OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN - DPR RI
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Komisi Teknis Energi OPTIMALISASI PENGEMBANGAN ENERGI BARU DAN TERBARUKAN MENUJU KETAHANAN ENERGI BERKELANJUTAN Webinar Pusat Perancangan Undang-Undang Badan Keahlian DPR RI Senin, 12 Oktober 2020 MENINGKATKAN TINGKAT PENETRASI VRE UNTUK MENDUKUNG DEKARBONISASI SEKTOR KETENAGALISTRIKAN YANG MENDALAM Ir. Hardiv Harris Situmeang, M.Sc., D.Sc. Ketua Komisi Teknis Energi – Dewan Riset Nasional (DRN)
Global Goal of Keeping Warming Between 2 0C and 1.5 0C Article 2 1. This Agreement, in enhancing the implementation of the Convention, including its objective, aims to strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate poverty, including by: a) Holding the increase in the global average temperature to well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5 °C above pre-industrial levels, recognizing that this would significantly reduce the risks and impacts of climate change; b) Increasing the ability to adapt to the adverse impacts of climate change and foster climate resilience and low greenhouse gas emissions development, in a manner that does not threaten food production; c) Making finance flows consistent with a pathway towards low greenhouse gas emissions and climate-resilient development. 2. This Agreement will be implemented to reflect equity and the principle of common but differentiated responsibilities and respective capabilities, in the light of different national circumstances.
Pasal 2 Undang-Undang ini mulai berlaku pada tanggal diundangkan. Agar setiap orang mengetahuinya, memerintahkan pengundangan Undang-Undang ini dengan penempatannya dalam Lembaran Negara Republik Indonesia. Disahkan di Jakarta pada tanggal 24 Oktober 2016 PRESIDEN REPUBLIK INDONESIA, ttd. JOKO WIDODO Diundangkan di Jakarta Pada tanggal 25 Oktober 2016 MENTERI HUKUM DAN HAK ASASI MANUSIA REPUBLIK INDONESIA, ttd. YASONNA H. LAOLY
Paris Agreement Article 4 Paragraph 19 Paris Decision 1/CP.21 Paragraph 35 Paris Agreement Article 4 Paragraph 19 19. All Parties should strive to formulate and communicate long-term low greenhouse gas emission development strategies, mindful of Article 2 taking into account their common but differentiated responsibilities and respective capabilities, in the light of different national circumstances. Paris Decision 1/CP.21 Paragraph 35 35. Invites Parties to communicate, by 2020, to the secretariat mid-century, long-term low greenhouse gas emission development strategies in accordance with Article 4, paragraph 19, of the Agreement, and requests the secretariat to publish on the UNFCCC website Parties’ low greenhouse gas emission development strategies as communicated; Indonesia 2050 Long-Term Low Greenhouse Gas Emission Development Strategies
B.5 Carbon and Other Biogeochemical Cycles The atmospheric concentrations of carbon dioxide (CO2), methane, and nitrous oxide have increased to levels unprecedented in at least the last 800,000 years. CO2 concentrations have increased by 40% since pre-industrial times, primarily from fossil fuel emissions and secondarily from net land use change emissions. The ocean has absorbed about 30% of the emitted anthropogenic carbon dioxide, causing ocean acidification (see Figure SPM.4). C. Drivers of Climate Change Total radiative forcing is positive, and has led to an uptake of energy by the climate system. The largest contribution to total radiative forcing is caused by the increase in the atmospheric concentration of CO2 since 1750 (see Figure SPM.5). {3.2, Box 3.1, 8.3, 8.5} D.3 Detection and Attribution of Climate Change Human influence has been detected in warming of the atmosphere and the ocean, in changes in the global water cycle, in reductions in snow and ice, in global mean sea level rise, and in changes in some climate extremes (Figure SPM.6 and Table SPM.1). This evidence for human influence has grown since AR4. It is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century. {10.3–10.6, 10.9} IPCC WGI AR5 12th Session of WG I 27 September 2013
Summary for Policymakers SPM.4 - Mitigation Pathways and Measures in the Context of Sustainable Development Scenarios reaching atmospheric concentration levels of about 450 ppm CO2eq by 2100 (consistent with a likely chance to keep temperature change below 2°C relative to pre-industrial levels) include substantial cuts in anthropogenic GHG emissions by mid- century through large-scale changes in energy systems and potentially land use (high confidence). Scenarios reaching these concentrations by 2100 are characterized by lower global GHG emissions in 2050 than in 2010, 40 % to 70 % lower globally, and emissions levels near zero Gt CO2eq or below in 2100.
Scenarios that follow a least-cost emission trajectory from 2010 onwards (so-called P1 scenarios) with a greater than 66 per cent Global Aggregation likelihood of temperature rise staying below 2°C correspond to 44.3 (38.2–46.6) Gt CO2eq emissions in 2025 and 42.7 (38.3–43.6) Gt CO2eq emissions in 2030. Global GHG emissions in GtCO2eq Global GHG emissions path compatible with 20C Gap 40-70% below 2010 levels by 2050 Emissions levels near zero GtCO2eq, or below in 2100 2015 2020 2025 2030 2050 2100 1) Strongly Required: Pre-2020 and Post-2020 actions reinforce each other and in the same direction of higher ambition. 2) Scenarios that follow a least-cost emission trajectory from 2010 onwards (so-called P1 scenarios) with a greater than 66 per cent likelihood of temperature rise staying below 2°C correspond to 44.3 (38.2–46.6) Gt CO2eq emissions in 2025 and 42.7 (38.3–43.6) Gt CO2eq emissions in 2030.
