Professor Scott E. Denmark University of Illinois, Urbana-Champaign - IASOC
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Professor Scott E. Denmark University of Illinois, Urbana-Champaign Activating Acids with Bases: Theory and Applications An Homage to G. N. Lewis Ischia Advanced School of Organic Chemistry 2006 Ischia, Italy QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. 19-23 September 2006 G. N. Lewis (1875-1946)
(Asymmetric) Catalysis: The Chemical Evergreen reagents catalysts
Opportunities for Catalysis in the Main Group? • Lewis Acidity: – B(+3), Al(+3), Ga(+3), In(+3) – Si(+4), Sn(+2, +4), Pb(+4) – P(+5), Sb(+3, +5), Bi(+3, +5) – O(+2), S(+2, +4, +6), Se(+2, +4, +6), Te(+2, +4, +6) – F(+1), Cl(+1, +3, +5, +7), Br(+1, +3, +5, +7), l(+1, +3, +5, +7) • Catalyzed Chemical Processes – Carbonyl addition reactions (aldol, allylation, ene) – Acetal addition reactions – Friedel-Crafts reactions – Conjugate addition reactions – Azomethine addition reactions – Epoxide opening reactions – Cycloadditions ([4+2], hetero [4+2], [3+2]), Electrocyclic reactions – Sigmatropic (and other) rearrangements
Strategies for Modulating Lewis Acidity: Structural structural perturbations (“strain-release Lewis acidity”) p orbital spn hybrid distort ΔH0 = -22.7 kcal/mol N R B B + R M R M R R N R (Mihkailov) F3C CF 3 F3C CF3 R R θ = 90Þ O θ = 109Þ distort O LB Si Si LB O R M R M Si 94Þ R R O R CF3 R F3C F3C CF3 (J. C. Martin) θ = 77Þ Me Si O Si Me Si O Me intramolecular O O + O O H silicon transfer MeO H MeO Me MeO Me Ph Me
Strategies for Modulating Lewis Acidity: Electronic electronic perturbations (electrophilic) LB X X X LB LB X X M M X X M X X M X X X X X LB Binding equilibrium becomes more favorable as electron deficiency at M increases: X = NR2 < OR < halide < TfO ~Tf2N electronic perturbations (nucleophilic?) Gutmann’s Fourth Rule “spillover effect” _ F "…although a donor-acceptor - Cl F F interaction will result in a net transfer of Cl Cl B F B electron density from a donor species Sb net decrease F F F Cl F to an acceptor species, it will, in the Cl electron deficient more electron case of polyatomic species, actually O net increase MP2: q(au) +0.990 deficient!! lead to a net increase of electron C MP2: q(au) +1.070 density at the donor atom of the donor O O species and to a net decrease of Cl C C Cl C. Cramer, private communication electron density at the acceptor atom of the acceptor species." Cl Cl
Structure, Bonding and Charge Distribution in Hypercoordinate Silicon Compounds (3c-4e) p (3c-4e) p X L L Lewis base (L) X Lewis base (L) X L X Si X X Si X Si X X X X X sp3 sp2 sp tetrahdral (Td) tbp (C3v) octahedron (D4h or C2v) formal bond order: 1.0 formal bond order (apical): 0.75 formal bond order: 0.66 Si-Cl 2.039 Å formal bond order (basal): 0.83 Si-Cl 2.273 Å X Si charge X charge X L Si charge X charge X L Si charge X charge Cl +0.178 - 0.045 Cl Cl +0.279 -0.430(a), -0139(b) Cl Cl +0.539 -0.423 1. 1. Coordination Coordinationbybyboth bothneutral neutraland andanionic anionicligands ligandsresults resultsininaadecrease decreaseininthe theelectron electron density densityat atthe thecentral centralsilicon siliconatom atomand andan anincrease increaseininelectron electrondensity densityon onthe theligands. ligands. 2.2.Hypervalent Hypervalentbonding bondingisishighly highlyionic ionicinincharacter characterand anddissociation dissociationcan canbe befacile. facile. 3.3.Hypervalent Hypervalentbonds bondsfavor favorelectronegative electronegativeligands, ligands,sp spbonds bondsfavor favorelectropositive electropositiveligands ligands M. Gordon, J. Phys. Chem. 1990, 94, 8125
The Hypervalent 3-Center/4 Electron Bond σ∗ (LUMO) Si Si Si Si n (NB) hypervalent bonds covalent bonds from sp-hybrids formed from the py obtained from px and s-orbitals and pz orbitals σ (HOMO) Cl Si Cl L N(2) L L' binding site for s-donors N(1) Si C(11) L' L binding site for s-acceptors C(12) O(2) O(1) L Cl(1) Cl(2) Si hypervalent (3c-4e) bonds covalent bonds (px and pz orbitals) (py and s orbitals) Cl(3) Cl(4) Si-Cl(1)/Cl(2): 2.180 Å Si-Cl(3)/Cl(4): 2.197 Å
Lewis Base Activation of Lewis Acids + δ+ XX XX L X L L δ− δ+ δ− D + D A X D A X- L X A X LL L X LL X X Lewis base Lewis acid increased increased negative positive charge charge •• The Thekinetically kineticallysignificant significant(strong) (strong)Lewis Lewisacid acidisisgenerated generatedonly onlyininthe thepresence presenceof ofthe the Lewis Lewisbase basethus thusnegating negatingthe theachiral achiralbackground backgroundreaction. reaction. •• Reactions Reactionscancanbeberun runwith withaastoichiometric stoichiometricamount amountof ofthe theweak weakLewis Lewisacid acid •Increased rates •Increased rates •Product •Productinhibition inhibitionisisminimized minimized + O + Cl L Cl Cl L Cl Cl – Si DL3 R H O D + D Si Cl Cl– L Cl Si Cl LL Cl L Cl Cl R H Lewis base Lewis acid Other Otherelectrophiles: electrophiles:enals, enals,enones, enones,azomethines, azomethines,epoxides, epoxides,nitrones, nitrones,nitroalkenes nitroalkenes Pro ProNucleophiles: Nucleophiles: Nu-SiR Nu-SiR3 ==allylsilanes allylsilanes(stannanes) (stannanes)enol enolsilanes, silanes,silyl silylketene keteneacetals, acetals,etc. etc. 3
Catalytic Enantioselective Passerini Reaction Ugi O Passerini O R3 H O 2C 2C O R2 H R H R H R3 N C R R1 N C C* N 1 C* N 1 R3 O C R O H O H R2 R3NH2 O O C R3 OH C H R3 OH O R2 H multicomponent multicomponentreactions reactionsfor for R2 molecular moleculardiversity diversity R2 C N HO C R1 HO C H N O O R1 O R3 O R3 Isocyanide Isocyanidebears bearsdivalent divalentcarbon carbonatom atomwith withelectrophilic electrophilicand andnucleophilic nucleophilicproperties properties Up Upto tofour fournew newbonds bondsand andone onestereocenter stereocentercreated createdininvery usefulα−acyloxy veryuseful α−acyloxyamides amides Auxiliary-based Auxiliary-basedapproaches approachesbut butno noexamples examplesofofcatalytic catalyticenantioselective enantioselectiveprocess!! process!!
