and computational models for the
   study of the physical phenomena which determine the plasma
   dynamics is of significant importance for the success of future
   experiments (“ignition” regime not yet observed in present devices,
   extrapolation from present “sub-ignited” regimes is required).
 • We focus our activity in studying the interaction between Alfvén
   waves and energetic particles (as, e.g., fusion α’s, beams particles,
   radio frequency accelerated particles, …): linear dynamics,
   turbulent transport, non linear saturation.
 • The computational model considered is the so-called “hybrid
   model”, where a thermal component of the plasma is treated as a
   fluid, described by MagnetoHydroDynamics equations (MHD) and
   the energetic particles are treated kinetically

                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   5   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Single particle motion in torus
 •   The single particle motion in a tokamak can be very complicated: particles
     rapidly gyrate perpendicularly to the equilibrium magnetic field (“gyro-motion”)
     while transiting along the torus (“circulating particles”) or experiencing a almost
     closed orbits bouncing back and forth (“trapped particles” and “banana orbits”)
     because of the characteristic magnetic well of the tokamak configurations;
     moreover, those trapped particles experience also a precession motion along the
     torus.
 •   Thus several characteristic frequencies of energetic particles are present, which
     can resonate with the frequencies of the Alfvénic waves, eventually driving them
     unstable:               kinetic treatment is important!

                         circulating particle (“transit frequency”)

                                 Precession of a trapped particle                                                                projection of
                                 (“bounce and precession frequencies”)                                                           motion on the
                                                                                                                                 poloidal plane
                                                                                                                                   Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   6     EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Particle orbit - 1
                              Trapped particle (“banana” orbit) with precession motion

                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   7   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Particle orbit - 2
                              Trapped particle (“banana” orbit) with zero precession

                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   8   EUROfusion
Simulazioni ibride (fluide/Particle-in-cell) - Enea
Particle orbit - 3
                                                                      Circulating particle

                                                                                                                                 Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   9   EUROfusion
Alfvén wave (TAE)
                                  frequency spectrum (ω,r):
                                     global mode (TAE)
                                       Alfvén continua

                                 poloidal cross section (R,Z)                                          constant flux surface (φ,χ)