2 Degree Celsius is Attainable? Cancun Beach, 8 December 2010
Aggregate Effect of the Intended Nationally Determined Contributions: An Update Synthesis Report by the UNFCCC Secretariat FCCC/CP/2016/2 – 2 May 2016
Aggregate Effect of the INDC: An Update Synthesis report by the Secretariat - FCCC/CP/2016/2 Report - 02 May 2016 The UN Climate Change Secretariat has published an update to its synthesis report on the collective impact of national climate action plans (Intended Nationally Determined Contributions, or INDCs), submitted by governments as contributions to global climate action under the Paris Agreement. Since the publication last October of the 1st synthesis report prepared ahead of the Paris Climate Change Conference, 42 additional countries submitted their INDCs. The updated report now captures the overall impact of 161 national climate plans covering 189 countries and covering 95.7% of total global emissions. (The European Union and its 28 member States submit a joint INDC.) There are 137 of the 161 INDCs (85%) which include an adaptation component, reflecting a common determination of governments to strengthen national adaptation efforts. INDCs are expected to deliver sizeable emission reductions and slow down emissions growth in the coming decade. However, these are still not enough to keep the global temperature rise since pre- industrial times to below 2, or preferably 1.5 degrees Celsius.
Comparison of Global Emission Levels in 2025 and 2030 Resulting from the Implementation of the INDC and under Other Scenarios Sources: Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report scenario database, 1.5 °C scenarios from scientific literature (see footnote 18), IPCC historical emission database and intended nationally determined contribution quantification. Abbreviations: AR4 = Fourth Assessment Report of the Intergovernmental Panel on Climate Change, GWP = global warming potential, INDC = intended nationally determined contribution, IPCC AR5 = Fifth Assessment Report of the Intergovernmental Panel on Climate Change, n = number of scenarios, yr = year.
Figure ES.2 Global GHG emissions under different scenarios and the emissions gap in 2030 (median estimate and 10th to 90th percentile range). Emission Reduction Options and Potential in the Energy Sector In the current policy scenario, energy sector emissions amount to 21.3 GtCO2 in 2030, of which 16.3 GtCO2 comes from power generation (IEA, 2016, USEPA, 2012). Main options for reducing emissions in the energy sector are wind and solar energy. In addition, hydro, nuclear, geothermal, carbon capture and storage (CCS) and bioenergy combined with CCS can contribute.
Global GHG Emissions Under Different Scenarios & the Emissions Gap in 2030
SINGAPORE’S INTENDED NATIONALLY DETERMINED CONTRIBUTION (INDC) In accordance with Decisions 1/CP.19 and 1/CP.20, Singapore communicates that it intends to reduce its Emissions Intensity by 36% from 2005 levels by 2030, and stabilise its emissions with the aim of peaking around 2030. Singapore’s Efforts. While Singapore is heavily dependent on fossil fuels, given its severe limitations on using alternative energy, Singapore had made early policy choices to reduce its GHG footprint by switching from fuel oil to natural gas, the cleanest form of fossil fuel, for electricity generation, even though it meant higher cost. Today, over 90% of electricity is generated from natural gas. Singapore prices energy at market cost, without any subsidy, to reflect resource scarcity and promote judicious usage. On top of this, and despite the challenges, the government is significantly increasing the deployment of solar photovoltaic (PV) systems. Singapore intends to reduce its Emissions Intensity 36% below 2005 levels by 2030, and aims to achieve emissions peak around 2030.
List of Countries Committed to a Net-Zero Emissions Goal Country Target Date Status Bhutan Currently Carbon Pledged towards the Paris Negative Agreement Canada 2050 Will propose to Parliament Chile 2050 In Policy Document Costa Rica 2050 In Policy Document Denmark 2050 In Policy Document European Union 2050 Under Discussion Fiji 2050 Pledged towards the Paris Agreement Finland 2035 In Policy Document France 2050 In Law Germany 2050 Under Discussion Iceland 2040 In Policy Document Ireland 2050 Under Discussion Sources: i) World Economic Forum, 05 July 2019; and ii) 2019 Climate Home News Ltd., 14 June 2019.
List of Countries Committed to a Net-Zero Emissions Goal Country Target Date Status Japan 2050 Policy Position Marshall Islands 2050 Pledged towards the Paris Agreement New Zealand 2050 The Bill was Passed Norway 2030 In Law Portugal 2050 In Policy Document Sweden 2045 In Law Spain 2050 Proposed Legislation The Netherlands 2050 Under Discussion United Kingdom 2050 In Law Uruguay 2030 In Policy Document Sources: i) World Economic Forum, 05 July 2019; and ii) 2019 Climate Home News Ltd., 14 June 2019. China: Peak CO2 emissions before 2030 and reach carbon neutrality before 2060. Source: Ranping Song, “4 Questions About China’s New Climate Commitments”, WRI, September 2020.
ENERGY TRANSITION IN CONSUMPTION SECTORS • Buildings and neighbourhoods • Industry, commerce, trade and services • Interfaces of energy research with mobility and transport POWER GENERATION • Photovoltaics • Wind power • Bioenergy • Geothermal The 7th Energy • Hydropower and marine energy Research • Thermal power plants Programme of SYSTEM INTEGRATION: GRIDS, ENERGY STORAGE, SECTOR COUPLING • Electricity grid the German • Electrical energy storage Federal • Sector coupling Government CROSS-SYSTEM RESEARCH TOPICS FOR THE ENERGY TRANSITION • Energy system analysis • Digitisation of the energy transition • Resource efficient for the energy transition • CO2 technologies for the energy transition • Energy transition and society • Materials research for the energy transition NUCLEAR SAFETY RESEARCH • Reactor safety research • Waste management and repository research • Radiation research
Source: Ernst & Young (EY), “COVID-19 crisis management for P&U companies”.
