Shoreline Complete for Illumina Technical Manual

Page created by Jared Frazier
 
CONTINUE READING
Shoreline Complete for Illumina Technical Manual
Shoreline Complete™ for Illumina
 Technical Manual
Shoreline Complete for Illumina Technical Manual
Contents
Introduction to Shoreline Complete™ Kits................................................................................................ 3
Kit Components ....................................................................................................................................... 3
Important Parameters ............................................................................................................................. 3
 Storage buffer...................................................................................................................................... 3
 Sample Types and Input Quantities ...................................................................................................... 3
 DNA Quantitation ................................................................................................................................ 4
 Target Reads per Sample ..................................................................................................................... 4
 Multiplexing Barcodes ......................................................................................................................... 4
 Amplicon Normalization ...................................................................................................................... 4
 Microbiome Controls ........................................................................................................................... 5
 Safe Stopping Points ............................................................................................................................ 5
 Sample Storage .................................................................................................................................... 5
 Equipment and reagents supplied by user............................................................................................ 5
Protocols ................................................................................................................................................. 6
 Shoreline Complete™ Lyse Protocol ..................................................................................................... 6
 Shoreline Complete™ Purify Protocols ................................................................................................. 8
 Shoreline Complete™ Amplify Protocol ................................................................................................ 9
Amplicon QC .......................................................................................................................................... 10
Post Amplification Clean-up ................................................................................................................... 10
Pooled Amplicon QC .............................................................................................................................. 11
Sequencing ............................................................................................................................................ 12
References............................................................................................................................................. 12
Appendix A: Barcode Sequences for V1-V3 and V4 Set A ........................................................................ 13
Appendix B: Barcode Sequences for V1-V3 and V4 Set B ........................................................................ 16
Appendix C: Barcode Sequences for V4 Set C ......................................................................................... 19
Shoreline Complete for Illumina Technical Manual
Introduction to Shoreline Complete™ Kits
 Shoreline Complete™ kits are a complete solution for bacterial 16S microbiome profiling studies,
 providing investigators with materials and protocols for rapid DNA preparation and Illumina
 sequencing library generation. Each kit contains reagents for comprehensive bacterial lysis,
 extraction, and purification of DNA, individual sample barcoding for up to 96 samples, and
 amplification of variable regions of the 16S gene for microbiome analysis.
 DNA can be extracted from a wide variety of samples including fecal, swab, tissue, and saliva. DNA is
 amplified using dual-unique barcoded primers targeting the V1-V3 or V4 variable region of the 16S
 rRNA gene. The single-step PCR, made up of primers containing the Illumina adapter sequence, dual-
 unique barcodes, and a diverse set of target specific primers covering known variations in the primer
 sites , generates ready-to-pool amplicon libraries to be sequenced on the Illumina platform.
 This document provides guidance for using the Shoreline Complete™ kits for metagenomic studies
 sequenced on the Illumina platform.

Kit Components
 Kit Contents for Shoreline Complete™ Lyse and Purify
 1. Lysis-1, dried solution in plate
 2. Purification Buffer
 Kit Contents for Shoreline Complete™ Amplify
 1. Barcoded primers, dried in plate
 2. 2X PCR Premix
 3. PCR sealing film

Important Parameters
 Storage buffer
 Most sample storage buffers are compatible with the lysis, however for buffers with pH < 5 we
 recommend adding 10 µL sample, to prevent neutralization of the Shoreline Complete™ lysis
 buffer.
 Sample Types and Input Quantities
 Shoreline Complete™ kits have been validated with the sample types specified in Table 1, below.

 For Sample Type of: Use:
 Solid fecal
 Liquid fecal stored in other buffers Protocol for
 DNA Genotek OMNIgene®•GUT frozen/liquid/mouse
 fecal, OMNIgene® Gut
 Tissue Samples
 Mouse fecal pellet
 Swabs
 Protocol for skin, swabs,
 Saliva cell pellets, saliva
 Pelleted cells

 Table 1. Validated Sample Types
Table 2 (below) provides the recommended input quantities for each of the sample types. Please
 note that adding less than the recommended amount may not yield sufficient amounts of DNA,
 while using more than the maximum quantity may cause insufficient lysis.

