OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI

Page created by Patrick Goodwin
 
CONTINUE READING
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Komisi Teknis Energi

  OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN
    TERBARUKAN MENUJU KETAHANAN ENERGI
                  BERKELANJUTAN
      Webinar Pusat Perancangan Undang-Undang
                Badan Keahlian DPR RI
                   Senin, 12 Oktober 2020
    MENINGKATKAN TINGKAT PENETRASI VRE UNTUK
MENDUKUNG DEKARBONISASI SEKTOR KETENAGALISTRIKAN
                YANG MENDALAM
          Ir. Hardiv Harris Situmeang, M.Sc., D.Sc.
    Ketua Komisi Teknis Energi – Dewan Riset Nasional (DRN)
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Paris Agreement
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Global Goal of Keeping Warming Between 2 0C and 1.5 0C

                                   Article 2
1.   This Agreement, in enhancing the implementation of the Convention,
     including its objective, aims to strengthen the global response to the threat
     of climate change, in the context of sustainable development and efforts to
     eradicate poverty, including by:
     a) Holding the increase in the global average temperature to well below 2
           °C above pre-industrial levels and to pursue efforts to limit the
           temperature increase to 1.5 °C above pre-industrial levels, recognizing
           that this would significantly reduce the risks and impacts of climate
           change;
     b) Increasing the ability to adapt to the adverse impacts of climate
           change and foster climate resilience and low greenhouse gas emissions
           development, in a manner that does not threaten food production;
     c) Making finance flows consistent with a pathway towards low
           greenhouse gas emissions and climate-resilient development.
2.   This Agreement will be implemented to reflect equity and the principle of
     common but differentiated responsibilities and respective capabilities, in
     the light of different national circumstances.
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Pasal 2

            Undang-Undang ini mulai berlaku pada tanggal diundangkan.
            Agar setiap orang mengetahuinya, memerintahkan pengundangan
            Undang-Undang ini dengan penempatannya dalam Lembaran Negara
            Republik Indonesia.
                                          Disahkan di Jakarta
                                          pada tanggal 24 Oktober 2016
                                          PRESIDEN REPUBLIK INDONESIA,
                                                        ttd.

                                              JOKO WIDODO

Diundangkan di Jakarta
Pada tanggal 25 Oktober 2016
MENTERI HUKUM DAN HAK ASASI MANUSIA
        REPUBLIK INDONESIA,
                 ttd.

        YASONNA H. LAOLY
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Paris Agreement Article 4 Paragraph 19
            Paris Decision 1/CP.21 Paragraph 35
               Paris Agreement Article 4 Paragraph 19

19. All Parties should strive to formulate and communicate long-term low
greenhouse gas emission development strategies, mindful of Article 2 taking
into account their common but differentiated responsibilities and respective
capabilities, in the light of different national circumstances.
                 Paris Decision 1/CP.21 Paragraph 35

35. Invites Parties to communicate, by 2020, to the secretariat mid-century,
long-term low greenhouse gas emission development strategies in
accordance with Article 4, paragraph 19, of the Agreement, and requests the
secretariat to publish on the UNFCCC website Parties’ low greenhouse gas
emission development strategies as communicated;

                        Indonesia 2050 Long-Term
                      Low Greenhouse Gas Emission
                         Development Strategies
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Perlunya
  Dekarbonisasi
Sektor Energi yang
    Mendalam
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
Characteristic of Post - Third Assessment Report
             Stabilization Scenarios
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
B.5 Carbon and Other Biogeochemical Cycles
 The atmospheric concentrations of carbon dioxide (CO2), methane, and nitrous
 oxide have increased to levels unprecedented in at least the last 800,000 years.
 CO2 concentrations have increased by 40% since pre-industrial times, primarily
 from fossil fuel emissions and secondarily from net land use change emissions.
 The ocean has absorbed about 30% of the emitted anthropogenic carbon
 dioxide, causing ocean acidification (see Figure SPM.4).

                        C. Drivers of Climate Change
 Total radiative forcing is positive, and has led to an uptake of energy by the
 climate system. The largest contribution to total radiative forcing is caused by
 the increase in the atmospheric concentration of CO2 since 1750 (see Figure
 SPM.5). {3.2, Box 3.1, 8.3, 8.5}

               D.3 Detection and Attribution of Climate Change
 Human influence has been detected in warming of the atmosphere and the
 ocean, in changes in the global water cycle, in reductions in snow and ice, in
 global mean sea level rise, and in changes in some climate extremes (Figure
 SPM.6 and Table SPM.1). This evidence for human influence has grown since
 AR4. It is extremely likely that human influence has been the dominant cause of
 the observed warming since the mid-20th century. {10.3–10.6, 10.9}
IPCC WGI AR5                  12th Session of WG I              27 September 2013
Summary for Policymakers
 SPM.4 - Mitigation Pathways and Measures in the Context of
                   Sustainable Development
Scenarios reaching atmospheric concentration levels of about 450
ppm CO2eq by 2100 (consistent with a likely chance to keep
temperature change below 2°C relative to pre-industrial levels)
include substantial cuts in anthropogenic GHG emissions by mid-
century through large-scale changes in energy systems and
potentially land use (high confidence).
Scenarios   reaching    these   concentrations   by   2100    are
characterized by lower global GHG emissions in 2050 than in 2010,
40 % to 70 % lower globally, and emissions levels near zero Gt
CO2eq or below in 2100.
Scenarios that follow a least-cost emission trajectory from 2010
                                                       onwards (so-called P1 scenarios) with a greater than 66 per cent
                                  Global Aggregation
                                                       likelihood of temperature rise staying below 2°C correspond to 44.3
                                                       (38.2–46.6) Gt CO2eq emissions in 2025 and 42.7 (38.3–43.6) Gt
                                                       CO2eq emissions in 2030.
Global GHG emissions in GtCO2eq

                                                                                       Global GHG emissions path
                                                                                          compatible with 20C
                                          Gap
                                                                                   40-70% below 2010 levels by 2050

                                                                                          Emissions levels near zero
                                                                                          GtCO2eq, or below in 2100

         2015                        2020       2025   2030         2050                                        2100
1) Strongly Required: Pre-2020 and Post-2020 actions reinforce each other and in the same direction of higher
ambition.
2) Scenarios that follow a least-cost emission trajectory from 2010 onwards (so-called P1 scenarios) with a greater

than 66 per cent likelihood of temperature rise staying below 2°C correspond to 44.3 (38.2–46.6) Gt CO2eq
emissions in 2025 and 42.7 (38.3–43.6) Gt CO2eq emissions in 2030.
2 Degree Celsius is Attainable?

