Observation et tendance des émissions et des flux naturels de CO 2 - Philippe Ciais Laboratoire des sciences du Climat et de l'Environnement ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Observation et tendance des émissions et des flux naturels de CO2 Philippe Ciais Laboratoire des sciences du Climat et de l’Environnement
inated in tropical latitudes (see Sections 6.3.6.3 and 6.3.2.5.4), while • CO2 from fossil fuels and from the land biosphere has a lower the anomalies in 2003 and 2005 originated in northern mid-latitudes, 13C/12C stable isotope ratio than the CO2 in the atmosphere. This perhaps reflecting the European heat wave in 2003 (Ciais et al., 2005). induces a decreasing temporal trend in the atmospheric 13C/12C Volcanic forcing also contributes to multi-annual variability in carbon ratio of atmospheric CO2 concentration as well as, on annual aver- Augmentation des gaz à effet de serre storage on land and in the ocean (Jones and Cox, 2001; Gerber et al., age, slightly lower 13C/12C values in the NH (Figure 6.3). These sig- 2003; Brovkin et al., 2010; Frölicher et al., 2011). nals are measured in the atmosphere. With a very high level of confidence, the increase in CO2 emissions • Because fossil fuel CO2 is devoid of radiocarbon (14C), reconstruc- from fossil fuel burning and those arising from land use change are the tions of the 14C/C isotopic ratio of atmospheric CO2 from tree rings 400 400 380 380 360 360 ! !! CO2$ ! ! ! ! ! CO2 !ppm" CO2 !ppm" 340 340 ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! ! ! ! !! !! ! 320 320 !! ! ! ! !!!!! ! ! !! ! ! !! ! !!!! ! ! ! ! ! ! !! ! ! ! !! !! ! !! ! !! !! !! ! !! ! ! ! ! !! ! ! !! ! ! !! ! !! 300 300 ! ! ! ! ! ! ! !!! ! !!! ! !!! ! ! ! !! !!! ! !! !!!! ! !! ! ! !!! ! ! ! ! ! ! ! ! !! ! ! ! !! ! ! !!! !! ! ! ! !!!!! ! !! !! !! !!! !!! ! !! ! !! !! ! !!! ! ! ! ! 280!!!! !! ! ! ! ! ! ! ! ! !!! !!! 280 ! ! ! !! ! !! ! ! ! !!! ! !!! ! ! ! ! ! ! !! ! ! ! ! !!! ! ! !! ! ! ! !! ! !! ! ! ! !! !! ! ! !!! !! ! !! ! !! !! ! ! ! ! ! ! !! ! 260 260 1800 500 1000 1500 1800 1800 1900 2000 ! ! ! ! !! 1600 1600 ! ! !! !! ! ! ! !! ! 1400 1400 ! ! ! ! ! ! ! ! CH4 !ppb" CH4 !ppb" CH4$ ! ! !! ! !! !! ! ! ! ! ! ! !! 1200 1200 ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! ! ! ! ! ! !!! ! ! ! ! ! !! !! ! !! ! ! ! ! !! ! ! ! ! !! ! 1000 1000 ! ! ! ! ! !! !! ! !! !! !!! ! !! ! ! ! ! ! ! !!! !!!! !! ! !! ! ! ! ! ! !!!! !! !! ! ! ! !!! ! 800 800 !! ! ! ! !! ! ! ! ! ! ! ! !! !!!!! ! ! !! !!!!! !! ! ! ! ! !! !! ! ! !!! !!! !!! !!!! !!! !!! !! ! ! ! ! !! ! ! ! ! ! !! !!! ! ! ! ! !! !!! !! !!!! !!! !!! ! ! !!!! !!! !!! ! ! !!! !! !!! ! ! ! !! ! !! ! ! ! ! !! ! ! !! ! ! ! ! ! ! 600 600 3301 500 1000 1500 1750 1800 1900 2000 320 ! ! 310 ! ! ! ! !! !! !! N2O$ 300 ! ! !! N2 O !ppb" ! ! ! !! !! ! ! ! ! !! !!! !! ! ! 290 ! ! ! !! !!! ! ! !! ! !! ! ! !!! ! ! !! ! ! !! !! ! ! ! ! ! ! !! ! ! ! ! !! !! !! 280 ! ! 6 !! ! ! ! ! ! ! ! !! ! ! !!! !! ! ! ! ! !!!! ! !! ! !! !! ! ! !! ! ! ! 270 !! ! ! ! ! ! ! ! ! ! !! ! ! !!! ! ! ! ! !! ! ! ! ! ! !! ! ! ! !! ! ! ! ! ! ! !! ! ! !! ! ! ! ! ! !! 260 250 0 500 1000 1500 1750 1800 1900 2000 2020 Year Year Points : Carottes de glace Trait : Mesures atmosphériques Figure 6.11 | Atmospheric CO2, CH4, and N2O concentrations history over the industrial era (right) and from year 0 to the year 1750 (left), determined from air enclosed in ice cores and firn air (colour symbols) and from direct atmospheric measurements (blue lines, measurements from the Cape Grim observatory) (MacFarling-Meure et al., 2006). 29