 Sample Type Recommended Amount Maximum Amount
 Solid fecal 1-3 mg 10 mg
 Liquid fecal 10 µL 10 µL
 DNA Genotek OMNIgene®•GUT 10 µL 10 µL
 Tissue 20 mg 30 mg
 Mouse fecal 5 mg (1/4 pellet) 10 mg (1/2 pellet)
 Bacterial Cells 106 cells 108 cells

 Table 2. Sample Type Input Quantities

DNA Quantitation
 The Shoreline Complete PCR has been optimized to handle a broad range of input DNA, therefore,
 it is not necessary to quantify DNA prior to amplification. However, if quantitation is desired, keep
 in mind that the Shoreline Complete™ lysis protocol results in single stranded DNA. We
 recommend the Qubit™ ssDNA Quantification kit. DNA quantification by NanoDrop™ is not
 recommended.
Target Reads per Sample
 The required reads per sample are dependent on goals of each sequencing project. General
 guidelines recommend 100,000 reads per sample, but under some circumstances, sufficient
 taxonomic classification can be obtained using fewer reads, a tradeoff allowing for a higher level
 of sample multiplexing.
 It is not recommended to pool different size amplicons (V1-V3 and V4) into a single sequencing
 run.
Multiplexing Barcodes
 The Shoreline Complete™ kits contain primers with dual-unique indexing. This barcoding approach
 is an improvement over the typical combinatorial approach due to reduced index hopping.1 For V4
 kits, 288 barcodes are available and for V1-V3, 192 barcodes are available. See the Table 3 and
 Table 4 below for permissible barcode combinations. See Appendix A, Appendix B, and Appendix
 C for barcode sequences for Set A, Set B, and Set C, respectively.

 V1-V3 V4
 Set A, Set B Set A, Set B, Set C

 Table 3. V1-V3 barcode sets Table 4. V4 barcode sets

Amplicon Normalization
 Using an equi-volume pooling approach for unpurified PCR products is the quickest and most
 convenient way to normalize amplicon libraries. Equi-volume pooling is rapid and generally
 provides good representation of samples when used in combination with visualization on a gel,
Bioanalyzer, or equivalent. Other normalization methods are acceptable, including equimolar
 pooling based on fluorometry or qPCR, however, these methods may be more expensive or labor
 intensive. Equimolar pooling may be beneficial if processing multiple sample types and/or
 samples that are expected to have widely varying microbial loads2.
 Microbiome Controls
 Several controls are recommended to monitor the workflow including lysis and amplification
 efficiency, as well as environmental contamination. Recommended controls and control materials
 are provided in Table 5.
 Control Type Recommended Control Material
 Process Positive Mock community DNA (commercially available)
 Process Negative Water at the Lysis step
 PCR Positive Mock community DNA (commercially available)
 PCR Negative Water

 Table 5. Recommended controls and control materials

 Safe Stopping Points

 Safe stopping points, where the process can be paused, are marked with this
 symbol. Follow the storage recommendations.

 Sample Storage
 Genomic DNA can be stored at +4°C for up to 10 days, or frozen at -20°C for 3 months. Avoid
 repeated freeze/thaws. Amplicons and library can be stored at 4°C for up to 1 week or -20°C for
 up to 1 month.
 Equipment and reagents supplied by user
Additional Items Required for Lyse and Purify
 ● 96-well PCR plate
 ● Plate sealing film
 ● Sterile Laboratory Grade Water
 ● 70% ethanol
 ● TE Buffer - 10mM Tris, 1mM EDTA, pH 8.0
 ● 0.4M KOH Solution
 ● Magnetic Rack (Invitrogen Dyna Mag 96 side magnetic rack, #12331D or Magnetic stand-96 #AM10027)
Additional Items Required for Amplify
 ● Qiagen MinElute® PCR Purification Kit (Cat. No. 28004)
 ● Sterile Laboratory Grade Water
 ● Sterile 100% Ethanol
Suggested items for rapid processing
● Repeater Pipette with multi-volume tips
 ● Single Channel Pipettes
 ● Multichannel Pipette
 ● Sterile inoculating loops

 Suggested items for sample QC
 ● 0.8% agarose gel with ethidium bromide or other dsDNA stain
 ● Gel loading dye
 ● 2kb DNA ladder
 ● Bioanalyzer reagents or equivalent

Protocols
 Shoreline Complete™ Lyse Protocol
 1. Use the following calculation to make 0.4 M potassium hydroxide (KOH) solution. Make
 solution fresh daily.
 × 44.56 = 0.4 

 ℎ : = , 
 = , 
 2. Make 70% Ethanol. Add 17.5 mL 100% ethanol to 7.5 mL sterile laboratory grade water
 3. Bring Purification Buffer (white capped bottle) to room temperature.
 4. Remove film from the 96-well PCR plate containing dried Lysis-1.
 5. Follow the instructions for the specific Sample Type in Table 6, below:
 CAUTION: Avoid over-mixing to prevent foaming of the Lysis-1 reagent.