     Cancun Beach, 8 December 2010
Aggregate Effect of the Intended Nationally Determined
              Contributions: An Update
       Synthesis Report by the UNFCCC Secretariat
            FCCC/CP/2016/2 – 2 May 2016
Aggregate Effect of the INDC: An Update
      Synthesis report by the Secretariat - FCCC/CP/2016/2

                       Report - 02 May 2016
 The UN Climate Change Secretariat has published an update to its
  synthesis report on the collective impact of national climate action
  plans (Intended Nationally Determined Contributions, or INDCs),
  submitted by governments as contributions to global climate action
  under the Paris Agreement.
 Since the publication last October of the 1st synthesis report
  prepared ahead of the Paris Climate Change Conference, 42
  additional countries submitted their INDCs. The updated report now
  captures the overall impact of 161 national climate plans covering
  189 countries and covering 95.7% of total global emissions. (The
  European Union and its 28 member States submit a joint INDC.)
 There are 137 of the 161 INDCs (85%) which include an adaptation
  component, reflecting a common determination of governments to
  strengthen national adaptation efforts.
 INDCs are expected to deliver sizeable emission reductions and slow
  down emissions growth in the coming decade. However, these are
  still not enough to keep the global temperature rise since pre-
  industrial times to below 2, or preferably 1.5 degrees Celsius.
Comparison of Global Emission Levels in 2025 and 2030 Resulting
    from the Implementation of the INDC and under Other Scenarios

Sources: Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report scenario database, 1.5 °C scenarios from scientific
literature (see footnote 18), IPCC historical emission database and intended nationally determined contribution quantification.
Abbreviations: AR4 = Fourth Assessment Report of the Intergovernmental Panel on Climate Change, GWP = global warming potential,
INDC = intended nationally determined contribution, IPCC AR5 = Fifth Assessment Report of the Intergovernmental Panel on Climate
Change, n = number of scenarios, yr = year.
Figure ES.2
Global GHG emissions under
different scenarios and the
emissions gap in 2030
(median estimate and 10th to
90th percentile range).

   Emission Reduction
 Options and Potential
  in the Energy Sector
In the current policy scenario,
energy     sector    emissions
amount to 21.3 GtCO2 in
2030, of which 16.3 GtCO2
comes        from        power
generation (IEA, 2016, USEPA,
2012). Main options for
reducing emissions in
the energy sector are
wind and solar energy.
In    addition,    hydro,
nuclear,     geothermal,
carbon    capture    and
storage     (CCS)    and
bioenergy       combined
with       CCS       can
contribute.
Global GHG Emissions Under Different Scenarios & the
              Emissions Gap in 2030
SINGAPORE’S INTENDED NATIONALLY DETERMINED
              CONTRIBUTION (INDC)
In accordance with Decisions 1/CP.19 and 1/CP.20, Singapore communicates
that it intends to reduce its Emissions Intensity by 36% from 2005 levels by
2030, and stabilise its emissions with the aim of peaking around 2030.

Singapore’s Efforts. While Singapore is heavily dependent on fossil fuels,
given its severe limitations on using alternative energy, Singapore had made
early policy choices to reduce its GHG footprint by switching from fuel oil to
natural gas, the cleanest form of fossil fuel, for electricity generation, even
though it meant higher cost. Today, over 90% of electricity is generated
from natural gas. Singapore prices energy at market cost, without any
subsidy, to reflect resource scarcity and promote judicious usage. On top of
this, and despite the challenges, the government is significantly increasing
the deployment of solar photovoltaic (PV) systems.

         Singapore intends to reduce its Emissions
         Intensity 36% below 2005 levels by 2030, and
         aims to achieve emissions peak around 2030.
List of Countries Committed to a Net-Zero Emissions Goal
      Country                 Target Date                             Status
        Bhutan              Currently Carbon               Pledged towards the Paris
                                Negative                           Agreement
      Canada                      2050                     Will propose to Parliament
       Chile                      2050                         In Policy Document
     Costa Rica                   2050                         In Policy Document
     Denmark                      2050                         In Policy Document
  European Union                  2050                          Under Discussion
        Fiji                      2050                     Pledged towards the Paris
                                                                   Agreement
        Finland                     2035                       In Policy Document
        France                      2050                              In Law
       Germany                      2050                        Under Discussion
        Iceland                     2040                       In Policy Document
        Ireland                     2050                        Under Discussion
Sources: i) World Economic Forum, 05 July 2019; and ii) 2019 Climate Home News Ltd., 14 June 2019.
List of Countries Committed to a Net-Zero Emissions Goal
       Country                Target Date                             Status
       Japan                        2050                          Policy Position
   Marshall Islands                 2050                   Pledged towards the Paris
                                                                   Agreement
    New Zealand                     2050                       The Bill was Passed
       Norway                       2030                              In Law
       Portugal                     2050                       In Policy Document
       Sweden                       2045                              In Law
        Spain                       2050                      Proposed Legislation
   The Netherlands                  2050                        Under Discussion
   United Kingdom                   2050                              In Law
       Uruguay                      2030                       In Policy Document
Sources: i) World Economic Forum, 05 July 2019; and ii) 2019 Climate Home News Ltd., 14 June 2019.

  China: Peak CO2 emissions before 2030 and reach carbon neutrality before
  2060.
Source: Ranping Song, “4 Questions About China’s New Climate Commitments”, WRI, September 2020.
ENERGY TRANSITION IN CONSUMPTION SECTORS
                    • Buildings and neighbourhoods
                    • Industry, commerce, trade and services
                    • Interfaces of energy research with mobility and transport
                                        POWER GENERATION
                    • Photovoltaics
                    • Wind power
                    • Bioenergy
                    • Geothermal
The 7th Energy      • Hydropower and marine energy
  Research          • Thermal power plants
Programme of     SYSTEM INTEGRATION: GRIDS, ENERGY STORAGE, SECTOR COUPLING
                    • Electricity grid
 the German         • Electrical energy storage
   Federal          • Sector coupling
 Government       CROSS-SYSTEM RESEARCH TOPICS FOR THE ENERGY TRANSITION
                    • Energy system analysis
                    • Digitisation of the energy transition
                    • Resource efficient for the energy transition
                    • CO2 technologies for the energy transition
                    • Energy transition and society
                    • Materials research for the energy transition
                                     NUCLEAR SAFETY RESEARCH
                    • Reactor safety research
                    • Waste management and repository research
                    • Radiation research
Source: Ernst & Young (EY), “COVID-19 crisis management for P&U companies”.
VISI  "TERWUJUDNYA PENGELOLAAN ENERGI YANG
  BERKEADILAN, BERKELANJUTAN, DAN BERWAWASAN
       LINGKUNGAN DENGAN MEMPRlORITASKAN
PENGEMBANGAN ENERGI TERBARUKAN DAN KONSERVASI
ENERGI DALAM RANGKA MEWUJUDKAN KEMANDIRIAN DAN
           KETAHANAN ENERGI NASIONAL”