Les émissions de CO2 La déforestation a été la source principale de CO2 jusqu’en 1950 L’utilisation du charbon continue à augmenter Others: Emissions from cement production and gas flaring Source: CDIAC; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014
2 of the original CO2 pulse after about 10 kyr (Lenton and Britton, 2006; Montenegro et al., 2007; Ridgwell and Hargreaves, 2007; Tyrrell et al., 2007; Archer and Brovkin, 2008). Le CO2 un gaz à (très) longue durée de vie Phase 3. In the third stage, within several hundred thousand years, the rest of the CO2 emitted during the initial pulse will be removed from the atmosphere by silicate weathering, a very slow process of CO2 reaction with calcium silicate (CaSiO3) and other minerals of igneous rocks (e.g., Sundquist, 1990; Walker and Kasting, 1992). Involvement of extremely long time scale processes into the removal of a pulse of CO2 emissions into the atmosphere complicates comparison with the cycling of the other GHGs. This is why the concept of a single, characteristic atmospheric lifetime is not applicable to CO2 (Chapter 8). Box 6.1, Figure 1 | A percentage of emitted CO2 remaining in the atmosphere in response to an idealised instantaneous CO2 pulse emitted to the atmosphere in year 0 as calculated by a range of coupled climate–carbon cycle models. (Left and middle panels, a and b) Multi-model mean (blue line) and the uncertainty interval (±2 standard deviations, shading) simulated during 1000 years following the instantaneous pulse of 100 PgC (Joos et al., 2013). (Right panel, c) A mean of models with oceanic and terrestrial carbon components and a maximum range of these models (shading) for instantaneous CO2 pulse in year 0 of 100 PgC (blue), 1000 PgC (orange) and 5000 PgC (red line) on a time interval up to 10 kyr (Archer et al., 2009b). Text at the top of the panels indicates the dominant processes that remove the excess of CO2 emitted in the atmosphere on the successive time scales. Note that higher pulse of CO2 emissions leads to higher remaining CO2 fraction (Section 6.3.2.4) due to reduced carbonate buffer capacity of the ocean and positive climate–carbon cycle feedback (Section 6.3.2.6.6).
Les émissions de différents pays Pays de l’Annexe B - diminution depuis1990 Non-Annex B countries (grand émergents) – forte augmentation depuis dix ans Annex B countries have emission commitments in the Kyoto Protocol (excluding Canada and USA) Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014
Seulement la moitié des émissions s’accumule dans l’atmosphère 10 Emissions CO2 Partitioning (PgC y-1) 8 6 Augmentation 4 du CO2 Atmosphérique 2 1960 1970 1980 1990 2000 2010
Les émissions sont en partie ré-absorbées par l’océan et la biosphère terrestre ±10 9 + 240 -1)) here 58 (PgC yr Rock weathering 0.3 Atmosp eric increase: 4 d flux Volcanism 0.1 osph Net lan (average atm Net land use change 1.1 ±0.8 1.7 7.8 ±0.6 2.6 ±1.2 Freshwater outgassing 1.0 an flux Net oce Fossil fuels (coal, oil, gas) 118.7 = 107.2 + 11.6 Total respiration and fire 123 = 108.9 + 14.1 Gross photosynthesis cement production 0.7 2.3 ±0.7 Ocean-atmosphere 78.4 = 60.7 + 17.7 gas exchange 80 = 60 + 20 Rock ing weather 0.1 from Export vers ri soils to 1.7 50 Marine biota ocean Rivers Surface 0 3 90 37 0.9 Burial ion 0.2 Vegetat 0 2 450-65 101 90 -30 ±45 st 11 Soils Permafro ed Dissolvic 0 ~1700 iate Intermedsea 1500-240 organ & deep carbon es 37,100 2 el reserv 700 Fossil fu 3-1135 +155 ±30 Gas: 38 264 Oil: 173- 541 0.2 6- Coal: 44 30 Units yr -1) (PgC -365 ± Fluxes: (PgC) floor Stocks: Ocean iments sed surface ,750 1 8"