                                                                                                                                  Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   10   EUROfusion
Hybrid model
     • Hybrid model: extend MHD equations by adding a coupling term
       with energetic particles (EPs)
  • The coupling term between bulk specie and EP                                             • The EP term needs to keep the details of the
D+    divergenza
    specie             tensore pressione
            is the divergence           of the EPparticelle pressure tensor  energetiche:      wave-particles resonances: thus, we need a
   @%                                                                                          kinetic formalism
       + r · (%v) = 0 ,                                                                                               (9)
                                                                                             • fE is the EP distribution         function described
   @t
                 dv                                                  1                         by Vlasov eq. (collisionless Boltzmann eq.):
               %          =         rP r · PE + J ⇥ B ,                                                             (10)
             ✓ ◆  dt                                                  c
         d P                                                                               @fE                         q
                          = 0,                                                                       +  v   · r    +(11)    (E + v ⇥ B) · rv fE = 0
         dt %                                                                               @t
                                                                                                                 r
                                                                                                                       m
           1
     E + v ⇥ B = ηJ,            0,                                                           • solved using the     (12)so-called “gyrokinetic
           c
                                                                                               formalism”
                                    1 @B                                                                          Z
            r⇥E =                              ,                                                                    (13)
                                    c @t                                                           Pi,j;E ⇠ vi vj f (r, v, t) dv
                                 4⇡
            r⇥B =                     J,                                                                            (14)
                                  c                                                             • E(t), B(t) are the solution of the MHD
              r · B = 0.                                                                          eqs. and provide  (15) the forces in the Vlasov
                          d         @                                                             eq.
                               =         +v·r                                                   • vi, vj are the(16) EP velocity components
                         dt        @t                                                                                                     Fusion Unit
law:
   G. Vlad    Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede  11        EUROfusion
Computational models
     MHD models (field solver)                                                                          Gyrokinetic model
HMGC:                                             HMGC
• Reduced MHD                                                                        • k ρE
Computational requirements
Goal: ITER relevant case, e.g., n = -30 TAE driven by energetic particles
   MHD (field solver) module of HYMAGYC                                                     Gyrokinetic module of HYMAGYC
• axisymmetric (2D) equilibrium                                                             • PIC model;
• discretization scheme: FE in radius (s), Fourier in                                       • # particles: np=ns,χ,φ ✕ nppc;
  generalized poloidal (χ) and toroidal (φ) angles                                          • # particles per cell: nppc=512 (v space);
• linear MHD: ! single toroidal mode number: ntor= -30                                      • # poloidal mesh points: nχ≈ 8 ✕mpol,max=800;
• # MHD eqs.:14 eqs.                                                                        • # toroidal mesh points: nφ≈ 8 ✕ ntor=240;
• # radial mesh points: ns= 1000;                                                           •  ns,χ,φ= ns✕nχ✕nφ= 192✕106;
• # poloidal Fourier components: mpol= 100;                                                 • # particles: np= ns,χ,φ ✕ nppc≈ 100 G
• linear system with # eqs.: ns✕mpol✕14 = 1.4✕106                                           • ! particles memory Mp: 7 double real
• matrix elements (double complex): (# eqs.)2 = 1.96✕1012                                     variables per particle, Mp=5.5 Tb
• maximum non-zero matrix (block tridiagonal) elements:                                     • ! Gyrokinetic module parallelized using
  456✕ns✕(mpol)2=4.56✕109                                                                     Hierarchical MPI+OpenMP scheme (MPI
• parallelization of the field solver done in collaboration                                   inter-node, OpenMP intra-node)
  with EFDA-HLST using MUMPS (MUltifrontal                                                  • typical cpu time/particle/step: 3x10-6 s
  Massively Parallel sparse direct Solver), mainly to gain                                  • typical simulation: nsteps=5x104
  memory availability
• runs on CRESCO4 (also on HELIOS (IFERC), Japan)                                               Memory      cpu time (4576            cpu time (72000 cores)
Memory     cpu time (256 cores), MUMPS              cpu time sequential solver                              cores) CRESCO4            HELIOS(estimate)
                                                                                                            (estimate)
72.96 Gb   tinversion≈ 200 s (inversion)            tinversion≈ 3350 s (inversion)
                                                                                                5.5 Tb      tsimulation≈ 40 gg        tsimulation≈ 2.5 gg
           tbs ≈ 1 s (backsolve per step)           tbs ≈ 29 s (backsolve per step)
                                                                                                                                               Fusion Unit
G. Vlad    Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede      13            EUROfusion
ITER TAE example n = - 30
                       poloidal cross section (R,Z)                                          constant flux surface (φ,χ)

                                                                                                                                  Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   14   EUROfusion
JET model equilibrium
•     n=4 non-linear simulation,
•     soliton avalanches,
                                                                                        n4_soliton_avalanches.m4v
•     energetic particles displaced toward the
      outer edge of the torus,
•     critical phenomenology,
        ! possibly preventing ignition!

                   movie caption:
Electrostatic potential           energetic particle
ϕ Fourier                         pressure radial profile
components vs r

Electrostatic potential           frequency spectrum
ϕ structure in (R,Z)              (ω,r):
                                  Energetic particle
                                  driven mode (EPM) +
                                  Alfvén continua
                                                                                                                                      Fusion Unit
    G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   15   EUROfusion
Non-linear dynamics studies
Energetic electron driven internal kink instability: “e-fishbone”:
• MHD mode driven by energetic electrons (observed in present devices, similar dynamics of
  certain energetic-ion instabilities driven in ignited plasmas)
• HMGC suited for detailed studies of non-linear saturation by Hamiltonian mapping techniques
• plots of energetic particles in the plane (Θ,Pϕ), with Θ the wave phase seen by the energetic
  particles and Pϕ the toroidal angular momentum.
           peaked-off_eps0.1_pphi_phase_den_power_res_grande-desktop.m4v

                                                                                                                                  Fusion Unit
G. Vlad   Workshop “ICT e supercalcolo al servizio di ricerca e imprese risultati e prospettive" 17 marzo 2015 ENEA - Sede   16   EUROfusion
You can also read