          Rencana Umum Energi Nasional
             National Energy Mix up to 2050
              Emisi GRK Tahun 2015-2050
          Penurunan Emisi GRK Tahun 2015-2050
National Energy Mix Menuju 2050
Emisi GRK Tahun 2015-2050

Sektor pembangkit listrik diproyeksikan akan menjadi penyumbang emisi terbesar, diikuti oleh
sektor industri dan sektor transportasi. Proyeksi emisi GRK pada tahun 2025 sebesar 893 juta ton C02eq
dan tahun 2050 sebesar 1,950 juta ton C02eq, sebagaimana dapat dilihat pada gambar diatas.

Hasil pemodelan pencapaian sasaran KEN akan memberikan dampak penurunan GRK secara signifikan
apabila dibandingkan dengan Business as Usual (BAU). Penurunan emisi GRK tahun 2025 sebesar 34,8%
dan pada tahun 2050 sebesar 58,3%, sebagaimana dapat dilihat pada slide berikutnya.
Penurunan Emisi GRK Tahun 2015-2050

    Sebagaimana yang
 dinyatakan pada RUEN
yang terbaru, penurunan
 emisi GRK dalam RUEN
  sudah sejalan dengan
 Nationally Determined
    Contribution (NDC)
 Indonesia sebesar 29%
  pada tahun 2030 yang
 merupakan bagian dari
   komitmen Indonesia
untuk turut mendukung
   upaya pengendalian
peningkatan suhu global
 rata-rata di bawah 2°C.

Penurunan emisi GRK disebabkan oleh empat faktor: (1). Diversifikasi energi, dengan meningkatkan
porsi energi terbarukan dan mengurangi porsi energi fosil; (2). Pemanfaatan teknologi batubara bersih
(clean coal technology) untuk pembangkitan tenaga listrik; (3). Substitusi penggunaan energi dari BBM
ke gas bumi; dan (4). Pelaksanaan program konservasi energi pada tahun-tahun mendatang. Penurunan
emisi GRK dalam RUEN sudah sejalan dengan Nationally Determined Contribution (NDC) Indonesia
sebesar 29% pada tahun 2030 yang merupakan bagian dari komitmen Indonesia untuk turut
mendukung upaya pengendalian peningkatan suhu global rata-rata di bawah 2°C.
Energy Mix Bulan Desember 2019

Sumber Data : Data ROT & Data Transaksi TRATL P2B
*) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN

                                                                          www.pln.co.id   |
Energy Mix Bulan Januari 2020

Sumber Data : Data ROT & Data Transaksi TRATL P2B
*) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN

                                                                          www.pln.co.id   |
Energy Mix Bulan Juni 2020

Sumber Data : Data ROT & Data Transaksi TRATL P2B
*) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN

                                                                          www.pln.co.id   |
Energi Mix SJB Januari sd Agustus 2020

                                   www.pln.co.id   |
To establish deep decarbonization
pathway particularly for energy sector in
supporting the strategic review of NDC to
achieve the national emissions reduction
target, one of the key required actions:
                                                 Strongly Required
                                              Deep Decarbonization of
                                                   Energy Sector
Deployment of low-carbon & zero-carbon
energy technologies and renewable
energy; greater role of energy efficiency &
conservation from up-stream to down-
stream (energy end-use - provide efficient
transmission and distribution systems);
                                                        Energy
and move the energy system towards
using low-carbon energy sources (fuel                   Sector
switching) to improve national energy mix
for its associated sectors (power,
transport,    industry,   building,     and
households, etc.) to be imbedded in the
long-term national energy program.
Meningkatkan Tingkat
Penetrasi VRE ke Sistem
     Tenaga Listrik
 [Associated Key Issues &
   Challenges in Moving
         Forward]
Three Trends Driving Transition
     in Global Energy Sector                                         Decarbonisation with the
                       [ Tiga D ]                                    shift towards lower-carbon
The global electricity sector is undergoing a large-scale            energy generation and use. This
transition, marked by 3 (three) inter-related and reinforcing        is marked by a growth in
trends impacting demand and supply of energy:                        natural gas (playing a bridging
                                                                     role), and renewables in energy
                                                                     supply       and     generation,
                                                                     particularly    in   distributed
                                                                     generation,     as    well    as
                                                                     electrification of the mobility
                                                                     sector.
Digitalisation supported by the
increase in information and
communication technologies and
the overall shift to an ‘internet of
things’ that enables smart grids
and optimized energy use and                         Decentralisation marked by the greater
storage, greater efficiency and the                  adoption and availability of a distributed energy
integration of distributed energy                    resources including new distributed generation
resources, especially distributed                    sources, developments in energy storage, new
generation.                                          market entrants and shifting consumer
                                                     preferences.
Evolution of the Electricity System
Contoh Perkembangan Sistem Tenagalistrik
Key Properties of Variable Renewable Energy (VRE)
         and Its Associated Challenges1)
                                           Generation / resources
Weather-dependent nature -                adequacy - firm capacity
        Variability
                                          Need flexible resources /
                                                  flexibility
 Uncertainty in forecast -
                                               Voltage control
   Low predictability
                                           Efficient grid expansion
                                            with appropriate level
  Location constrained -
                                                   capacity
    Specific location
                                             Stability / frequency &
  Can be as distributed
                                               voltage response
generation - Not connected                (is influenced by “system
     to transmission                        inertia”), and harmonic
                                                    distortion

 Non-synchronous power                     System operations &
        sources                          controls at the distribution
                                                    level

                  Please see other big challenges.
Key Links Between VRE, Power System Properties
                and Planning1)
The CAISO Duck Chart

*)Source: Paul Denholm, Matthew O'Connell, Gregory Brinkman, and Jennie Jorgenson,
“Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart”, NREL Technical
Report, NREL/TP-6A20-65023, November 2015.
Background: Why Ducks Lead to Overgeneration*)

The CAISO duck chart itself illustrates the general challenge of
accommodating solar energy and the potential for over generation and solar
curtailment. In the chart, each line represents the net load, equal to the
normal load minus wind and PV generation. The “belly” of the duck
represents the period of lowest net load, where PV generation is at a
maximum. The belly grows as PV installations increase between 2012 and
2020. While the amount of PV in 2020 is not shown directly, it can be
estimated by comparing the 2012 curve to the 2020 curve. In this case, the
normal load (i.e., no PV and adjustments for load growth) at about 1-2 p.m.
on March 31, 2020 appears to be about 22,000 megawatts (MW), while PV is
generating about 10,000 MW, leaving about 12,000 MW to be met with other
resources. In this case, PV provides perhaps 45% of the total demand in this
one hour. The duck chart also points to the period of over generation risk,
which could result in curtailed energy.