Bilan global du CO2 anthropique moyenne 2004-2013 32.4±1.6 GtCO2/yr 91% 15.8±0.4 GtCO /yr 2 44% 10.6±2.9 GtCO2/yr 3.3±1.8 GtCO2/yr 9% + 29% Calculated as the residual of all other flux components 26% 9.4±1.8 GtCO2/yr Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014
Accélération récente des émissions de CO2 fossile Valeur globale 36.1 ± 1.8 GtCO2 en 2013, 61% de plus qu’en 1990 Uncertainty is ±5% for one standard deviation (IPCC “likely” range) Estimates for 2011, 2012, and 2013 are preliminary Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014
Une croissance mondiale intensive en émissions Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014
Augmentation des émissions de CO2 liées au charbon (2008 to 2010) 127% of growth 250 200 CO2 emissions (Tg C 150 100 y-1) 50 0 -50 -100 China India Dev. world Developed World World Global Carbon Project 2011; Data: Boden, Marland, Andres-CDIAC 2011
Les quatre plus grands émetteurs The top four emitters in 2013 covered 58% of global emissions China (28%), United States (14%), EU28 (10%), India (7%) Bunkers fuel used for international transport is 3% of global emissions Statistical differences between the global estimates and sum of national totals is 3% of global emissions Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014
Emissions par habitant China’s per capita emissions have passed the EU28 and are 45% above the global average Per"capita" emissions" in"2013" Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014
Expansion des surfaces de cultures (reconstruction depuis 1700)
Changements des surfaces forestières (1990-2010) (FAO 2010)
Les émissions de déforestation 3.3 ± 1.8 GtCO2 pendant 2004–2013, soit 15% des émissions de CO2 fossile Une baisse des émissions depuis 2000, principalement au Brésil Indonesian peat fires Three different estimation methods have been used, indicated here by different shades of grey Land-use change also emits CH4 and N2O which are not shown here Source: Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014
COSUST-221; NO. OF PAGES 7 4 Climate systems Différents modes de déforestation Figure 1 1600.0 Croplands 1400.0 Pastures CO2 emissions (TgC y-1) Shifting cultivation 1200.0 Industrial Harvest Fuelwood harvest 1000.0 Peatlands Tree plantations 800.0 600.0 400.0 200.0 Houghton et al. 2012 0.0 Latin America Tropical Africa Tropical Asia Tropical total -200.0 Current Opinion in Environmental Sustainability Sources (+) and sinks (!) of carbon (TgC yr!1) from activities contributing to deforestation and forest degradation in tropical regions. Emissions d’autres composés carbonés : CO et aérosols carbonés Voir présentations M Kanakidou et N Marchand (Figure 1). The emissions are large because the changes activity has not been explicitly included in the modeling in carbon density are large when forests are converted to analysis reported here, but the emissions have been
Emission de deforestation par pays CO2 emissions (Tg C y-1) Houghton et al. 2012
C. Le Quéré et al.: Global carbon budget 2013 De fortes incertitudes Magenta – différents modèles globaux Gris – modèle empirique calibré sur des observations Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014
Apport des données de télédétection Carbon Emissions from Deforestation Fig 1. Deforestation year map derived from time-series of MODIS VCF tree cover dataset. (a) Overview of the Amazon basin with yellow boxes indicating the locations of regional close-ups. (b) Close-up over the Xingu river basin in Mato Grosso, Brazil. The large patch of remaining intact forest is a consequence of protection status in this area. (c) Close-up in Colombia. (d) Close-up in Rondonia, Brazil.