 Sample Type Sample type-specific Lysis Instructions
 Add 50 µL Molecular Biology Grade water to each well in the 96-well Lysis-1 plate.
 Using sterile inoculating loop, transfer ~3 mg of each fecal sample to the
 corresponding well (Figure 1 and Figure 2). Spin each loop to disperse the sample in
 Lysis-1, and discard loop.

Frozen Solid Fecal Samples

 Figure 1. Figure 2.

 Add 50 µL Molecular Biology Grade water to each well in the 96-well Lysis-1 plate.
Mouse Fecal Pellet
 Place up to 5 mg (1/4 mouse pellet) in each well.
DNA Genotek Add 40 µL Molecular Biology Grade water to each well in the 96-well Lysis-1 plate.
OMNIgene®•GUT Sample
 Add 10 µL of sample from the OMNIgene®•GUT Sample Collection Tube to Lysis-1.
Collection Tube
Liquid Fecal Samples stored Add 40 µL Molecular Biology Grade water to each well in the 96-well Lysis-1 plate.
in other buffers Add 10 µL of sample.
 Add 50 µL Molecular Biology Grade water to each well in the 96-well Lysis-1 plate.
Tissue Samples
 Place 20mg tissue sample in each well.
 Centrifuge saliva samples at 5500 RCF for 10 minutes to pellet cells.
 Remove and discard supernatant.
Saliva
 Re-suspend in 50 µL of Molecular Biology Grade water, TE, or PBS.
 Transfer 50 µL of cell suspension to Lysis-1 well.
 Moisten swab with buffer containing Tris-EDTA and 0.5% Tween 20.
 Collect sample from skin. Place swab in 1.7 mL microcentrifuge tube. Break the swab
 handle off at designated location.
 Centrifuge tube with swab for 5 minutes at 10000 RCF.
Skin Swab Remove swab and transfer supernatant to a clean 1.7 mL tube.
 Centrifuge tube with swab second time for 5 minutes at 10000 RCF.
 Remove swab and combine supernatant with the first supernatant. Discard spent
 tube and swab.
 Transfer 50 µL of the supernatant to Lysis-1 well.
 Add 50 µL water, TE, or PBS to cells.
Cell Pellet Pipette to mix.
 Transfer 50 µL of cell suspension to Lysis-1 well.

 Table 6. Sample type-specific instructions for lysis
 6. Add 50 µL 0.4M KOH to each well position in the 96-well plate. Mix briefly by pipetting up
 and down. Do not over-mix to avoid foaming. A precipitate will form in the wells.
 7. Cover the sample plate with plate film, load the sample plate into the thermocycler, close
 and lock the lid, and heat samples to 95°C for 5 minutes. Precipitate will dissolve.
Shoreline Complete™ Purify Protocols
 Follow the purification protocol from Table 7 below based on the sample type being used.

 Protocol for frozen/liquid/mouse fecal, Protocol for skin, swabs, cell pellets,
 OMNIgene® Gut saliva
 ● Remove the plate from the ● Remove the plate from the
 thermocycler thermocycler.
 ● Place sample plate on ice for 2 ● Vortex two bottles of Purification Buffer
 minutes. (Precipitate will re-form) (white cap) to re-suspend any brown
 ● Vortex Purification Buffer bottle magnetic beads that may have settled.
 (white cap) to re-suspend any brown ● Add 100 µL of Purification Buffer
 magnetic beads that may have settled. directly to each well of the sample plate
 ● Add 50 µL of Purification Buffer to and pipette to mix.
 each well of a new plate for sample ● Cover the sample plate with a new plate
 purification film.
 ● After incubating sample plate on ice,
 spin sample plate in centrifuge at 2000
 RCF for 3 minutes (or 400 RCF for 7
 minutes) to pellet precipitate to
 bottom of wells (see Figure 3 below)
 ● Carefully transfer 50 µL of supernatant
 into the appropriate well of the clean
 96-well plate with Purification Buffer
 prepared as per the instructions
 above; and pipette to mix.
 ● Cover the sample plate with a new
 plate film.
 Table 7. Purification protocols based on sample type