*) Source: Paul Denholm, Matthew O'Connell, Gregory Brinkman, and Jennie Jorgenson, “Overgeneration
from Solar Energy in California: A Field Guide to the Duck Chart”, NREL Technical Report, NREL/TP-6A20-
65023, November 2015.
5 Key Technical Parameters that Determine
          the Flexibility of Dispatchable Plants1)

1.   The ramp rate (or ramping gradient) of a power plant: the rate
     at which a generator can change its output (in MW/timeframe,
     e.g., minute or hour).
2.   Start-up times: the time required for power to start up. Cold,
     warm and hot starts are distinguished depending on how long
     a power plant has been down.
3.   Minimum load levels: the minimum generation at which a
     power plant can be operated stably before it needs to be shut
     down. A plant can adjust its output between this and its rated
     capacity.
4.   Minimum down and up times: the lower limits of the time that
     a plant needs to be offline or online. In principle, these are
     not strict technical limits, but are supporting guidelines to
     avoid wear and tear that leads to high costs over the lifetime
     of a power plant.
5.   Partial load efficiency: the reduced efficiency of a power
     plant operated below its rated capacity.
Langgam Beban Kerja April 2020 VS 2019

                                         www.pln.co.id   |
4 Basic Models for Industry Structure2,3)
 Key Items              Model 1               Model 2                 Model 3                   Model 4
                   Vertically Integrated     Single Buyer             Wholesale            Retail Competition
Characteristic          Monopoly                                     Competition
                   Monopoly at all         Competition in        Competition in            Competition in
Definition         levels                  generation            generation and            generation and
                                                                 choice for DITSCOs        choice for final
                                                                                           consumers
Competing                 Tidak                    Ya                      Ya                        Ya
Generators
Choice for                Tidak                  Tidak                     Ya                        Ya
Retailers?
Choice for Final          Tidak                  Tidak                   Tidak                       Ya
Customers?
                   • No one may buy from   • Only the existing   • DITSCOs are given       • Permits all
                     independent             integrated            the right to buy          customers to choose
                     generator.              monopoly in the       direct from IPPs, but     their suppliers & are
                   • All final customers     assigned area is      they retain a local       given the right to
Note                 are supplied by the     permitted to buy      franchise over            buy from IPP.
                     incumbent utility       from IPP (the         retailers customers.    • Access to
                                             competing           • IPP will need access      transmission and
                                             generators).          to the transmission       distribution
                                           • The design of         network through           network are
                                             PPAs is a major       trading arrangement       required.
                                             feature.              for the network.
 Sequence of Main Tasks
 Principal States of Power System Operation
DEKARBONISASI JANGKA PANJANG YANG MENDALAM
   TETAP MEMENUHI KESEIMBANGAN PASOKAN DAN
PERMINTAAN SERTA MENJAMIN PEMENUHAN PILAR UTAMA

                              (1) Ensuring

                      Security
      Reliability                      Resilience         Quality
                    (Keamanan
     (Keandalan)                      (Ketahanan)         (Mutu)
                     Pasokan)

                          OBJECTIVES
                     (TUJUAN TERINTEGRASI)

    (2) Maximizing Economic
                                             (3) Clean Electricity to
    Value & Consumer Equity
                                             Support Environmental
         (Accessibility &
                                                  Sustainability
          Affordability)
Planning the transition to a power system with high share
  low-carbon & zero-carbon energy technologies and RE
                                                                               Sequence of
    including VRE under techno-economic assessment.                            Main Tasks

                                      Pre-Construction

                                                                           Pre-Operational
                                                         Construction
       Pre-Decision

                                                                                             Operational
                                           Phase

                                                                                Phase

                                                                                               Phase
                                                            Phase
          Phase

                      Decision
                       Phase

                                  Ensuring System
  Planning                       Reliability, Security,
   Phase                         Resilience & Quality

   Clean Electricity to                                           Maximizing Economic Value &
  Support Environmental                                           Consumer Equity (Accessibility
      Sustainability                                                    & Affordability)
Wind, Solar potential        Primary Energy data:          Primary energy data:
         map                 Hydro; Geothermal; Etc.            Gas, Coal, Oil

   Candidates of VRE     Candidates of RE      Candidates of
  (intermittent power       projects          Thermal projects
  generation) projects
    (RE): Solar, Wind
                             Generation expansion          Demand forecast;
                            plan and transmission /         Daily load curve
  Existing generation
   and transmission         network expansion plan                                 Scenarios
        systems                   (geo-spatial)             Planning criteria

    Policy, Financial       Generation productions
      constraints            allocation and costs            Proposed investment
                                                           plan, financing projection
                                                           & financing plan / funding
                           Optimal power flow and                 requirement.
                           static security assessment

                                Dynamic security             Further economic study
                                  assessment                         (Tariff)

      System Planning Process
                                                                 Investment plan
(Hanya Sebagai Contoh General Practice)
Characteristics of Selected Long-term Power Sector
                  Planning Tools1)
Model Scenarios*)
                                  [Hanya Sebagai Contoh]
         Carbon Tax                                  New Technology Scenario
          Scenario                        •   Twenty likely and speculative new technologies using
•   Various carbon taxes                      coal and gas were added to the Base scenario for
    (13,25,50,75 $/tCO2) were                 application within the lifetime considered in the model
    imposed for both the Base             •   CCS was included within these new technologies
    scenario and the New                      variants.
    Technology scenario.
•   Effect of carbon tax was                                               Base Scenario
    analyzed when lower                                             •   Only technologies either
    generation limit was set on
                                              SCENARIOS                 current in 2005 or included in
    coal-fired power plant                                              the National Electricity Plan
                                                                        were included
                                                                    •   Current trend for renewables
    Total Carbon Emission Cap Scenario                                  introduction was reflected in
                                                                        the model
Various total carbon emission caps (120%, 100%, 80%,60%             •   Constraints for some
compared to the 2004 level) were imposed on the Base                    technologies were set
scenario and New Technology scenario. Effect of total                   according to the resource limit
carbon emission cap was analyzed when lower generation                  and the geographical limit
limit set set on coal-fired power plant