VISI "TERWUJUDNYA PENGELOLAAN ENERGI YANG BERKEADILAN, BERKELANJUTAN, DAN BERWAWASAN LINGKUNGAN DENGAN MEMPRlORITASKAN PENGEMBANGAN ENERGI TERBARUKAN DAN KONSERVASI ENERGI DALAM RANGKA MEWUJUDKAN KEMANDIRIAN DAN KETAHANAN ENERGI NASIONAL” Rencana Umum Energi Nasional National Energy Mix up to 2050 Emisi GRK Tahun 2015-2050 Penurunan Emisi GRK Tahun 2015-2050
National Energy Mix Menuju 2050
Emisi GRK Tahun 2015-2050 Sektor pembangkit listrik diproyeksikan akan menjadi penyumbang emisi terbesar, diikuti oleh sektor industri dan sektor transportasi. Proyeksi emisi GRK pada tahun 2025 sebesar 893 juta ton C02eq dan tahun 2050 sebesar 1,950 juta ton C02eq, sebagaimana dapat dilihat pada gambar diatas. Hasil pemodelan pencapaian sasaran KEN akan memberikan dampak penurunan GRK secara signifikan apabila dibandingkan dengan Business as Usual (BAU). Penurunan emisi GRK tahun 2025 sebesar 34,8% dan pada tahun 2050 sebesar 58,3%, sebagaimana dapat dilihat pada slide berikutnya.
Penurunan Emisi GRK Tahun 2015-2050 Sebagaimana yang dinyatakan pada RUEN yang terbaru, penurunan emisi GRK dalam RUEN sudah sejalan dengan Nationally Determined Contribution (NDC) Indonesia sebesar 29% pada tahun 2030 yang merupakan bagian dari komitmen Indonesia untuk turut mendukung upaya pengendalian peningkatan suhu global rata-rata di bawah 2°C. Penurunan emisi GRK disebabkan oleh empat faktor: (1). Diversifikasi energi, dengan meningkatkan porsi energi terbarukan dan mengurangi porsi energi fosil; (2). Pemanfaatan teknologi batubara bersih (clean coal technology) untuk pembangkitan tenaga listrik; (3). Substitusi penggunaan energi dari BBM ke gas bumi; dan (4). Pelaksanaan program konservasi energi pada tahun-tahun mendatang. Penurunan emisi GRK dalam RUEN sudah sejalan dengan Nationally Determined Contribution (NDC) Indonesia sebesar 29% pada tahun 2030 yang merupakan bagian dari komitmen Indonesia untuk turut mendukung upaya pengendalian peningkatan suhu global rata-rata di bawah 2°C.
Energy Mix Bulan Desember 2019 Sumber Data : Data ROT & Data Transaksi TRATL P2B *) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN www.pln.co.id |
Energy Mix Bulan Januari 2020 Sumber Data : Data ROT & Data Transaksi TRATL P2B *) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN www.pln.co.id |
Energy Mix Bulan Juni 2020 Sumber Data : Data ROT & Data Transaksi TRATL P2B *) Data BBM diluar pemakaian BBM akibat pengoperasian PLTDG PESANGGARAN www.pln.co.id |
Energi Mix SJB Januari sd Agustus 2020 www.pln.co.id |
To establish deep decarbonization pathway particularly for energy sector in supporting the strategic review of NDC to achieve the national emissions reduction target, one of the key required actions: Strongly Required Deep Decarbonization of Energy Sector Deployment of low-carbon & zero-carbon energy technologies and renewable energy; greater role of energy efficiency & conservation from up-stream to down- stream (energy end-use - provide efficient transmission and distribution systems); Energy and move the energy system towards using low-carbon energy sources (fuel Sector switching) to improve national energy mix for its associated sectors (power, transport, industry, building, and households, etc.) to be imbedded in the long-term national energy program.
Meningkatkan Tingkat Penetrasi VRE ke Sistem Tenaga Listrik [Associated Key Issues & Challenges in Moving Forward]
Three Trends Driving Transition in Global Energy Sector Decarbonisation with the [ Tiga D ] shift towards lower-carbon The global electricity sector is undergoing a large-scale energy generation and use. This transition, marked by 3 (three) inter-related and reinforcing is marked by a growth in trends impacting demand and supply of energy: natural gas (playing a bridging role), and renewables in energy supply and generation, particularly in distributed generation, as well as electrification of the mobility sector. Digitalisation supported by the increase in information and communication technologies and the overall shift to an ‘internet of things’ that enables smart grids and optimized energy use and Decentralisation marked by the greater storage, greater efficiency and the adoption and availability of a distributed energy integration of distributed energy resources including new distributed generation resources, especially distributed sources, developments in energy storage, new generation. market entrants and shifting consumer preferences.
Evolution of the Electricity System
Contoh Perkembangan Sistem Tenagalistrik
Key Properties of Variable Renewable Energy (VRE) and Its Associated Challenges1) Generation / resources Weather-dependent nature - adequacy - firm capacity Variability Need flexible resources / flexibility Uncertainty in forecast - Voltage control Low predictability Efficient grid expansion with appropriate level Location constrained - capacity Specific location Stability / frequency & Can be as distributed voltage response generation - Not connected (is influenced by “system to transmission inertia”), and harmonic distortion Non-synchronous power System operations & sources controls at the distribution level Please see other big challenges.
Key Links Between VRE, Power System Properties and Planning1)
The CAISO Duck Chart *)Source: Paul Denholm, Matthew O'Connell, Gregory Brinkman, and Jennie Jorgenson, “Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart”, NREL Technical Report, NREL/TP-6A20-65023, November 2015.