 Figure 3. Pelleted precipitate in bottom of wells after spin
 1. Load sample plate onto the thermocycler, close and lock the lid, and incubate solution for
 5 minutes at 50˚C to allow DNA to bind to beads
 2. After incubation, place plate on magnetic rack to pellet beads with bound DNA (~60
 seconds), carefully remove plate film.
 3. Once all beads are pelleted, remove all supernatant SLOWLY and discard. Avoid aspirating
 beads.
 4. Leave the plate on the magnet and add 200 µL 70% ethanol to each well. After 30
 seconds, remove the supernatant.
5. Repeat the wash from step 4 above.
 6. Remove the ethanol completely and let air dry for 2 - 3 minutes. Over-drying will make
 eluting DNA more difficult, so watch to ensure ethanol is mostly gone but bead pellet does
 not begin to shrink and crack.
 7. Remove plate from magnet.
 8. Add 20 µL of 1X TE buffer to each well and briefly pipette up and down to re-suspend
 beads.
 9. Incubate plate at room temperature for 2 minutes.
 10. Place plate on magnetic rack for 30 - 60 seconds to pellet magnetic beads. DNA is now in
 solution.
 11. Transfer supernatant containing eluted DNA into a clean plate on ice.
 12. Remove plate with pelleted beads from rack.
 13. Add another 20 µL 1X TE buffer onto bead pellet, gently pipette up and down to re-suspend beads.
 14. Incubate plate for 2 minutes at room temperature.
 15. Return plate to magnetic rack. Allow beads to pellet to sides for 30 - 60 seconds.
 16. Remove supernatant containing DNA and combine with first eluate in clean plate, avoiding
 pelleted beads.
 17. Dilution:
 17.1. For all fecal samples: Dilute 1:5 by adding 160 µl 1X TE buffer to 40 µl of combined eluted DNA
 for a total of 200 µl.
 17.2. For all other samples: Do not dilute.
 18. Proceed to Amplify step or store eluted DNA at +4°C.

 Genomic DNA can be stored at +4°C for up to 10 days, or frozen at -20°C for 3 months.

Shoreline Complete™ Amplify Protocol
 1. Remove the plate seal from the Amplicon Primer plate.
 2. Add 10 µL 2X PCR Premix (blue cap) to each position in the 96-well plate.
 3. Add 10 µL Shoreline Biome DNA to each of the 96-wells.
 4. Using the PCR sealing film provided with the kit, cover the plate and seal tightly with no gaps.
 5. Primers will dissolve off the bottom of each well. Observe that blue color is uniformly distributed
 throughout 20 µL reaction, if not, tap plate gently until uniform blue color is achieved in each
 well.
 6. Spin plate briefly if reaction mix is not completely at the bottom of the wells.
 7. Transfer the plate to thermocycler; close and lock the lid.
 8. Run the appropriate PCR protocol for the Shoreline Complete™ kit from Table 8 or Table 9 below.
V1-V3 V4
 Heated lid @ 100°C Heated lid @ 100°C

Temperature Time Ramp Speed Cycles Temperature Time Ramp Speed Cycles
 95°C 3 min 1 cycle 95°C 3 min 1 cycle
 95°C 10 sec 95°C 20 sec
 34 34
 57°C 10 sec 0.5°C/sec 58°C 15 sec 4°C/sec
 cycles cycles
 72°C 21 sec 72°C 15 sec
 73°C 45 sec 1 cycle 72°C 2 min 1 cycle
 4°C hold hold 4°C hold hold
 Table 8. PCR Protocol for V1-V3 Kits Table 9. PCR Protocol for V4 Kits

 Amplicons can be stored at 4°C for up to one (1) week or -20°C for up to one (1) month

Amplicon QC
 Check individual reactions on gel: Run 1.5 µL of sample with 5 µL diluted gel loading dye on 0.8%
 agarose gel in TBE, 150V for approximately 45 minutes, with DNA ladder. Band should be present
 at ~650bp V1-V3 and ~450bp for V4. Agilent Bioanalyzer or equivalent can also be used.