    *)Source:   Andrew J Minchener, “The Korean Energy Strategy Project”, IEA CCC/133, April 2008.
Tahap Pra-Operasional                                                                                                                       Tahap Operasional
•         Load Forecast                                                                                                                                          • Hourly – short term (on line) load forecast
•         VRE power supply forecast                                                                                                                              • Hourly – short term (on line) VRE power
•         Net load forecast                                                                                                                                        supply forecast
•         Generations maintenance scheduling                                                                                                                     • Net load
•         Transmissions maintenance scheduling                                                                                                                   • Static and dynamic security assessment
•         Generations unit scheduling                                                                                                                            • Contingency & congestion analysis
•         Optimal fuel use and scheduling                                                                                                                        • Optimal power flow
•         Static and dynamic security assessment                                                                                                                 • Balancing system
•         Optimal power flow                                                                                                                                     • Preventive, corrective, emergency and
•         Balancing system                                                                                                                                         restorative actions and controls
                                                      Rencana Operasi Triwulanan
                            Rencana Operasi Tahunan

                                                                                                             Rencana Operasi Mingguan

                                                                                                                                        Rencana Operasi Harian
                                                                                                                                                                  Kontinuitas sistem operasi real time
                                                                                   Rencana Operasi Bulanan
5 (Five) Years Statement

                                                                                                                                                                 dan tetap menjaga keandalan, sekuriti
                                                                                                                                                                   (keamanan), optimal, dan kualitas
                                                                                                                                                                   standar keseimbangan pasokan &
                                                                                                                                                                          beban (kebutuhan)

                                                                                                                                                                         Tugas Utama
                                                                                                                                                                     Perencanaan Operasi
                                                                                                                                                                    Sistem, Operasi Sistem
                                                                                                                                                                          & Kontrol.
                                                                                                                                                                                 +
                                                                                                                                                                          Ramah Lingkungan
                                                                                                                                                                              (Clean)
Principal States of Power System Operation4)
Operasi sistem dapat digambarkan (describe) oleh 3 (tiga) set persamaan generik, yaitu:
(i) 1 set persamaan diferensial, dan (ii) 2 (dua) set persamaan aljabar, yaitu: (a) E (equality
constraints), dimana keseimbangan daya aktif dan reaktif pada setiap bus (node), dan (b)
I (inequality constraints) batasan kondisi operasi dari berbagai komponen sistem, seperti
tegangan dan arus tidak boleh melebihi batasan maksimumnya.
Sebagaimana yang dideskripsikan pada slide selanjutnya, ada 5 (lima) kondisi operasi
sistem tenaga listrik yaitu:
(1) Kondisi Normal: semua E (equality constraints) & I (inequality constraints) serta N-1
       terpenuhi;
(2) Kondisi Siaga (Alert): semua E (equality constraints) & I (inequality constraints)
       terpenuhi, namun N-1 tidak;
(3) Kondisi Darurat (Emergency): semua E (equality constraints) dapat terpenuhi, paling
       tidak ada satu I (inequality constraints) yang tidak terpenuhi disebabkan oleh
       adanya gangguan;
(4) Kondisi Ekstrim (In Extremis): pada kondisi ini kedua E (equality constraints) dan I
       (inequality constraints) tidak terpenuhi (violated); dan
(5) Kondisi Pemulihan (Restorative): merupakan kondisi transisi dimana I (inequality
       constraints) terpenuhi dari tindakan pengendalian darurat yang dilaksanakan, tetapi
       E (equality constraints) belum terpenuhi.

    *)   Fink & Carlsen, “Operating under stress and strain”, IEEE Spectrum, March 1978.
Principal States of Power System Operation
                                                                        Pengendalian
        Pengendalian                                                     Pencegahan
         Pemulihan                   Kondisi Normal
                                        [N-1 terpenuhi]                            Reduction in
                                             E, I                                 reserve margin

                             Pengendalian           Pengendalian
        Kondisi                Darurat               Perbaikan             Kondisi Siaga
       Pemulihan                                                           [N-1 tidak terpenuhi]
          E, I                                                                     E, I

                                         Kondisi
                                         Darurat
                                           E, I
                                                                   Gangguan Meluas (Cascading
                                                                   Outage): system splitting dan
    In Extremis Action                                              atau load loss (large block).
   (Resynchronization)                   Kondisi
                                         Ekstrim
                                           E, I
                                                          E: Equality Constraints.
      Proses transisi sehubungan dengan gangguan.         E: Equality Constraint Not Satisfied.
      Proses transisi sehubungan dengan tindakan          I : Inequality Constraints.
      pengendalian.                                       I : Inequality Constraints Not Satisfied
Balancing Act - Associated Key Issues
Potential reliability impacts of distributed resources (potential reliability concerns)5) :
(i) visibility & controllability of distributed energy resources and the potential effects
on forecast load; (ii) the ramping and variability of certain distributed energy
resources and the resulting impacts on the base load and cycling generation; (iii) the
ability to control reactive power; (iv) low-voltage ride-through (LVRT) and low-
frequency ride-through and coordination with IEEE Standard 1547; (v) under-
frequency load shedding (UFLS) and under voltage load shedding (UVLS).
Operating consideration of integrating variable generation – Associated tasks related
to bulk power system operation activities: (i) forecasting techniques must be
incorporated into day-to-day operational planning and real-time operations routine
and practice, including unit commitment and dispatch; (ii) the impact of securing
ancillary services through larger balancing areas or participation in wider-area
balancing management on bulk power system reliability must be investigated; (iii)
operating practices, procedures, and tools will need to be enhanced and modified.
Some of recommended key elements to improve the integration of variable
resources – To be operating practices, procedures, and tools (standard): (i)
disturbance control performance; (ii) automatic generation control requirement; (iii)
communication and coordination; (iv) capacity and energy emergencies; (v) reliability
coordination, current-day operations; (vi) normal operating planning; (vii) monitoring
system condition.
Microgrid dan Microgrid Controller
 DMS Integration with Microgrid Controllers / DERMS
Contoh Komponen Microgrid6)
            Central
          Power Plant