Passerini Reaction: Lewis Base Activation of Lewis Acid Cl3 catalyst turnover product release Si O Lewis base R2 N 1.5 SiCl4 R catalyst H Cl (LB*) activation of Lewis acid Ln*Cl3SiO N R2 R1 [LB2*SiCl3] 0.5 (SiCl6)2– H Cl chloride capture 0.5 SiCl4 O R2 H SiCl3LB2* SiCl3LB2* O O 2 0.5 (SiCl6)2– R R2 H H N 1 R Cl 0.5 (SiCl5)2– binding to aldehyde 1 C NR addition •activated •activatedsilyl silylcation cationpreferentially preferentiallybinds bindscarbonyl carbonylsubstrate, substrate,instead insteadofofthe theisocyanide isocyanide •attenuated •attenuatedLewis Lewisacidity acidityof ofthe thesilicon siliconcenter centerininimidoyl imidoylchloride chlorideresults resultsfacile facileturnover turnover •catalyst •catalystturnover turnoverbecomes becomesthe therelease releaseofofthe theLewis Lewisbase, base,instead insteadofofthe theLewis Lewisacid acid
Catalytic Enantioselective Passerini Reaction: Aldehyde Survey OH O t-BuNC (1.2 equiv) SiCl3 NaHCO3 (aq) NHt-Bu + SiCl4 + catalyst O R or R H (1.1 equiv) (5 mol %) CH2Cl2 / -78 °C R N t-Bu 1. MeOH O OH 4h or OMe Cl 2. NaHCO3 (aq) R O OH OH OH OH OH NHt-Bu OMe NHt-Bu NHt-Bu NHt-Bu O O O O O MeO F3C yield 96% yield 95% yield 89% yield 89% yield 93% er: > 99/1 er: > 99/1 er: 98.3/1.7 er: 96.5/3.5 er: > 99/1 OH OH OH OH OH NHt-Bu OMe O NHt-Bu NHt-Bu NHt-Bu O O O O O yield 81% yield 71% yield 83% yield 53% yield 76% er: 97.8/2.2 er: 97.9/2.1 er: 95.9/4.1 er: 87.1/12.9 er: 77.0/23.0 OH OH NHt-Bu OMe Me Me O O N O O N P P yield 92% yield 88% N N N N er: 81.9/18.1 er: 81.8/18.2 Me Me Me Me cat.
Cast and Sponsors Xiping XipingSu John Su JohnHeemstra, Heemstra,Jr. Jr. Robert RobertA.A.Stavenger Won-jin Stavenger Won-jinChung Chung Son SonPham William Pham WilliamCollins Collins Jiping JipingFu Tyler Fu TylerWilson Wilson Yu YuFan Peter Fan PeterYao Yao Greg GregBeutner Beutner Tommy TommyBui Dr. Bui Dr.Brian BrianEklov Eklov Dr. Dr.Moballigh MoballighAhmad Ahmad Dr. Dr.Diane DianeCoe Coe Dr. Dr.Brian BrianGriedel Griedel Dr. Dr.Stephen StephenB. B.D. D.Winter Winter Funding Funding Dr. Dr.Ken-Tsung Ken-TsungWong Wong Prof. Prof.Yutaka YutakaNishigaichi Nishigaichi National NationalScience ScienceFoundation Foundation Dr. Dr.Sunil SunilK. K.Ghosh Ghosh Eastman EastmanKodak KodakCompany Company Dr. Dr.Thomas ThomasWynn Wynn Boehringer BoehringerIngelheim IngelheimPharmaceuticals Pharmaceuticals Dr. Dr.Steven StevenMacNeil MacNeil Ministry MinistryofofScience Scienceand andEducation Education(Japan) (Japan) Dr. Dr.Marcel MarcelSchleusner Schleusner GlaxoSmithKline GlaxoSmithKline(UK) (UK) Dr. Dr.Martin MartinEastgate Eastgate Pharmacia Corporation Pharmacia Corporation Dr. Dr.Michael MichaelEdwards Edwards Abbott AbbottLaboratories Laboratories
You can also read