Post Amplification Clean-up
 Qiagen MinElute® PCR Purification Protocol
 1. Follow MinElute instructions for adding Ethanol (96% - 100%) to PE buffer, and label tubes.
 2. Pool 5 µL of each amplified sample from the 96-well plate (when pooling multiple plates, pool 5 µL
 of each amplified sample from all wells of all plates) into a clean 1.5 mL microcentrifuge tube. (If
 the amplicon QC gel shows variation in amount of PCR product, volume adjustments can be made
 here, during pooling.) Save 2 µL of pooled unpurified DNA for gel comparison with purified DNA in
 the last step below.
 3. Combine 80 µL of pooled sample with 400 µL of Qiagen PB buffer.
 4. Transfer all of the resulting solution into the MinElute column with provided 2 mL collection tube.
 5. Centrifuge the MinElute column at 17,900 RCF for 1 minute or until solution has passed through the
 column. Discard the flow-through in the collection tube and return the column into the empty tube.
 6. Add 750 µL Buffer PE to the MinElute column and centrifuge at 17,900 RCF for 1 minute; discard
 flow through and return MinElute column to the collection tube. Centrifuge for 1 minute at
 17,900 RCF to remove residual Ethanol.
 7. Place MinElute column in a clean 1.5 mL microcentrifuge tube.
 8. Add 50 µL EB Buffer (10mM Tris-Cl, pH 8.5) or water directly onto center of the MinElute
 membrane. Incubate column for 1 minute at RT, and then centrifuge column at 17,900 RCF
 for 1 minute.
Safe stopping point - Pooled undiluted library can be stored at 4°C for up to one (1)
 week or -20°C for up to one (1) month

 9. Quantify the library by a fluorometric method (e.g. Qubit). Determine the size distribution by
 running the pooled amplicon library on Agilent Bioanalyzer or equivalent. (see Pooled Amplicon
 QC, below).
 10. Use the following formula to convert from ng/μl to nM:
 
 × 106 = 
 (660 ) × 
 
 ℎ : = , 
 = 
 = , 
 11. Dilute the library to 4nM using the above equation and proceed to the Illumina MiSeq
 System Denature and Dilute Libraries Guide. Follow the procedure for Protocol A: Standard
 Normalization Method and MiSeq Reagent Kit v3 (see Sequencing section below).

Pooled Amplicon QC
 Below is an example of the library traces for V4 (Figure 4) and V1-V3 (Figure 5 and Figure 6). Note
 that depending on composition of the bacterial population, V1-V3 traces can result in single or
 bimodal peaks3

 Figure 4. V4 sample trace
Figure 5. V1-V3 sample trace B Figure 6. V1-V3 sample trace C

Sequencing
 High resolution taxonomic classification is dependent on sequencing quality. Shoreline Complete™
 kits should be run on Illumina MiSeq instrument using v3 600-cycle chemistry. This enables the user
 to perform paired-end 300bp reads, resulting in higher quality reads and allowing better taxonomic
 resolution than using shorter sequencing chemistries (i.e., 150bp)4. Using less than 2x300 cycles will
 result in reads with insufficient overlap and lower quality, thereby reducing usable data. Use >5%
 PhiX control for low diversity libraries.5,6

References
 1. MacConaill, L.E., Burns, R.T., Nag, A. et al. Unique, dual-indexed sequencing adapters with UMIs
 effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel
 sequencing. BMC Genomics 19, 30 (2018). https://doi.org/10.1186/s12864-017-4428-5
 2. https://sapac.support.illumina.com/bulletins/2017/03/best-practices-for-manually-normalizing-
 library-concentrations.html?langsel=/my/
 3. Vargas-Albores F, Ortiz-Suárez LE, Villalpando-Canchola E, Martínez-Porchas M. Size-variable
 zone in V3 region of 16S rRNA. RNA Biol. 2017;14(11):1514–1521.
 doi:10.1080/15476286.2017.1317912
 4. https://support.illumina.com/content/dam/illumina-
 marketing/documents/products/other/16s-metagenomics-faq-1270-2014-003.pdf
 5. https://support.illumina.com/content/dam/illumina-
 support/documents/documentation/system_documentation/miseq/miseq-denature-dilute-
 libraries-guide-15039740-10.pdf
 6. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-
 metagenomic-library-prep-guide-15044223-b.pdf
Appendix A: Barcode Sequences for V1-V3 and V4 Set A