                HV
                            Residensial                           Komersial
                               Smart                        Demand         Electrical
                             Appliances                     Response        Storage
  Wind
  Farms
                             Residential         Solar              Office             Solar
                             Homes (LV)         Panels             Buildings          Panels

                  Gardu                                    MV
Renewable         Induk
  Energy
                             Electrical    Distributed       Wind              Active Distribution
                              Storage      Generation       Turbines             Management

  Solar
                            Distributed Generation & Storage (DER)
  Farms
                  Gardu
                  Induk
                             Industrial           Distributed          Demand
                               Plant              Generation           Response
                                                                                       Active
                                                                                 Distribution Grid
                                                  Industrial
Contoh Arsitektur Fisik Microgrid7)

                    Microgrid
                 Central Controller
    P, Q, V, C
                                      P, Q, V, C
                                                               =
                                                           ~        PV

                         =
                     ~
     DLR
                                 P, Q, V, C

                                                       =           Storage
                                                   ~
 Diesel            Smart          EV
Generator        Appliances
Smart Grid in Microgrid Kantor Gubernur Bali
                            Smart Microgrid Controller
                                                                                        : Energy Flow
                                   - SCADA -                                            : Measurement
                                                                                        : Control Instructions

                                                    20kV/380V
                                        (P,Q,V,I)

                                       (ON/OFF)                    (P,Q,V,I)
                (P,Q,V,I)

                  (ON/OFF)                                      (ON/OFF)

 Generator                                                                     Photovoltaic
   Diesel                                                                      Kapasitas 158
  275 kVA                                                                          kWp

                                                                (P,Q,V,I)
                     (P,Q,V,I)

                                 (ON/OFF)                        (ON/OFF)
                                                                                  Baterai
Priority Load
                                                                               Kapasitas 224
                                                                                   kVAh
Impact of Inverter Based Generation on Bulk Power System
          Dynamics and Short-Circuit Performance
                                  [Key Associated Issues]

          Synchronous ac rotating                                   Inverter-based resources
                 machine                                               (IBR) technologies

                Electric power grids around the world are undergoing
                        a significant change in generation mix.

  Large System Impact Issues Related to                   Protective Relay Issues Related to Large
 Penetration of Inverter Based Resources                  Penetration of Inverter Based Resources
1. Voltage-Control/Reactive Support                      1. Inverter-Based Fault Currents and
2. Frequency Response and Control                           Voltage

3. Low-Short Circuit-Levels                              2. Relay Element Response to Inverter-
                                                            Based Fault Current and Voltage
4. Control and Grid Interactions
                                                         3. Relay Scheme Selection Issues Caused
5. Planning Process                                         by Inverter-Based Resources (IBR)
6. Modeling                                              4. Short Circuit Issues Caused by IBR
7. Operations / Economic Issues                          5. Protection and Control (PRC) Reliability
8. Etc.                                                     Standards Issues Caused by IBR
Source: IEEE Power & Energy Society, “Impact of Inverter Based Generation on Bulk Power System Dynamics and
Short-Circuit Performance”, Technical Report, PES-TR68, July 2018.
The Functional Use Cases of Microgrid Controllers6)
                         [Contoh]

                     Frequency Control
                      Voltage Control
    Grid Connected to Islanding Transition: Intentionally
                    Islanding Transition
   Islanding to grid Connected Transition: Unintentionally
                      Islanding Transition
  Islanding to Grid-Connected Transition: Resynchronization
                       and Reconnection
     Energy Management: Grid Connected and Islanding
                    Microgrid Protection
             Ancillary Services: Grid Connected
                   Microgrid Black Start
       Microgrid User Interface and Data Management
Isu Utama Terkait for
  Moving Forward8)          Definisi / scope dan general features.

   Struktur & Operasi       Komponen dan perlengkapan terkait.
       Microgrid            Tipe / jenis microgrids.
                            Fungsi microgrid dan manfaat.

                            Microgrid control system requirements.
Struktur Sistem Kontrol &   Microgrid control system function.
    Operasi Microgrid
                            Struktur sistem kontrol microgrid.

                            Standardization benefits & activities.
                            Standard requirement.
   Standarisasi Fungsi
Sistem Kontrol Microgrid    Standardization process.
                            Scope of a standardized functional
                            specification.

 Spesifikasi Fungsional     Identifikasi fungsi utama sistem kontrol.
Sistem Kontrol Microgrid    Spesifikasi fungsi utama.

                            Requirements for conformance testing.
Testing dari Fungsi Utama
                            Approach dan protocols yang
                            dipergunakan.
A Grid Interactive Microgrid Controller For Resilient
                             Communities9)

      DERMS: Distributed
      energy resource
      management

Source: Arindam Maitra, Annabelle Prat, Tanguy Hubert, Dean Weng, Kamaguru Prabakar, Rachna Handa, Murali Baggu,
& Mark Mc Granaghan, “Microgrid Controllers”, IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017.
Big Challenges
                                  Participate in emergency state
                                  as a part of online emergency
  Participate in optimal power        actions to stabilize the
flow of interconnected system.   interconnected power system in
                                           emergencies.
Utility Architecture View with Layered
      Decomposition Coordination

                                                                                                                        Interoperability
                                         Source: GRID Modernization Laboratory Consortium U.S. DOE, “Interoperability
                                                       Strategic Vision”, GMLC White Paper, March 2018
INTEROPERABILITY
 The ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