Séparer l’absorption du CO2 entre océan et continents 32.4±1.6 GtCO2/yr 91% 15.8±0.4 GtCO2/yr 44% 10.6±2.9 GtCO2/yr 3.3±1.8 GtCO2/yr 9% + 29% Calculated as the residual of all other flux components 26% 9.4±1.8 GtCO2/yr Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014
Evolution du CO2 et de l’oxygène atmosphérique
Une estimation directe des flux océaniques et terrestres
Le puits de carbone océanique Ocean carbon sink continues to increase 9.4±1.8 GtCO2/yr for 2004–2013 and 10.5±1.8 GtCO2/yr in 2013 IPCC and Global Data: GCP Carbon Project best estimate individual ocean models data products Source: Le Quéré et al 2014; Global Carbon Project 2014 Individual estimates from Buitenhuis et al. (2010); Aumont and Bopp (2006); Doney et al. (2009); Assmann et al. (2010); Ilyiana et al. (2013); Sérérian et al. (2013); Oke et al. (2013); Landschützer et al. (2014); Park et al. (2010); Rödenbeck et al. (2014). References provided in Le Quéré et al. (2014).
Variations interannuelles de l’accumulation du CO2 The atmospheric concentration growth rate has shown a steady increase The growth in 2013 reflects the growth in fossil emissions, with small changes in the sinks Source: NOAA-ESRL; Global Carbon Budget 2014
Le puits de carbone terrestre The residual land sink is increasing with time to 9.2±1.8 GtCO2/yr in 2013, with large variability Total CO2 fluxes on land (including land-use change) are consistent with atmospheric inversions Figure 6. Com Source: Le Quéré et al 2014; Global Carbon Project 2014 leased annually Individual estimates from Zhang et al. (2013); Oleson et al. (2013); Jain et al. (2013); Clarke et al. (2011); Smith et al. (2001); Sitch et al. (2003); Stocker et al. (2013); Krinner et al. (2005); Zeng et al. (2005); Kato et al. (2013); Peters et al. (2010); Rodenbeck et al. (2003); Chevallier et al. (2005). References provided in Le Quéré et al. (2014). fossil-fuel com use change (E
1750 1800 1850 1900 1950 2000 10 cement CO2 emissions (PgC yr –1) gas Fossil fuel and cement oil En résumé coal 5 0 10 fossil fuel and cement from energy statistics land use change from data and models residual land sink measured atmospheric growth rate Annual anthropogenic CO2 emissions ocean sink from data models 5 and partitioning (PgC yr –1) emissions 0 partitioning 5 10 1750 1800 1850 1900 1950 2000 Year Depuis 1750, les émissions cumulées sont de 2000 ± 300 GtCO2 soit 2/3 Figure 6.8 | Annual anthropogenic CO2 emissions and their partitioning among the atmosphere, land and ocean (PgC yr–1) from 1750 to 2011. (Top) Fossil fuel and cement CO2 emissions by category, estimated by the Carbon Dioxide Information Analysis Center (CDIAC) based on UN energy statistics for fossil fuel combustion and US Geological 6 Survey for cement production (Boden et al., 2011). (Bottom) Fossil fuel and cement CO2 emissions as above. CO2 emissions from net land use change, mainly deforestation, are based on land cover change data and estimated for 1750–1850 from the average of four models (Pongratz et al., 2009; Shevliakova et al., 2009; van Minnen et al., des émissions totales compatibles avec un réchauffement de 2°C 2009; Zaehle et al., 2011) before 1850 and from Houghton et al. (2012) after 1850 (see Table 6.2). The atmospheric CO2 growth rate (term in light blue ‘atmosphere from measurements’ in the figure) prior to 1959 is based on a spline fit to ice core observations (Neftel et al., 1982; Friedli et al., 1986; Etheridge et al., 1996) and a synthesis of atmospheric measurements from 1959 (Ballantyne et al., 2012). The fit to ice core observations does not capture the large interannual variability in atmospheric CO2 and is represented with a dashed line. The ocean CO2 sink prior to 1960 (term in dark blue ‘ocean from indirect observations and models’ in the figure) is from Khatiwala et al. (2009) and from a combination of models and observations from 1960 from (Le Quéré et al., 2013). The residual