 Position Index (i7) Index2 (i5)
 A1 ACGATCAG ATATGCGC
 A2 TCGAGAGT TGGTACAG
 A3 CTAGCTCA AACCGTTC
 A4 ATCGTCTC TAACCGGT
 A5 TCGACAAG GAACATCG
 A6 CCTTGGAA CCTTGTAG
 A7 ATCATGCG TCAGGCTT
 A8 TGTTCCGT GTTCTCGT
 A9 ATTAGCCG AGAACGAG
 A10 CGATCGAT TGCTTCCA
 A11 GATCTTGC CTTCGACT
 A12 AGGATAGC CACCTGTT
 B1 GTAGCGTA ATCACACG
 B2 AGAGTCCA CCGTAAGA
 B3 GCTACTCT TACGCCTT
 B4 CTCTGGAT CGACGTTA
 B5 AGATCGTC ATGCACGA
 B6 GCTCAGTT CCTGATTG
 B7 GTCCTAAG GTAGGAGT
 B8 TATGGCAC ACTAGGAG
 B9 TCGGATTC CACTAGCT
 B10 AACAGCGA ACGACTTG
 B11 CCAACGAA CGTGTGTA
 B12 CAGTGCTT GTTGACCT
 C1 GATCAAGG ACTCCATC
 C2 TCTTCGAC CAATGTGG
 C3 ATCGTGGT TTGCAGAC
 C4 CGGTAATC CAGTCCAA
 C5 AGTTGTGC ACGTTCAG
 C6 AATGACGC AACGTCTG
 C7 TACCGGAT TATCGGTC
 C8 TTGCAACG CGCTCTAT
 C9 CACTTCAC GATTGCTC
 C10 TAGCCATG GATGTGTG
 C11 ACAGGCAT CGCAATCT
 C12 AGGTGTTG TGGTAGCT
 D1 CAGTCACA GATAGGCT
 D2 TCGATGAC AGTGGATC
 D3 GAAGTGCT TTGGACGT
D4 CTTCCTTC ATGACGTC
D5 CGAACAAC GAAGTTGG
D6 AACAACCG CATACCAC
D7 ACCTCAGT CTGTTGAC
D8 CGTCTTCA TGGCATGT
D9 TGCGTAAC ATCGCCAT
D10 AACACGCT TTGCGAAG
D11 ACTCGATC AGTTCGTC
D12 TGAGCTGT GAGCAGTA
 E1 TACTGCTC ACAGCTCA
 E2 GACGAACT GATCGAGT
 E3 CTTCGCAA AGCGTGTT
 E4 ATGGCGAT GTTACGCA
 E5 ACATGCCA TGAAGACG
 E6 GTCAACAG ACTGAGGT
 E7 GTGGTATG CGGTTGTT
 E8 CCAACTTC GTTGTTCG
 E9 GACGTCAT GAAGGAAG
E10 ACGTCCAA AGCACTTC
E11 GATCCACT GTCATCGA
E12 AGCCTATC TGTGACTG
 F1 AGCTACCA CAACACCT
 F2 AGATTGCG ATGCCTGT
 F3 CACACATC CATGGCTA
 F4 GAGCAATC GTGAAGTG
 F5 ATAGAGCG CGTTGCAA
 F6 GACCGATA ATCCGGTA
 F7 CAGACGTT GCGTCATT
 F8 CTGAACGT GCACAACT
 F9 TTGGACTG GATTACCG
F10 GTCTGCAA ACCACGAT
F11 CCACATTG GTCGAAGA
F12 GATGGAGT CCTTGATC
G1 AGGTCAAC AAGCACTG
G2 TACACACG TTCGTTGG
G3 CAAGTCGT TCGCTGTT
G4 AGCTAGTG GAATCCGA
G5 CTCCTAGT GTGCCATA
G6 ACTCCTAC CTTAGGAC
G7 CAATCAGG AACTGAGC
G8 TCGTGCAT GACGATCT
G9 TAACGTCG ATCCAGAG
G10 AAGGCGTA AGAGTAGC
G11 TCTTACGG TGGACTCT
G12 CGTGTGAT TACGCTAC
H1 AACAGGTG GCTATCCT
H2 AGTCGAAG GCAAGATC
H3 TGGAAGCA ATCGATCG
H4 CTCGTTCT CGGCTAAT
H5 ACGAGAAC ACGGAACA
H6 AAGCCTGA CGCATGAT
H7 CTACAAGG TTCCAAGG
H8 CGATGTTC CTTGTCGA
H9 ACCGGTTA GAGACGAT
H10 GAACGGTT TGAGCTAG
H11 CTGTACCA ACTCTCGA
H12 GCGCATAT CTGATCGT
Appendix B: Barcode Sequences for V1-V3 and V4 Set B