Background: Why Ducks Lead to Overgeneration*) The CAISO duck chart itself illustrates the general challenge of accommodating solar energy and the potential for over generation and solar curtailment. In the chart, each line represents the net load, equal to the normal load minus wind and PV generation. The “belly” of the duck represents the period of lowest net load, where PV generation is at a maximum. The belly grows as PV installations increase between 2012 and 2020. While the amount of PV in 2020 is not shown directly, it can be estimated by comparing the 2012 curve to the 2020 curve. In this case, the normal load (i.e., no PV and adjustments for load growth) at about 1-2 p.m. on March 31, 2020 appears to be about 22,000 megawatts (MW), while PV is generating about 10,000 MW, leaving about 12,000 MW to be met with other resources. In this case, PV provides perhaps 45% of the total demand in this one hour. The duck chart also points to the period of over generation risk, which could result in curtailed energy. *) Source: Paul Denholm, Matthew O'Connell, Gregory Brinkman, and Jennie Jorgenson, “Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart”, NREL Technical Report, NREL/TP-6A20- 65023, November 2015.
5 Key Technical Parameters that Determine the Flexibility of Dispatchable Plants1) 1. The ramp rate (or ramping gradient) of a power plant: the rate at which a generator can change its output (in MW/timeframe, e.g., minute or hour). 2. Start-up times: the time required for power to start up. Cold, warm and hot starts are distinguished depending on how long a power plant has been down. 3. Minimum load levels: the minimum generation at which a power plant can be operated stably before it needs to be shut down. A plant can adjust its output between this and its rated capacity. 4. Minimum down and up times: the lower limits of the time that a plant needs to be offline or online. In principle, these are not strict technical limits, but are supporting guidelines to avoid wear and tear that leads to high costs over the lifetime of a power plant. 5. Partial load efficiency: the reduced efficiency of a power plant operated below its rated capacity.
Langgam Beban Kerja April 2020 VS 2019 www.pln.co.id |
4 Basic Models for Industry Structure2,3) Key Items Model 1 Model 2 Model 3 Model 4 Vertically Integrated Single Buyer Wholesale Retail Competition Characteristic Monopoly Competition Monopoly at all Competition in Competition in Competition in Definition levels generation generation and generation and choice for DITSCOs choice for final consumers Competing Tidak Ya Ya Ya Generators Choice for Tidak Tidak Ya Ya Retailers? Choice for Final Tidak Tidak Tidak Ya Customers? • No one may buy from • Only the existing • DITSCOs are given • Permits all independent integrated the right to buy customers to choose generator. monopoly in the direct from IPPs, but their suppliers & are • All final customers assigned area is they retain a local given the right to Note are supplied by the permitted to buy franchise over buy from IPP. incumbent utility from IPP (the retailers customers. • Access to competing • IPP will need access transmission and generators). to the transmission distribution • The design of network through network are PPAs is a major trading arrangement required. feature. for the network.
Sequence of Main Tasks Principal States of Power System Operation
DEKARBONISASI JANGKA PANJANG YANG MENDALAM TETAP MEMENUHI KESEIMBANGAN PASOKAN DAN PERMINTAAN SERTA MENJAMIN PEMENUHAN PILAR UTAMA (1) Ensuring Security Reliability Resilience Quality (Keamanan (Keandalan) (Ketahanan) (Mutu) Pasokan) OBJECTIVES (TUJUAN TERINTEGRASI) (2) Maximizing Economic (3) Clean Electricity to Value & Consumer Equity Support Environmental (Accessibility & Sustainability Affordability)
Planning the transition to a power system with high share low-carbon & zero-carbon energy technologies and RE Sequence of including VRE under techno-economic assessment. Main Tasks Pre-Construction Pre-Operational Construction Pre-Decision Operational Phase Phase Phase Phase Phase Decision Phase Ensuring System Planning Reliability, Security, Phase Resilience & Quality Clean Electricity to Maximizing Economic Value & Support Environmental Consumer Equity (Accessibility Sustainability & Affordability)
Wind, Solar potential Primary Energy data: Primary energy data: map Hydro; Geothermal; Etc. Gas, Coal, Oil Candidates of VRE Candidates of RE Candidates of (intermittent power projects Thermal projects generation) projects (RE): Solar, Wind Generation expansion Demand forecast; plan and transmission / Daily load curve Existing generation and transmission network expansion plan Scenarios systems (geo-spatial) Planning criteria Policy, Financial Generation productions constraints allocation and costs Proposed investment plan, financing projection & financing plan / funding Optimal power flow and requirement. static security assessment Dynamic security Further economic study assessment (Tariff) System Planning Process Investment plan (Hanya Sebagai Contoh General Practice)
Characteristics of Selected Long-term Power Sector Planning Tools1)
Model Scenarios*) [Hanya Sebagai Contoh] Carbon Tax New Technology Scenario Scenario • Twenty likely and speculative new technologies using • Various carbon taxes coal and gas were added to the Base scenario for (13,25,50,75 $/tCO2) were application within the lifetime considered in the model imposed for both the Base • CCS was included within these new technologies scenario and the New variants. Technology scenario. • Effect of carbon tax was Base Scenario analyzed when lower • Only technologies either generation limit was set on SCENARIOS current in 2005 or included in coal-fired power plant the National Electricity Plan were included • Current trend for renewables Total Carbon Emission Cap Scenario introduction was reflected in the model Various total carbon emission caps (120%, 100%, 80%,60% • Constraints for some compared to the 2004 level) were imposed on the Base technologies were set scenario and New Technology scenario. Effect of total according to the resource limit carbon emission cap was analyzed when lower generation and the geographical limit limit set set on coal-fired power plant *)Source: Andrew J Minchener, “The Korean Energy Strategy Project”, IEA CCC/133, April 2008.