land sink (term in green in the figure) is computed from the Les émissions de CO2 fossile étaient de 36.1 ± 1.8 GtCO2 en 2013, 61% residual of the other terms, and represents the sink of anthropogenic CO2 in natural land ecosystems. The emissions and their partitioning only include the fluxes that have changed since 1750, and not the natural CO2 fluxes (e.g., atmospheric CO2 uptake from weathering, outgassing of CO2 from lakes and rivers, and outgassing of CO2 by the ocean from carbon delivered by rivers; see Figure 6.1) between the atmosphere, land and ocean reservoirs that existed before that time and still exist today. The uncertainties plus qu’en 1990 in the various terms are discussed in the text and reported in Table 6.1 for decadal mean values. 23 Depuis 50 ans, environ 44% des émissions sont restées dans l’atmosphère, acroissant l’effet de serre de notre planète
Emissions historiques et climat futur Emissions are on track for 3.2–5.4ºC “likely” increase in temperature above pre-industrial Large and sustained mitigation is required to keep below 2ºC Data: CDIAC/GCP/IPCC/Fuss et al 2014 Over 1000 scenarios from the IPCC Fifth Assessment Report are shown Source: Fuss et al 2014; CDIAC; Global Carbon Budget 2014
Combien d’émissions pour ne pas dépasser 2°C de réchauffement ? (Uncertainty"is" about"±300"GtCO2)" Friedlingstein et al. 2014
Trois grandes questions de recherche sur l’évolution du cycle du carbone depuis 150 ans
Quasi-linéarité de la réponse globale du cycle du carbone Evolution du gradient inter-hémisphérique de CO2 Carbon and Other Biogeochemical Cycles 6.3.2.5 Ocean Car 10 4 !! CO2 Partitioning (PgC y-1) 6.3.2.5.1 Global o ! ! The estimated mean 8 ! 3 CMLO!CSPO !ppm" ! ! ! ! was 2.2 ± 0.7 PgC yr ! ! !! ! ! ! al., 2003; Manning a ! !! ! !! and is supported by 6 2 ! ! ! ! Note that the uncert ! ! ! !!!!! !! dence interval) is the ! ! ! ! ! in AR4 (68% confide ! by the ocean is prim 4 1 ! ! ! ! ! !! Assmann 2 !! Graven et 0 updated f ! updated f 2 3 4 5 6 7 8 9 Qfoss,N !Qfoss,S !PgC yr " 1 1960 1970 1980 1990 2000 2010 !1 a. Climate e La fraction des émissions absorbée par Figure 6.13 | Blue points: Annually averaged CO2 concentration difference between La différence de puits naturels entre les the station Mauna Loa in the Northern Hemisphere and the station South Pole in the 0 Southern Hemisphere (vertical axis; Keeling et al., 2005, updated) versus the differ- les réservoirs naturelle est très stable, ence in fossil fuel combustion CO2 emissions between the hemispheres (Boden et deux hémisphères a évolué al., 2011). Dark red dashed line: regression line fitted to the data points. malgré la très forte augmentation du proportionnellement 6.3.2.4 Carbon Dioxide Airborne Fractionaux émissions -1 1960 1970 forçage des émissions depuis in CO 50 ansfrom land use change Ocean CO2 sink anomalies (PgC yr ) -1 Until recently, the uncertainty emissions 2 1 b. CO2 effect emissions was large and poorly quantified which led to the use of an airborne fraction (see Glossary) based on CO2 emissions from fossil fuel Ce)e$linéarité$va$t’elle$con5nuer$dans$le$futur$?$$ only (e.g., Figure 7.4 in AR4 and Figure 6.26 of this chapter). However, reduced uncertainty of emissions from land use change and larger 0 Voir$présenta5on$de$L.$Bopp$ agreement in its trends over time (Section 6.3.2.2) allow making use of an airborne fraction that includes all anthropogenic emissions. The airborne fraction will increase if emissions are too fast for the uptake of CO2 by the carbon sinks (Bacastow and Keeling, 1979; Gloor et al., -1 2010; Raupach, 2013). It is thus controlled by changes in emissions 1960 1970
La variabilité décennale des flux de CO2 Le plateau de CO2 Température 60-90°N des années 1940