 Position Index (i7) Index2 (i5)
 A1 TGATAGGC CGACCATT
 A2 CATCCAAG GATAGCGA
 A3 GTGAGACT AATGGACG
 A4 CTGATGAG CGCTAGTA
 A5 ACGGTACA TCTCTAGG
 A6 CTCGACTT ACATTGCG
 A7 ACAACGTG TGAGGTGT
 A8 TGCTGTGA AATGCCTC
 A9 CCAAGTAG CTGGAGTA
 A10 AACTGAGG GTATGCTG
 A11 AGGTAGGA TGGAGAGT
 A12 TTCGCCAT CGATAGAG
 B1 CAGGTAAG CTCATTGC
 B2 GTATCGAG ACCAGCTT
 B3 TTCACGGA GAATCGTG
 B4 GAGCTCTA AGGCTTCT
 B5 GTCAGTCA CAGTTCTG
 B6 CACGTCTA TTGGTGAG
 B7 AATTCCGG CATTCGGT
 B8 TCTAGGAG TGTGAAGC
 B9 ATCCGTTG TAAGTGGC
 B10 GATAGCCA ACGTGATG
 B11 TATGACCG GTAGAGCA
 B12 CGATTGGA GTCAGTTG
 C1 ACAAGCTC ATTCGAGG
 C2 GAACCTTC GATACTGG
 C3 AGCGAGAT GCCTTGTT
 C4 CCGTAACT TTGGTCTC
 C5 TCAGACAC CCGACTAT
 C6 CGAAGTCA GTCCTAAG
 C7 GTGATCCA ACCAATGC
 C8 ACTGGTGT GATGCACT
 C9 CTAACCTG GCTGGATT
 C10 AGCCAACT ATGGTTGC
 C11 CCAGTTGA CAGAATCG
 C12 AAGTGCAG GAACGCTT
 D1 AACCGTGT TCGAACCA
 D2 CGCGTATT CTATCGCA
 D3 AGTTCGCA TACGGTTG
D4 TAGTCAGC GAGATGTC
D5 AACACCAC CTTACAGC
D6 GTAAGCAC AGGAGGAA
D7 GTCCTTGA GACGAATG
D8 CAGGTTCA GAAGAGGT
D9 CCAACACT CGTCAATG
D10 GAGAGTAC TACCAGGA
D11 AGATACGG CGTACGAA
D12 GTTCTTCG GACTTAGG
 E1 ATTCCGCT AGTGCAGT
 E2 AAGCTCAC TTGATCCG
 E3 TGATCACG TGCCATTC
 E4 CAATGCGA CTTGCTGT
 E5 ATGCGTCA CCTACTGA
 E6 TACATCGG CCAAGTTG
 E7 ACTGCGAA TGATCGGA
 E8 TCTGTCGT TAGTTGCG
 E9 CTCAAGCT GTCTGATC
E10 AACCACTC CGTTATGC
E11 CTTACAGC GCTCTGTA
E12 AGTCTTGG TTACCGAG
 F1 CACGCAAT GCCATAAC
 F2 AGCTTCAG CTCAGAGT
 F3 CCTCGTTA CGAGACTA
 F4 TGAGACGA TGTGCGTT
 F5 CACAGGAA TTCAGGAG
 F6 ACTCAACG GACTATGC
 F7 AAGCGACT AGGTTCGA
 F8 CCTACCTA AGTCTGTG
 F9 ATCTCCTG ACCTAAGG
F10 TCACGATG TGCAGGTA
F11 CCACAACA AAGGACAC
F12 AGGTCTGT CAACCTAG
G1 AGAAGGAC CTGACACA
G2 GCGTATCA ACTCGTTG
G3 CAACACAG AGCTCCTA
G4 TCCACGTT TACATCGG
G5 ATCGCAAC CACAAGTC
G6 ACGTCGTT CGGATTGA
G7 CGAATACG AGTCGACA
G8 TGCTTGCT GTCTCCTT
G9 CTCGAACA GAGATACG
G10 ACATGGAG ATCGGTGT
G11 ACAAGACG TCTCGCAA
G12 CGCCTTAT TCTAACGC
H1 AGCAGACA CAATCGAC
H2 GTTAAGCG GAGGACTT
H3 CATGGATC TGGAGTTG
H4 ACAGAGGT CTAGGCAT
H5 TAAGTGGC CTCTACTC
H6 AGTCAGGT AGAAGCGT
H7 GCCTTAAC TCGAAGGT
H8 GTTGGCAT GTCGGTAA
H9 CAACCTCT ACGATGAC
H10 TGGATGGT TCCGTATG
H11 CTATCCAC CTAGGTGA
H12 GATCTCAG CATTGCCT
Appendix C: Barcode Sequences for V4 Set C