Tahap Pra-Operasional Tahap Operasional • Load Forecast • Hourly – short term (on line) load forecast • VRE power supply forecast • Hourly – short term (on line) VRE power • Net load forecast supply forecast • Generations maintenance scheduling • Net load • Transmissions maintenance scheduling • Static and dynamic security assessment • Generations unit scheduling • Contingency & congestion analysis • Optimal fuel use and scheduling • Optimal power flow • Static and dynamic security assessment • Balancing system • Optimal power flow • Preventive, corrective, emergency and • Balancing system restorative actions and controls Rencana Operasi Triwulanan Rencana Operasi Tahunan Rencana Operasi Mingguan Rencana Operasi Harian Kontinuitas sistem operasi real time Rencana Operasi Bulanan 5 (Five) Years Statement dan tetap menjaga keandalan, sekuriti (keamanan), optimal, dan kualitas standar keseimbangan pasokan & beban (kebutuhan) Tugas Utama Perencanaan Operasi Sistem, Operasi Sistem & Kontrol. + Ramah Lingkungan (Clean)
Principal States of Power System Operation4) Operasi sistem dapat digambarkan (describe) oleh 3 (tiga) set persamaan generik, yaitu: (i) 1 set persamaan diferensial, dan (ii) 2 (dua) set persamaan aljabar, yaitu: (a) E (equality constraints), dimana keseimbangan daya aktif dan reaktif pada setiap bus (node), dan (b) I (inequality constraints) batasan kondisi operasi dari berbagai komponen sistem, seperti tegangan dan arus tidak boleh melebihi batasan maksimumnya. Sebagaimana yang dideskripsikan pada slide selanjutnya, ada 5 (lima) kondisi operasi sistem tenaga listrik yaitu: (1) Kondisi Normal: semua E (equality constraints) & I (inequality constraints) serta N-1 terpenuhi; (2) Kondisi Siaga (Alert): semua E (equality constraints) & I (inequality constraints) terpenuhi, namun N-1 tidak; (3) Kondisi Darurat (Emergency): semua E (equality constraints) dapat terpenuhi, paling tidak ada satu I (inequality constraints) yang tidak terpenuhi disebabkan oleh adanya gangguan; (4) Kondisi Ekstrim (In Extremis): pada kondisi ini kedua E (equality constraints) dan I (inequality constraints) tidak terpenuhi (violated); dan (5) Kondisi Pemulihan (Restorative): merupakan kondisi transisi dimana I (inequality constraints) terpenuhi dari tindakan pengendalian darurat yang dilaksanakan, tetapi E (equality constraints) belum terpenuhi. *) Fink & Carlsen, “Operating under stress and strain”, IEEE Spectrum, March 1978.
Principal States of Power System Operation Pengendalian Pengendalian Pencegahan Pemulihan Kondisi Normal [N-1 terpenuhi] Reduction in E, I reserve margin Pengendalian Pengendalian Kondisi Darurat Perbaikan Kondisi Siaga Pemulihan [N-1 tidak terpenuhi] E, I E, I Kondisi Darurat E, I Gangguan Meluas (Cascading Outage): system splitting dan In Extremis Action atau load loss (large block). (Resynchronization) Kondisi Ekstrim E, I E: Equality Constraints. Proses transisi sehubungan dengan gangguan. E: Equality Constraint Not Satisfied. Proses transisi sehubungan dengan tindakan I : Inequality Constraints. pengendalian. I : Inequality Constraints Not Satisfied
Balancing Act - Associated Key Issues Potential reliability impacts of distributed resources (potential reliability concerns)5) : (i) visibility & controllability of distributed energy resources and the potential effects on forecast load; (ii) the ramping and variability of certain distributed energy resources and the resulting impacts on the base load and cycling generation; (iii) the ability to control reactive power; (iv) low-voltage ride-through (LVRT) and low- frequency ride-through and coordination with IEEE Standard 1547; (v) under- frequency load shedding (UFLS) and under voltage load shedding (UVLS). Operating consideration of integrating variable generation – Associated tasks related to bulk power system operation activities: (i) forecasting techniques must be incorporated into day-to-day operational planning and real-time operations routine and practice, including unit commitment and dispatch; (ii) the impact of securing ancillary services through larger balancing areas or participation in wider-area balancing management on bulk power system reliability must be investigated; (iii) operating practices, procedures, and tools will need to be enhanced and modified. Some of recommended key elements to improve the integration of variable resources – To be operating practices, procedures, and tools (standard): (i) disturbance control performance; (ii) automatic generation control requirement; (iii) communication and coordination; (iv) capacity and energy emergencies; (v) reliability coordination, current-day operations; (vi) normal operating planning; (vii) monitoring system condition.