La variabilité interannuelle et la distribution régionale des flux Figure 6. Comparison of global carbon budget components re- leased annually by GCP since 2005. CO2 emissions from both (a) fossil-fuel combustion and cement production (EFF ), and (b) land- use change (ELUC ), and their partitioning among (c) the atmo- Voir$présenta5ons$de$M.$Ramonet,$F.$Chevallier$et$F.$Vogel$ sphere (GATM ), (d) the ocean (SOCEAN ), and (e) the land (SLAND ). See legend for the corresponding years, with the 2006 carbon bud- get from Raupach et al. (2007); 2007 from Canadell et al. (2007); to 2008 published online only; 2009 from Le Quéré et al. (2009); 2010 from Friedlingstein et al. (2010); 2011 from Peters et al. (2012b); 2012 from Le Quéré et al. (2013); and this year’s budget (2013). The budget year generally corresponds to the year when the budget
L’impact des évênements extrêmes sur les flux de CO2 Voir$présenta5ons$de$D$Loustau$$
36"
Données sur le bilan global annuel de CO2 anthropique More information, data sources and data files: More information, data sources and data files: www.globalcarbonproject.org www.globalcarbonatlas.org Contact: c.lequere@uea.ac.uk Contact: philippe.ciais@lsce.ipsl.fr
Contributors 88 people - 68 organisations - 12 countries Corinne Le Quéré Tyndall Centre for Climate Change Research, Uni. of East Anglia, UK Pierre Regnier Dept. of Earth & Environmental Sciences, Uni. Libre de Bruxelles, Belgium Róisín Moriarty Tyndall Centre for Climate Change Research, Uni. of East Anglia, UK Christian Rödenbeck Max Planck Institute for Biogeochemistry, Germany Robbie Andrew Center for International Climate & Environmental Research - Oslo (CICERO), Norway Shu Saito Marine Division, Global Environment & Marine Dept., Japan Meteorological Agency, Japan Glen Peters Center for International Climate & Environmental Research - Oslo (CICERO), Norway Joe Sailsbury Ocean Processes Analysis Laboratory, Uni. of New Hampshire, US Pierre Friedlingstein College of Engineering, Mathematics & Physical Sciences, Uni. of Exeter, UK Ute Schuster College of Engineering, Mathematics & Physical Sciences, Uni. of Exeter, UK Mike Raupach Climate Change Institute, Australian National University, Australia Jörg Schwinger Geophysical Inst., Uni. of Bergen & Bjerknes Centre for Climate Research, Norway Pep Canadell Global Carbon Project, CSIRO Marine & Atmospheric Research, Australia Roland Séférian CNRM-GAME, Météo-France/CNRS, Toulouse, France Philippe Ciais LSCE, CEA-CNRS-UVSQ, France Joachim Segschneider Max Planck Institute for Meteorology, Germany Steve Jones Tyndall Centre for Climate Change Research, Uni. of East Anglia, UK Tobias Steinhoff GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany Stephen Sitch College of Life & Environmental Sciences Uni. of Exeter, UK Beni Stocker Physics Inst., & Oeschger Centre for Climate Change Research, Uni. of Bern, Switzerland Pieter Tans Nat. Oceanic & Atmospheric Admin., Earth System Research Laboratory (NOAA/ESRL), US Adrianna Sutton Joint Inst. for the Study of the Atm. & Ocean, Uni. of Washington & NOAA/PMEL, US Almut Arneth Karlsruhe Inst. of Tech., Inst. Met. & Climate Res./Atmospheric Envir. Res., Germany Taka Takahashi Lamont-Doherty Earth Observatory of Columbia University, Palisades, US Tom Boden Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, US Brönte Tilbrook CSIRO Marine & Atm. Res., Antarctic Cli. & Ecosystems Co-op. Res. Centre, Australia Laurent Bopp LSCE, CEA-CNRS-UVSQ, France Guido van der Werf Faculty of Earth and Life Sciences, VU University Amsterdam, The Netherlands Yann Bozec CNRS, Station Biologique de Roscoff, Roscoff, France Nicolas Viovy LSCE, CEA-CNRS-UVSQ, France Frédéric Chevallier LSCE, CEA-CNRS-UVSQ, France Ying-Ping Wang CSIRO Ocean and Atmosphere, Victoria, Australia Cathy Cosca Nat. Oceanic & Atmospheric Admin. & Pacific Mar. Env. Lab. (NOAA/PMEL), US Rik Wanninkhof NOAA/AOML, US Harry Harris Climatic Research Unit (CRU), Uni. of East Anglia, UK Andy Wiltshire Met Office Hadley Centre, UK Mario Hoppema AWI Helmholtz Centre for Polar and Marine, Bremerhaven, Germany Ning Zeng Department