               VALUE OF INTEROPERABILITY
       Reduces the cost and effort for system integration
           Improves grid performance and efficiency
 Facilitates more comprehensive grid security and cybersecurity
                            practices
          Increases customer choice and participation
            Establishes industry-wide best practices
                  It is a catalyst of innovation
Local Microgrid
                  Distribution                          Controller # 3
               Management System
                    - DSO -                                    ?
         ?
                                                       Microgrid # 3
                      ?               ?
Transmission
 Operations          Microgrid
   - TSO -        Controller/DERMS
                                                       Microgrid # 2
                          ?
                    Local Microgrid
                                          ?                    ?
  System
 Operations          Controller # 1                    Local Microgrid
   - ISO -                                              Controller # 2
                              ?
                                                     KEY ISSUES
                  Microgrid # 1                Utility System Architecture
                                               DER to Microgrid
                                                Controllers/DERMS
        Interactive System                     DMS Integration with
                                                Microgrid Controllers/DERMS
 ISO - TSO - DMS/DSO - Microgrid
                                               ISO-TSO & DSO Interfacing
        Controllers/DERMS
Associated Key Issues & Challenges in Moving Forward
Sangat dibutuhkan beberapa kegiatan utama dalam membangun jalur
dekarbonisasi jangka panjang sektor ketenagalistrikan yang mendalam
untuk percepatan transisi energi dalam mencapai sistem energi national
jangka panjang rendah karbon yang berkelanjutan dan mendukung NDCs
dalam mencapai target pengurangan emisi nasional mendukung
pencapaian tujuan global Persetujuan Paris, dimana setidaknya selaras
dengan lintasan emisi biaya paling rendah dari kenaikan suhu tetap di
bawah 2°C (a least-cost emission trajectory of temperature rise staying
below 2°C), dengan tujuan dan memenuhi pilar utama (1) Keandalan
(reliability), keamanan pasokan (security), ketahanan (resilience), mutu
(quality); (2) Harga yang terjangkau, kompetitif, aksesibilitas, ekonomis,
memperkuat daya saing industri, dan mendukung pembangunan yang
berkelanjutan; dan (3) Pasokan tenaga listrik yang berkelanjutan yang
bersih-ramah lingkungan (clean electricity supply).