Microgrid dan Microgrid Controller DMS Integration with Microgrid Controllers / DERMS
Contoh Komponen Microgrid6) Central Power Plant HV Residensial Komersial Smart Demand Electrical Appliances Response Storage Wind Farms Residential Solar Office Solar Homes (LV) Panels Buildings Panels Gardu MV Renewable Induk Energy Electrical Distributed Wind Active Distribution Storage Generation Turbines Management Solar Distributed Generation & Storage (DER) Farms Gardu Induk Industrial Distributed Demand Plant Generation Response Active Distribution Grid Industrial
Contoh Arsitektur Fisik Microgrid7) Microgrid Central Controller P, Q, V, C P, Q, V, C = ~ PV = ~ DLR P, Q, V, C = Storage ~ Diesel Smart EV Generator Appliances
Smart Grid in Microgrid Kantor Gubernur Bali Smart Microgrid Controller : Energy Flow - SCADA - : Measurement : Control Instructions 20kV/380V (P,Q,V,I) (ON/OFF) (P,Q,V,I) (P,Q,V,I) (ON/OFF) (ON/OFF) Generator Photovoltaic Diesel Kapasitas 158 275 kVA kWp (P,Q,V,I) (P,Q,V,I) (ON/OFF) (ON/OFF) Baterai Priority Load Kapasitas 224 kVAh
Impact of Inverter Based Generation on Bulk Power System Dynamics and Short-Circuit Performance [Key Associated Issues] Synchronous ac rotating Inverter-based resources machine (IBR) technologies Electric power grids around the world are undergoing a significant change in generation mix. Large System Impact Issues Related to Protective Relay Issues Related to Large Penetration of Inverter Based Resources Penetration of Inverter Based Resources 1. Voltage-Control/Reactive Support 1. Inverter-Based Fault Currents and 2. Frequency Response and Control Voltage 3. Low-Short Circuit-Levels 2. Relay Element Response to Inverter- Based Fault Current and Voltage 4. Control and Grid Interactions 3. Relay Scheme Selection Issues Caused 5. Planning Process by Inverter-Based Resources (IBR) 6. Modeling 4. Short Circuit Issues Caused by IBR 7. Operations / Economic Issues 5. Protection and Control (PRC) Reliability 8. Etc. Standards Issues Caused by IBR Source: IEEE Power & Energy Society, “Impact of Inverter Based Generation on Bulk Power System Dynamics and Short-Circuit Performance”, Technical Report, PES-TR68, July 2018.
The Functional Use Cases of Microgrid Controllers6) [Contoh] Frequency Control Voltage Control Grid Connected to Islanding Transition: Intentionally Islanding Transition Islanding to grid Connected Transition: Unintentionally Islanding Transition Islanding to Grid-Connected Transition: Resynchronization and Reconnection Energy Management: Grid Connected and Islanding Microgrid Protection Ancillary Services: Grid Connected Microgrid Black Start Microgrid User Interface and Data Management
Isu Utama Terkait for Moving Forward8) Definisi / scope dan general features. Struktur & Operasi Komponen dan perlengkapan terkait. Microgrid Tipe / jenis microgrids. Fungsi microgrid dan manfaat. Microgrid control system requirements. Struktur Sistem Kontrol & Microgrid control system function. Operasi Microgrid Struktur sistem kontrol microgrid. Standardization benefits & activities. Standard requirement. Standarisasi Fungsi Sistem Kontrol Microgrid Standardization process. Scope of a standardized functional specification. Spesifikasi Fungsional Identifikasi fungsi utama sistem kontrol. Sistem Kontrol Microgrid Spesifikasi fungsi utama. Requirements for conformance testing. Testing dari Fungsi Utama Approach dan protocols yang dipergunakan.
A Grid Interactive Microgrid Controller For Resilient Communities9) DERMS: Distributed energy resource management Source: Arindam Maitra, Annabelle Prat, Tanguy Hubert, Dean Weng, Kamaguru Prabakar, Rachna Handa, Murali Baggu, & Mark Mc Granaghan, “Microgrid Controllers”, IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017.
Big Challenges Participate in emergency state as a part of online emergency Participate in optimal power actions to stabilize the flow of interconnected system. interconnected power system in emergencies.
Utility Architecture View with Layered Decomposition Coordination Interoperability Source: GRID Modernization Laboratory Consortium U.S. DOE, “Interoperability Strategic Vision”, GMLC White Paper, March 2018
INTEROPERABILITY The ability of two or more systems or components to exchange information and to use the information that has been exchanged. VALUE OF INTEROPERABILITY Reduces the cost and effort for system integration Improves grid performance and efficiency Facilitates more comprehensive grid security and cybersecurity practices Increases customer choice and participation Establishes industry-wide best practices It is a catalyst of innovation
Local Microgrid Distribution Controller # 3 Management System - DSO - ? ? Microgrid # 3 ? ? Transmission Operations Microgrid - TSO - Controller/DERMS Microgrid # 2 ? Local Microgrid ? ? System Operations Controller # 1 Local Microgrid - ISO - Controller # 2 ? KEY ISSUES Microgrid # 1 Utility System Architecture DER to Microgrid Controllers/DERMS Interactive System DMS Integration with Microgrid Controllers/DERMS ISO - TSO - DMS/DSO - Microgrid ISO-TSO & DSO Interfacing Controllers/DERMS
Associated Key Issues & Challenges in Moving Forward
