#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech

 
CONTINUE READING
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
WILLKOMMEN BEI DEN
#NUElectures 22
Referent: Prof. Dr. Patrick Zschech

WISSENSCHAFTSVORLESUNGEN IM ZENTRUM NÜRNBERGS: www.nuelectures.de
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Prof. Dr. Martin Matzner
Sprecher des Instituts für Wirtschaftsinformatik
am Fachbereich Wirtschafts- und Sozialwissenschaften
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
#NUElecture bietet eine bürgernahe Plattform für die
Wissenschaft, um aktiv in die Stadtgesellschaft hinein zu
kommunizieren und Anregungen aus ihr aufzugreifen. Forschende
der WiSo Nürnberg stellen innovative Forschung erlebbar,
verständlich und spannend an diversen Orten in der Stadt vor. Die
öffentlichen Vorträge und Diskussionsforen behandeln Themen
von hoher gesellschaftlicher Relevanz aus dem Spektrum der
Forschungsschwerpunkte der #FAUWiSo.

WISSENSCHAFTSVORLESUNGEN IM ZENTRUM NÜRNBERGS: www.nuelectures.de
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Die Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg ist
vernetzter Innovationsführer im weltweiten Wettbewerb
FAU und Innovation

 Platz 1 in
 Deutschland & Platz
 20 weltweit im QS World Die Nürnberger Schule
 University Ranking 2022 nach vernetzt seit den 1920ern
 Zitationen per Fakultät Wirtschafts- und
 Sozialwissenschaften.
 Quelle: QS World University Ranking,
 Stand: 2021
FAU Erlangen-Nürnberg Fachbereich Wirtschafts- Die WI in Nürnberg vernetzt seit
 Platz 1 in Deutschland & und Sozialwissenschaften 1970 Ökonomie und Informatik.
 Platz 14 weltweit laut Reuters-
Volluniversität mit 5 Fakultäten Fachbereich mit 8 Instituten 13 Professorinnen und
604 Professorinnen & Professoren Rangliste der innovativsten über 50 Lehrstühle & Professuren
 Universitäten Professoren sind vernetzt
ca. 40.000 Studierende ca. 6.500 Studierende
Standorte in 5 Städten
 in der WI.
 Quelle: Reuters,
 Stand: 2019
 Bild: FAU/Celina Henning; https://www.fau.de/research/forschungsprofil/rankings/
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Aktuell forschen und lehren 13 Professorinnen und Professoren
am Institut für Wirtschaftsinformatik
Nürnberg vertritt die Wirtschaftsinformatik in ihrer ganzen thematischen Breite

 Prof. Dr. Kathrin M. Möslein & Prof. Dr. Angela Roth & Hon.-Prof. Dr. Prof. Dr. Freimut Prof. Dr. Michael Prof. Dr. Martin Prof. Dr. Sven Laumer
 Bernhard Grill & em. Prof. Dr. Dr. h. c. mult. Peter Mertens Bodendorf Amberg Matzner
 Schöller-Stiftungslehrstuhl für
 Lehrstuhl für Wirtschaftsinformatik, Management Intelligence Lehrstuhl für Lehrstuhl für Digital Industrial Wirtschaftsinformatik, insb.
 insb. Innovation und Wertschöpfung Services Wirtschaftsinformatik, Service Systems Digitalisierung in Wirtschaft und
 insb. IT Management Gesellschaft

 Prof. Dr. Andreas Prof. Dr. Verena Prof. Dr. Mathias Prof. Dr. Patrick Prof. Dr. Benedikt
 Harth Tiefenbeck Kraus Zschech Morschheuser

 Lehrstuhl für Juniorprofessur für Juniorprofessur für Data Juniorprofessur für Intelligent Juniorprofessur für
 Wirtschaftsinformatik, insb. Digital Transformation Analytics Information Systems Wirtschaftsinformatik,
 Techn. Informationssysteme insbesondere Gamification
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Prof. Dr. Patrick Zschech
Juniorprofessur für Intelligent Information Systems
am Fachbereich Wirtschafts- und Sozialwissenschaften
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Prof. Dr. Patrick Zschech

White-Box AI: Transparente
künstliche Intelligenz
FACHBEREICH WIRTSCHAFTS- UND SOZIALWISSENSCHAFTEN: www.wiso.fau.de
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
White-Box AI: Our research group at FAU

 Julian Sven

 Patrick Lasse

 Nico
 Mathias

 https://www.whitebox-ai.rw.fau.de/
www.nuelecture.de 16.11.2022 8
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
Machine learning models are highly beneficial to support human decision-making