DEKARBONISASI SEKTOR KETENAGALISTRIKAN YANG MENDALAM

             Meningkatkan Tingkat Penetrasi VRE
                  ke Sistem Tenaga Listrik
 Peningkatan tingkat kemampuan fleksibilitas sistem dengan penyediaan fasilitas
  demand response, energy storage: pump-storage hydro, batteries, ekspansi
  jaringan transmisi & distribusi dan komponen terkait dari integrasi jaringan
  interkonesi sistem tenaga listrik (grid-interconnected power system);
 Peningkatan tingkat digitalisasi untuk pertukaran informasi (exchange information)
  & aplikasi data, dan pengintegrasian interaksi kontrol sistem untuk mendukung
  peningkatan desentralisasi sistem pembangkitan dalam peningkatan integrasi
  variabel energi terbarukan ke integrasi jaringan interkoneksi sistem tenaga listrik
  untuk pemanfaatan potensinya dalam pengendalian operasi sistem tenaga listrik
  pada kondisi operasi: (a) Normal; (b) Siaga; (c) Darurat; dan (d) Pemulihan. Cakupan
  komposisi arsitektur kontrol/koordinasi (control/coordination architectures)
  terkaitnya terdiri dari: (i) Coordination interaction sistem kontrol lokal jaringan
  mikro dari sumber energi tersebar (local microgrid controllers of distributed energy
  resources-DERs) dengan sistem kontrol jaringan mikro/sistem manajemen sumber
  energi tersebar (microgrid controller/distributed energy resources management
  system-DERMS), (ii) Coordination interaction sistem manajemen sumber energi
  tersebar (DERMS) dengan sistem manajemen distribusi (distribution management
  system-DMS), (iii) Coordination interaction sistem manajemen distribusi-unit
  pengatur sistem distribusi (DMS-DSO) dengan pusat pengatur beban independen
  (ISO) & unit pengelola sistem transmisi (TSO).
 Memperhitungkan/mempertimbangkan: (a) Tingkat kemampuan fleksibilitas
  sistem yang selaras untuk mendukung penetrasi variabel energi terbarukan yang
  lebih tinggi (higher flexibility requirements for higher renewable energy
  penetration); (b) Adanya kemungkinan tidak dipergunakan/tidak dioperasikan
  lebih lanjut PLTU Batubara yang ada (stranded assets of existing coal-based power
  plants); (c) Adanya potensi memodifikasi PLTU Batubara yang ada menjadi
  pembangkit listrik yang lebih fleksibel berdasarkan efektivitas biaya dan tingkat
  kelayakan ekonominya (converting the existing coal fired power plants into flexible
  power plants based cost effectiveness and economic viability); (d) Dampak
  ekonomi-makro (macro-economic impact), (e) Kemungkinan adanya resiko
  keuangan (financial risk) dengan adanya kondisi kewajiban keuangan yang masih
  berlangsung (adanya take or pay), dan biaya sosial yang ada (existing financial
  obligations, and social costs).
 Perlu ditinjau/dikaji kembali (review) dan diselaraskan (enhance) lebih lanjut:
  (i) Rencana operasi sistem tahap pra-operasional dan tahap operasional;
  (ii) Operasi sistem real-time & kontrol yang tetap menjaga dan mempertahankan
  terjaminnya keandalan, sekuriti/kestabilan sistem (static & dynamic), optimal-
  ekonomis, mutu/kualitas, keseimbangan pasokan & beban, dan pemenuhan
  alokasi emisi: (a) sistem peramalan (prakiraan) beban jangka pendek (tergantung
  jangka waktu yang dibutuhkan) - setiap jam yang dilaksanakan on-line dan off-line,
  (b) analisa static & dynamic security yang secara regular dilaksanakan on-line dan
  off-line,
(c) analisa kontingensi (on-line dan off-line), (d) pre-dispatch, optimalisasi sistem
  (optimal power flow), (e) real-time dispatch, (f) balancing system, (g) pengendalian
  pencegahan, perbaikan, darurat dan pemulihan;
  (iii) Sistem komunikasi, kontrol, pelaporan & pemantauan;
  (iv) Sistem pengukuran (metering system);
  (v) Manajemen / pengelolaan aset;
  (vi) Standar teknis untuk aplikasi koneksi (connection applications);
  (vii) Peningkatan penetrasi/perluasan penerapan variabel energi terbarukan
  tersebar.
 The utility system architecture dan reformasi sistem kelistrikan dibutuhkan untuk
  mendukung implementasi manajemen dan kontrol operasionalisasi integrasi
  jaringan interkoneksi sistem tenaga listrik (to support implementation approach to
  integrated grid-interconnected power system management and control), yaitu:
  (i) Control center designs (model pusat pengendalian) yang sesuai dengan fungsi
  dan tantangan yang baru (under new functions and challenges) untuk ISO-TSO, dan
  DMS-DSO; dan
  (ii) Sistem interaktif sebagai coordination interactions: (a) sistem kontrol lokal
  jaringan mikro dari sumber energi tersebar dengan sistem kontrol jaringan
  mikro/sistem manajemen sumber energi tersebar (DERMS), (b) integrasi DMS-DSO
  dengan sistem kontrol jaringan mikro/sistem manajemen sumber energi tersebar
  (DERMS), dan (c) ISO-TSO dan DMS-DSO.
 Dibutuhkan penyediaan fasilitas interoperabilitas sistem untuk mendukung operasi
  sistem real-time & kontrol yang tetap menjaga dan mempertahankan terjaminnya
  keandalan, sekuriti/kestabilan sistem (static & dynamic), optimal-ekonomis,
  mutu/kualitas, keseimbangan pasokan & beban, dan pemenuhan alokasi emisi,
  misalnya penggunaannya untuk: (i) optimalisasi sistem (aliran daya yang optimal)
  dari integrasi jaringan interkoneksi sistem, dan (ii) pengendalian darurat online
  pada kondisi darurat untuk menstabilkan kondisi operasi sistem kembali ke kondisi
  normal.
 Identifikasi reformasi sistem kelistrikan termasuk pasar/market yang dibutuhkan,
  model struktur, kebijakan dan kerangka kerja terkait, peraturan yang diperlukan
  untuk mendukung peningkatan penetrasi variabel energi terbarukan tersebar ke
  integrasi jaringan interkoneksi sistem tenaga listrik agar optimalisasi operasi sistem
  tenaga listrik dapat tercapai, termasuk potensi partisipasinya pada tahap
  pengendalian pencegahan, perbaikan, darurat, dan pemulihan, termasuk
  pembentukan agregator & kerangka peraturan terkait, grid connection code, serta
  kebijakan penghematan energi & skema kewajiban efisiensi energi, arah & jalur
  kebijakan dan kerangka kerja untuk memfasilitasi transisi ini.
References
1. IRENA, “PLANNING FOR THE RENEWABLE FUTURE - Long-term Modelling and Tools
   to Expand Variable Renewable Power in Emerging Economies”, 2017.
2. Sally Hunt and Graham Shuttleworth, Competition and Choice in Electricity, John
   Wiley & Sons, Inc, 1996.
3. Sally Hunt, Making Competition Work in electricity, John Wiley & Sons, Inc, 2002.
4. Fink & Carlsen, “Operating under stress and strain”, IEEE Spectrum, March 1978.
5. Mark G. Lauby, Mark Ahlstrom, Daniel L. Brooks, et al., “Balancing Act. NERC’s
   Integration of Variable Generation Task Force Plans for a Less Predictable Future”,
   IEEE Power & Energy Magazine, Volume 9, No. 6, November/December 2011.
6. Dan Ton, and Jim Reilly, “Microgrid Controller Initiatives”, Vol. 15, No. 4,
   July/August 2017.
7. Goran Strbac, Nikos Hatziargyriou, Joao Pecas Lopes, Carlos Moreira, Aris Dimeas,
   and Dimitrios Papadaskalopoulos, “Microgrids – Enhancing the Resilience of the
   European Megagrid’, IEEE Power & Energy Magazine, Vol. 13, No. 3, May/June
   2015.
8. Geza Joos, Jim Reilly, Ward Bower, and Russ Neal, “The Need for Standardization”,
   IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017.
9. Arindam Maitra, Annabelle Pratt, Tanguy Hubert, Dean Weng, Kumaraguru
   Prabakar, Rachna Handa, Murali Baggu, and Mark McGranaghan, “Microgrid
   Controllers”, IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017.
References
10. Grid Modernization Laboratory Consortium, U.S. DOE, “Interoperability Strategic
    Vision”, A GMLC White Paper, March 2018.
11. IEEE PES, “Stability definitions and characterization of dynamic behavior in systems
    with high penetration of power electronic interfaced technologies”, TECHNICAL
    REPORT, PES-TR77, April 2020.
12. Mark Mc Granaghan, “Making Connection – Asset Management and the Smart Grid”,
    IEEE Power & Energy Magazine, Vol. 8, No. 6, November/December 2010.
13. Stanley H. Horowits, Arun G. Phadke, and Bruce A. Renz, “The Future of Power
    Transmissions – Technological Advances for Improved Performance”, IEEE Power &
    Energy Magazine, Vol. 8, No. 2, March/April 2010.
14. U.S. Department of Energy (DOE), “Transforming the Nation’s Electricity System: The
    2nd Installment of the QER, January 2017.
15. Ali Bidram, Frank L. Lewiss, and Ali Davoudi, “Distributed Control Systems for Small-
    Scale Power Networks - USING MULTIAGENT COOPERATIVE CONTROL THEORY”, IEEE
    Control Systems Magazine, Vol. 34, No. 6, December 2014.
16. EPRI, “Grid Interactive Microgrid Controllers and the Management of Aggregated
    Distributed Energy Resources (DER)”, 2015 Technical Report.
17. EPRI, “The Integrated Grid. A Benefit-Cost Framework”, Final Report, February 2015.
18. U.S. Department of Energy (DOE), “Staff Report to the Secretary on Electricity Markets
    and Reliability”, August 2017.
19. IEEE SMARTGRID, “ IEEE Smart Grid Compedium”, 2015.
References
20. Australian Energy Market Operator - AEMO, “Black System South Australia 28
    September 2016”, Final Report, March 2017.
21. Paul Denholm, Josh Eichman, and Robert Margolis, “Evaluating the Technical and
    Economic Performance of PV Plus Storage Power Plant”, Technical Report, NREL,
    August, 2017.
22. Vincenzo Giordano, Ijeoma Onyeji, and Gianluca Fulli (JCR IET); Manuel Sanchez
    Jimenez, and Constantina Filiou (DG ENER), “Guidelines for conducting a cost-
    benefit analysis of Smart Grid projects”, Joint Research Centre Reference Report,
    2012.
23. Greensmith Energy, “Transforming Today’s Energy Grid - How specialized design,
    integration and supply chain expertise are the key success factors for the grid of
    the future”, White Paper, May 2017.
24. Klaus-Dieter Borchardt, Director Internal Energy Market, Directorate General for
    Energy European Commission, “Benchmarking smart metering deployment in EU”,
    European Conference on Smart Metering Deployment in the EU, Brussels, 26 June
    2014.
25. Edison Electric Institute - EEI, “Solar Energy and Net Metering”, January 2016.
26. Hardiv Harris Situmeang, Sekuriti Sistem Tenaga Listrik – Pengendalian Darurat,
    Seminar Nasional Peran Teknik Kendali dalam Dunia Industri, Masyarakat Sistem
    Kendali Indonesia, 19 Juli 1997.
You can also read