Sangat dibutuhkan beberapa kegiatan utama dalam membangun jalur dekarbonisasi jangka panjang sektor ketenagalistrikan yang mendalam untuk percepatan transisi energi dalam mencapai sistem energi national jangka panjang rendah karbon yang berkelanjutan dan mendukung NDCs dalam mencapai target pengurangan emisi nasional mendukung pencapaian tujuan global Persetujuan Paris, dimana setidaknya selaras dengan lintasan emisi biaya paling rendah dari kenaikan suhu tetap di bawah 2°C (a least-cost emission trajectory of temperature rise staying below 2°C), dengan tujuan dan memenuhi pilar utama (1) Keandalan (reliability), keamanan pasokan (security), ketahanan (resilience), mutu (quality); (2) Harga yang terjangkau, kompetitif, aksesibilitas, ekonomis, memperkuat daya saing industri, dan mendukung pembangunan yang berkelanjutan; dan (3) Pasokan tenaga listrik yang berkelanjutan yang bersih-ramah lingkungan (clean electricity supply). DEKARBONISASI SEKTOR KETENAGALISTRIKAN YANG MENDALAM Meningkatkan Tingkat Penetrasi VRE ke Sistem Tenaga Listrik
Peningkatan tingkat kemampuan fleksibilitas sistem dengan penyediaan fasilitas demand response, energy storage: pump-storage hydro, batteries, ekspansi jaringan transmisi & distribusi dan komponen terkait dari integrasi jaringan interkonesi sistem tenaga listrik (grid-interconnected power system); Peningkatan tingkat digitalisasi untuk pertukaran informasi (exchange information) & aplikasi data, dan pengintegrasian interaksi kontrol sistem untuk mendukung peningkatan desentralisasi sistem pembangkitan dalam peningkatan integrasi variabel energi terbarukan ke integrasi jaringan interkoneksi sistem tenaga listrik untuk pemanfaatan potensinya dalam pengendalian operasi sistem tenaga listrik pada kondisi operasi: (a) Normal; (b) Siaga; (c) Darurat; dan (d) Pemulihan. Cakupan komposisi arsitektur kontrol/koordinasi (control/coordination architectures) terkaitnya terdiri dari: (i) Coordination interaction sistem kontrol lokal jaringan mikro dari sumber energi tersebar (local microgrid controllers of distributed energy resources-DERs) dengan sistem kontrol jaringan mikro/sistem manajemen sumber energi tersebar (microgrid controller/distributed energy resources management system-DERMS), (ii) Coordination interaction sistem manajemen sumber energi tersebar (DERMS) dengan sistem manajemen distribusi (distribution management system-DMS), (iii) Coordination interaction sistem manajemen distribusi-unit pengatur sistem distribusi (DMS-DSO) dengan pusat pengatur beban independen (ISO) & unit pengelola sistem transmisi (TSO).
Memperhitungkan/mempertimbangkan: (a) Tingkat kemampuan fleksibilitas sistem yang selaras untuk mendukung penetrasi variabel energi terbarukan yang lebih tinggi (higher flexibility requirements for higher renewable energy penetration); (b) Adanya kemungkinan tidak dipergunakan/tidak dioperasikan lebih lanjut PLTU Batubara yang ada (stranded assets of existing coal-based power plants); (c) Adanya potensi memodifikasi PLTU Batubara yang ada menjadi pembangkit listrik yang lebih fleksibel berdasarkan efektivitas biaya dan tingkat kelayakan ekonominya (converting the existing coal fired power plants into flexible power plants based cost effectiveness and economic viability); (d) Dampak ekonomi-makro (macro-economic impact), (e) Kemungkinan adanya resiko keuangan (financial risk) dengan adanya kondisi kewajiban keuangan yang masih berlangsung (adanya take or pay), dan biaya sosial yang ada (existing financial obligations, and social costs). Perlu ditinjau/dikaji kembali (review) dan diselaraskan (enhance) lebih lanjut: (i) Rencana operasi sistem tahap pra-operasional dan tahap operasional; (ii) Operasi sistem real-time & kontrol yang tetap menjaga dan mempertahankan terjaminnya keandalan, sekuriti/kestabilan sistem (static & dynamic), optimal- ekonomis, mutu/kualitas, keseimbangan pasokan & beban, dan pemenuhan alokasi emisi: (a) sistem peramalan (prakiraan) beban jangka pendek (tergantung jangka waktu yang dibutuhkan) - setiap jam yang dilaksanakan on-line dan off-line, (b) analisa static & dynamic security yang secara regular dilaksanakan on-line dan off-line,
(c) analisa kontingensi (on-line dan off-line), (d) pre-dispatch, optimalisasi sistem (optimal power flow), (e) real-time dispatch, (f) balancing system, (g) pengendalian pencegahan, perbaikan, darurat dan pemulihan; (iii) Sistem komunikasi, kontrol, pelaporan & pemantauan; (iv) Sistem pengukuran (metering system); (v) Manajemen / pengelolaan aset; (vi) Standar teknis untuk aplikasi koneksi (connection applications); (vii) Peningkatan penetrasi/perluasan penerapan variabel energi terbarukan tersebar. The utility system architecture dan reformasi sistem kelistrikan dibutuhkan untuk mendukung implementasi manajemen dan kontrol operasionalisasi integrasi jaringan interkoneksi sistem tenaga listrik (to support implementation approach to integrated grid-interconnected power system management and control), yaitu: (i) Control center designs (model pusat pengendalian) yang sesuai dengan fungsi dan tantangan yang baru (under new functions and challenges) untuk ISO-TSO, dan DMS-DSO; dan (ii) Sistem interaktif sebagai coordination interactions: (a) sistem kontrol lokal jaringan mikro dari sumber energi tersebar dengan sistem kontrol jaringan mikro/sistem manajemen sumber energi tersebar (DERMS), (b) integrasi DMS-DSO dengan sistem kontrol jaringan mikro/sistem manajemen sumber energi tersebar (DERMS), dan (c) ISO-TSO dan DMS-DSO.