 (Source: https://images.app.goo.gl/zc7wENjfKAAXGQcJ7) (Source: https://images.app.goo.gl/MtEqRqxLm73WahRUA) (Source: https://images.app.goo.gl/83UEoMsvvKRY3Tbm9)

 (Source: https://images.app.goo.gl/9HPfLoF34msByCkp7) (Source: https://images.app.goo.gl/n1dSLqetwJBKYgaFA) (Source: https://images.app.goo.gl/XsozXxRRUQ1d6vUr9)

www.nuelecture.de 16.11.2022 9
#NUElectures 22 WILLKOMMEN BEI DEN - Referent: Prof. Dr. Patrick Zschech
BUT: Advanced machine learning models often lack transparency

 ▪ Possible solution: Development and evaluation of interpretable machine learning models

 ▪ Focus for today: Predictive modeling, supervised machine learning, tabular data

www.nuelecture.de 16.11.2022 10
Predictive modeling is mostly about mapping the feature space to the target space

www.nuelecture.de 16.11.2022 11
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 Linear regression (LR):
 = + 
 Neural networks = 389 − 6 × 

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression
 https://images.app.goo.gl/ZXh26jWKwHKSFG1H6

 Model Interpretability
 Adopted from Gunning, D., and Aha, D. 2019. “DARPA’s Explainable Artificial Intelligence (XAI) Program,” AI Magazine (40:2), pp. 44–58. (https://doi.org/10.1609/aimag.v40i2.2850).
www.nuelecture.de 16.11.2022 12
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 Decision tree (DT):

 Neural networks

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression

 Model Interpretability

www.nuelecture.de 16.11.2022 13
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 Random forest (RF):

 Neural networks

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression
 https://images.app.goo.gl/PqsxKWUNwWRhjzTu7

 Model Interpretability

www.nuelecture.de 16.11.2022 14
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 Gradient boosting machine (GBM):

 Neural networks

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression

 Model Interpretability

www.nuelecture.de 16.11.2022 15
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 Deep neural networks / multi-layer perceptron (MLP):

 Neural networks

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression
 https://images.app.goo.gl/JGUGviUAbcY7henZ6

 Model Interpretability

www.nuelecture.de 16.11.2022 16
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance
 e.g., SHAP:

 Neural networks Post-hoc explanations
 (XAI)

 Tree ensembles

 SVM

 Decision tree

 Linear/logistic regression
 https://images.app.goo.gl/ZtgbuBFcUMF1PbPL9

 Model Interpretability

www.nuelecture.de 16.11.2022 17
The “myth” about the trade-off between model accuracy and interpretability

 Predictive
 Performance

 Neural networks
 Intrinsically
 interpretable models OUR FOCUS:
 Tree ensembles Intrinsically interpretable ML models based on
 constrained model structures:
 SVM
 ▪ Additivity,
 ▪ Linearity,
 Decision tree
 ▪ Regularization, etc.

 Linear/logistic regression

 Model Interpretability

www.nuelecture.de 16.11.2022 18
Generalized additive model (GAM)

 ▪ In generalized additive models (GAMs), input variables
 are mapped independently of each other in a non-linear
 manner and the mappings are summed up afterward:

 = 1 1 + … + 
 = + 

 ▪ ∙ is called link function
 − For regression, link function = identity function
 − For classification, link function = logistic function

 ▪ is called shape function
 − Through the shape functions, it is directly observable
 how each feature affects the predicted output. = + ( )
 ▪ Usually, univariate mappings for single features
 ▪ Some models also offer pair-wise interactions

www.nuelecture.de 16.11.2022 19
Different proposals of how shape functions are learned in GAMs

 ▪ Traditional GAM via splines
 (Hastie & Tibshirani, 1986) Splines are piecewise polynomial functions that can
 approximate complex shapes through curve fitting.
 ▪ Explainable Boosting Machine (EBM)
 (Lou et al., 2012, 2013)

 ▪ Neural Additive Model (NAM)
 (Agarwal et al. 2021)

 ▪ GAMI-Net
 (Yang et al., 2021a)

 ▪ Enhanced Explainable
 Neural Network (ExNN) https://images.app.goo.gl/w4DfFq8fCBcWtVX66
 (Yang et al., 2021b)
 Hastie, T., and Tibshirani, R. 1986. “Generalized Additive Models,” Statistical Science (1:3). (https://doi.org/10.1214/ss/1177013604).
www.nuelecture.de 16.11.2022 20
Different proposals of how shape functions are learned in GAMs