of Atmospheric and Oceanic Science, Uni. of Maryland, US Skee Houghton Woods Hole Research Centre (WHRC), US Freidlingstein et al. 2014, Raupach et al. 2014 & Fuss et al. 2014 (not already mentioned above) Jo House Cabot Inst., Dept. of Geography, University of Bristol, UK J Rogelj Inst. for Atm. and Climate Science ETH Zürich, Switzerland & IIASA, Laxemburg, Austria Atul Jain Dept. of Atmospheric Sciences, Uni. of Illinois, US R Knutti Inst. for Atm. and Climate Science ETH Zürich, Switzerland Truls Johannessen Geophysical Inst., Uni. of Bergen & Bjerknes Centre for Climate Research, Norway G Luderer Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany Etsushi Kato Center for Global Envir. Research (CGER), Nat. Inst. for Envir. Studies (NIES), Japan M Schaefer Climate Analytics, Berlin, Germany & Env. Sys. Anal. Agency, Wageningen Uni., Netherlands Ralph Keeling Uni. of California - San Diego, Scripps Institution of Oceanography, US Detlef van Vuuren PBL Netherlands Env. Assess. Agency, Bilthoven & CISD,Utrecht Uni., Netherlands Kees Klein Goldewijk PBL Netherlands Envir. Assessment Agency & Utrecht Uni., Netherlands Steven David Department of Earth System Science, University of California, California, US Vassillis Kitidi Plymouth Marine Laboratory, Plymouth, UK Frank Jotzo Crawford School of Public Policy, Australian National University, Canberra, Australia Charles Koven Earth Sciences Division, Lawrence Berkeley National Lab, US Sabine Fuss Mercator Research Institute on Global Commons & Climate Change, Berlin, Germany Camilla Landa Geophysical Inst., Uni. of Bergen & Bjerknes Centre for Climate Research, Norway Massimo Tavoni FEEM, CMCC & Politecnico di Milano, Milan, Italy Peter Landschützer Environmental Physics Group, IBPD, ETH Zürich, Switzerland Rob Jackson School of Earth Sci., Woods Inst. for the Env., & Percourt Inst. for Energy, Stanford Uni, US. Andy Lenton CSIRO Marine and Atmospheric Research, Hobart, Tasmania, Australia Florian Kraxmer IIASA, Laxemburg, Austria Ivan Lima Woods Hole Oceanographic Institution (WHOI), Woods Hole, US Naki Nakicenovic IIASA, Laxemburg, Austria Gregg Marland Research Inst. for Environment, Energy & Economics, Appalachian State Uni., US Ayyoob Sharifi National Inst. For Env. Studies, Onogawa, Tsukuba Ibaraki, Japan Jeremy Mathis Nat. Oceanic & Atmospheric Admin. & Pacific Mar. Env. Lab. (NOAA/PMEL), US Pete Smith Inst. Of Bio. & Env. Sciences, Uni. Of Aberdeen, Aberdeen, UK Nicholas Metzl Sorbonne Universités, CNRS, IRD, MNHN, LOCEAN/IPSL Laboratory, Paris, France Yoshiki Yamagata National Inst. For Env. Studies, Onogawa, Tsukuba Ibaraki, Japan Yukihiro Nojiri Center for Global Envir. Research (CGER), Nat. Inst. for Envir. Studies (NIES), Japan Science Committee | Atlas Engineers at LSCE, France (not already mentioned above) Are Olsen Geophysical Inst., Uni. of Bergen & Bjerknes Centre for Climate Research, Norway Philippe Peylin | Anna Peregon | Patrick Brockmann | Vanessa Maigné | Pascal Evano Tsuneo Ono Fisheries Research Agency, Japan Atlas Designers WeDoData, France Wouter Peters Department of Meteorology and Air Quality, Wageningen Uni., Netherlands Karen Bastien | Brice Terdjman | Vincent Le Jeune | Anthony Vessière Benjamin Pfeil Geophysical Inst., Uni. of Bergen & Bjerknes Centre for Climate Research, Norway Communications Team Ben Poulter LSCE, CEA-CNRS-UVSQ, France Asher Minns | Owen Gaffney | Lizzie Sayer | Michael Hoevel
Merci de votre attention 39"
Attribution des émissions à la consommation de produits The net emissions transfers into Annex B countries more than offsets the Annex B emission reductions achieved within the Kyoto Protocol In Annex B, production-based emissions have had a slight decrease while consumption-based emissions have grown at 0.5% per year, and emission transfers have grown at 11% per year Source: CDIAC; Peters et al 2011; Le Quéré et al 2014; Global Carbon Budget 2014
You can also read