Dibutuhkan penyediaan fasilitas interoperabilitas sistem untuk mendukung operasi sistem real-time & kontrol yang tetap menjaga dan mempertahankan terjaminnya keandalan, sekuriti/kestabilan sistem (static & dynamic), optimal-ekonomis, mutu/kualitas, keseimbangan pasokan & beban, dan pemenuhan alokasi emisi, misalnya penggunaannya untuk: (i) optimalisasi sistem (aliran daya yang optimal) dari integrasi jaringan interkoneksi sistem, dan (ii) pengendalian darurat online pada kondisi darurat untuk menstabilkan kondisi operasi sistem kembali ke kondisi normal. Identifikasi reformasi sistem kelistrikan termasuk pasar/market yang dibutuhkan, model struktur, kebijakan dan kerangka kerja terkait, peraturan yang diperlukan untuk mendukung peningkatan penetrasi variabel energi terbarukan tersebar ke integrasi jaringan interkoneksi sistem tenaga listrik agar optimalisasi operasi sistem tenaga listrik dapat tercapai, termasuk potensi partisipasinya pada tahap pengendalian pencegahan, perbaikan, darurat, dan pemulihan, termasuk pembentukan agregator & kerangka peraturan terkait, grid connection code, serta kebijakan penghematan energi & skema kewajiban efisiensi energi, arah & jalur kebijakan dan kerangka kerja untuk memfasilitasi transisi ini.
References 1. IRENA, “PLANNING FOR THE RENEWABLE FUTURE - Long-term Modelling and Tools to Expand Variable Renewable Power in Emerging Economies”, 2017. 2. Sally Hunt and Graham Shuttleworth, Competition and Choice in Electricity, John Wiley & Sons, Inc, 1996. 3. Sally Hunt, Making Competition Work in electricity, John Wiley & Sons, Inc, 2002. 4. Fink & Carlsen, “Operating under stress and strain”, IEEE Spectrum, March 1978. 5. Mark G. Lauby, Mark Ahlstrom, Daniel L. Brooks, et al., “Balancing Act. NERC’s Integration of Variable Generation Task Force Plans for a Less Predictable Future”, IEEE Power & Energy Magazine, Volume 9, No. 6, November/December 2011. 6. Dan Ton, and Jim Reilly, “Microgrid Controller Initiatives”, Vol. 15, No. 4, July/August 2017. 7. Goran Strbac, Nikos Hatziargyriou, Joao Pecas Lopes, Carlos Moreira, Aris Dimeas, and Dimitrios Papadaskalopoulos, “Microgrids – Enhancing the Resilience of the European Megagrid’, IEEE Power & Energy Magazine, Vol. 13, No. 3, May/June 2015. 8. Geza Joos, Jim Reilly, Ward Bower, and Russ Neal, “The Need for Standardization”, IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017. 9. Arindam Maitra, Annabelle Pratt, Tanguy Hubert, Dean Weng, Kumaraguru Prabakar, Rachna Handa, Murali Baggu, and Mark McGranaghan, “Microgrid Controllers”, IEEE Power & Energy Magazine, Vol. 15, No. 4, July/August 2017.
References 10. Grid Modernization Laboratory Consortium, U.S. DOE, “Interoperability Strategic Vision”, A GMLC White Paper, March 2018. 11. IEEE PES, “Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies”, TECHNICAL REPORT, PES-TR77, April 2020. 12. Mark Mc Granaghan, “Making Connection – Asset Management and the Smart Grid”, IEEE Power & Energy Magazine, Vol. 8, No. 6, November/December 2010. 13. Stanley H. Horowits, Arun G. Phadke, and Bruce A. Renz, “The Future of Power Transmissions – Technological Advances for Improved Performance”, IEEE Power & Energy Magazine, Vol. 8, No. 2, March/April 2010. 14. U.S. Department of Energy (DOE), “Transforming the Nation’s Electricity System: The 2nd Installment of the QER, January 2017. 15. Ali Bidram, Frank L. Lewiss, and Ali Davoudi, “Distributed Control Systems for Small- Scale Power Networks - USING MULTIAGENT COOPERATIVE CONTROL THEORY”, IEEE Control Systems Magazine, Vol. 34, No. 6, December 2014. 16. EPRI, “Grid Interactive Microgrid Controllers and the Management of Aggregated Distributed Energy Resources (DER)”, 2015 Technical Report. 17. EPRI, “The Integrated Grid. A Benefit-Cost Framework”, Final Report, February 2015. 18. U.S. Department of Energy (DOE), “Staff Report to the Secretary on Electricity Markets and Reliability”, August 2017. 19. IEEE SMARTGRID, “ IEEE Smart Grid Compedium”, 2015.
References 20. Australian Energy Market Operator - AEMO, “Black System South Australia 28 September 2016”, Final Report, March 2017. 21. Paul Denholm, Josh Eichman, and Robert Margolis, “Evaluating the Technical and Economic Performance of PV Plus Storage Power Plant”, Technical Report, NREL, August, 2017. 22. Vincenzo Giordano, Ijeoma Onyeji, and Gianluca Fulli (JCR IET); Manuel Sanchez Jimenez, and Constantina Filiou (DG ENER), “Guidelines for conducting a cost- benefit analysis of Smart Grid projects”, Joint Research Centre Reference Report, 2012. 23. Greensmith Energy, “Transforming Today’s Energy Grid - How specialized design, integration and supply chain expertise are the key success factors for the grid of the future”, White Paper, May 2017. 24. Klaus-Dieter Borchardt, Director Internal Energy Market, Directorate General for Energy European Commission, “Benchmarking smart metering deployment in EU”, European Conference on Smart Metering Deployment in the EU, Brussels, 26 June 2014. 25. Edison Electric Institute - EEI, “Solar Energy and Net Metering”, January 2016. 26. Hardiv Harris Situmeang, Sekuriti Sistem Tenaga Listrik – Pengendalian Darurat, Seminar Nasional Peran Teknik Kendali dalam Dunia Industri, Masyarakat Sistem Kendali Indonesia, 19 Juli 1997.
You can also read