 Position Index (i7) Index2 (i5)
 A1 GAACGAAG ACCTTCTC
 A2 ACCTAGAC TCGTGGAT
 A3 TACGACGT GTTCATGG
 A4 TTGAGCTC TAGGATGC
 A5 AGTACACG CATGGAAC
 A6 TGTCAGTG GCTTAGCT
 A7 GACTACGA CTAACTCG
 A8 TTACGTGC ACCATGTG
 A9 ACTGCTTG TCAGACGA
 A10 GCCTATGT TATCAGCG
 A11 GTACCACA AGCAGATG
 A12 TAGTGGTG AACGGTCA
 B1 ATACGCAG CGAACTGT
 B2 AAGACCGT TCCGAGTT
 B3 CTCCAATC TTCTCTCG
 B4 TCTGGACA ATTCTGGC
 B5 AACACTGG ACTGCTAG
 B6 TTGGTGCA CATAACGG
 B7 CCTGTCAA CAGTCTTC
 B8 CTATGCCT TGCCTCTT
 B9 TTCGGCTA ACTGTGTC
 B10 ACCGACAA GTATTGGC
 B11 CGTAGATG CGATGCTT
 B12 CTGTATGC AAGGCTGA
 C1 GTTGCTGT AGTCAGGA
 C2 AGAACCAG CAGGTATC
 C3 GATGTCGA TCTCCGAT
 C4 AGGAGGTT TTCAGCCT
 C5 AATCGCTG TCTGAGAG
 C6 AGTGACCT TTAGGTCG
 C7 CGAATTGC CTCTGGTT
 C8 CAAGAAGC GCGTTCTA
 C9 CACCAGTT TCACGTTC
 C10 GTATTCCG AGGATGGT
 C11 TTCGAAGC GTGTTCCT
 C12 AGACCTTG GTAGCATC
 D1 CCAAGGTT AGGATCTG
 D2 ACGTATGG GACAAGAG
 D3 AAGGACCA TTACGGCT
D4 TATGCGGT GCTGTTGT
D5 AAGGAAGG AACCGAAG
D6 AGCGTGTA TCTGCTCT
D7 TCTACGCA CTCAGCTA
D8 TGGCTCTT CTTCACCA
D9 CCTTCCAT GATCGTAC
D10 ATACTGGC CTACAGTG
D11 AACCTACG TCGAGTGA
D12 CATACTCG CAAGTGCA
 E1 TGCACTTG CGAGTATG
 E2 TCACTCGA CGTAGGTT
 E3 CACTGTAG GCCAGTAT
 E4 GTACGATC ATGGAAGG
 E5 TGGTGAAG AAGAGCCA
 E6 TAGCTGAG TGCGTAGA
 E7 AGAGCAGA TACACGCT
 E8 CTTCGGTT CCTTCCTT
 E9 ACAACAGC ACCGCATA
E10 AGCCGTAA TGGTCCTT
E11 CTCTTGTC CCATACGT
E12 CAGATCCT AACCTTGG
 F1 GATGCTAC CAAGGTCT
 F2 AGGAACAC GCTTCGAA
 F3 ACCATCCT CGGAATAC
 F4 GAACGTGA AACTGGTG
 F5 TAGAACGC GCTTCTTG
 F6 AACCAGAG GCAATTCG
 F7 CGACCTAA AGGTCACT
 F8 CTCTCAGA CAGCGATT
 F9 AGGCTGAA AACCTCCT
F10 ATCGGAGA TCGACATC
F11 GATACCTG CTGGTTCT
F12 TCCTGACT ACAGCAAC
G1 TCAGCCTT GCATACAG
G2 AAGCATCG CATCTACG
G3 GCCAATAC TTGTCGGT
G4 GACACAGT TAGCCGAA
G5 AAGAGGCA AGGCATAG
G6 GAAGACTG TTGACAGG
G7 CCGTTATG TGCACCAA
G8 CTAGCAGT CCAGTGTT
G9 GCCAGAAT TGTCCAGA
G10 CGAGAGAA GATTGGAG
G11 AACTCGGA ACGGTCTT
G12 ACAGTTCG CTGCGTAT
H1 TGACCGTT CACCACTA
H2 CATCTGCT TGTGGTAC
H3 CGCTGATA ACATAGGC
H4 TCGTCTGA CAAGCAGT
H5 CACATGGT GCACGTAA
H6 CGAGTTAG TCGTAGTC
H7 AGCTAAGC CACTGACA
H8 GTTCCATG CGTGTACT
H9 GCATCCTA GAGCTCAA
H10 CCATGAAC ACGTCGTA
H11 ATCCACGA GTCTAGGT
H12 GAGAAGGT CTTCGTTC
You can also read