 ▪ Traditional GAM via splines
 (Hastie & Tibshirani, 1986) EBM uses bagged and boosted decision trees
 ensembles for fitting complex shape functions.
 ▪ Explainable Boosting Machine (EBM)
 (Lou et al., 2012, 2013)

 ▪ Neural Additive Model (NAM)
 (Agarwal et al. 2021)

 ▪ GAMI-Net
 (Yang et al., 2021a)

 ▪ Enhanced Explainable
 Neural Network (ExNN)
 (Yang et al., 2021b)
 Lou, Y., Caruana, R., and Gehrke, J. 2012. “Intelligible Models for Classification and Regression,” in 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
www.nuelecture.de 16.11.2022 21
Different proposals of how shape functions are learned in GAMs

 ▪ Traditional GAM via splines
 (Hastie & Tibshirani, 1986) In NAM, shape functions
 are learned via individual
 ▪ Explainable Boosting Machine (EBM) deep subnetworks with
 (Lou et al., 2012, 2013) multiple hidden layers &
 specific neural units.

 ▪ Neural Additive Model (NAM)
 (Agarwal et al. 2021)

 ▪ GAMI-Net
 (Yang et al., 2021a)

 ▪ Enhanced Explainable
 Neural Network (ExNN)
 (Yang et al., 2021b)
 Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., and Hinton, G. 2021. “Neural Additive Models: Interpretable Machine Learning with Neural Nets,” ArXiv:2004.13912 [Cs, Stat].
www.nuelecture.de 16.11.2022 22
Different proposals of how shape functions are learned in GAMs

 ▪ Traditional GAM via splines
 (Hastie & Tibshirani, 1986) GAMI-Net is similar to NAM, except that it additionally aims at
 identifying pair-wise interactions, which requires further
 ▪ Explainable Boosting Machine (EBM) constraints (e.g., heredity and marginal clarity constraints).
 (Lou et al., 2012, 2013)

 ▪ Neural Additive Model (NAM)
 (Agarwal et al. 2021)

 ▪ GAMI-Net
 (Yang et al., 2021a)

 ▪ Enhanced Explainable
 Neural Network (ExNN)
 (Yang et al., 2021b)
 Yang, Z., Zhang, A., and Sudjianto, A. 2021. “GAMI-Net: An Explainable Neural Network Based on Generalized Additive Models with Structured Interactions,” Pattern Recognition (120)
www.nuelecture.de 16.11.2022 23
Different proposals of how shape functions are learned in GAMs

 ▪ Traditional GAM via splines
 (Hastie & Tibshirani, 1986) ExNN is based on the structure of a generalized additive
 index model (GAIM) using a projection layer that fully
 connects all input features to the following subnets.
 ▪ Explainable Boosting Machine (EBM)
 (Lou et al., 2012, 2013)

 ▪ Neural Additive Model (NAM)
 (Agarwal et al. 2021)

 ▪ GAMI-Net
 (Yang et al., 2021a)

 ▪ Enhanced Explainable
 Neural Network (ExNN)
 (Yang et al., 2021b)
 Yang, Z., Zhang, A., and Sudjianto, A. 2021. “Enhancing Explainability of Neural Networks Through Architecture Constraints,” IEEE Transactions on Neural Networks and Learning Systems (32:6), pp. 2610–2621.
www.nuelecture.de 16.11.2022 24
Research questions

 ▪ Beyond individual model proposals, it currently lacks a neutral, independent,
 overarching cross-model comparison:

 ▪ RQ1: Can interpretable models based on additive model constraints provide
 competitive prediction results as compared to traditional white-box and
 black-box ML models?

 ▪ RQ2: How do the outputs of interpretable ML models based on additive model
 constraints differ from each other objectively?

www.nuelecture.de 16.11.2022 25
Collection of benchmark datasets from Kaggle and UCI ML Repository

 Features
 Type Dataset Instances Prediction task
 (num/cat)
 Water potability 3,276 9/0 Will the water be safe for consumption?
 Stroke 5,110 3/7 Will a patient suffer from a stroke?
 Telco churn 7,043 3/16 Will a customer leave the company?
 Classification FICO credit score 10,459 21/2 Will a client repay within 2 years?
 Adult 32,561 7/8 Will the income exceed $50.000/year?
 Bank marketing 45,211 5/11 Will a client subscribe to a deposit?
 Airline satisfaction 103,904 18/4 Will a passenger be satisfied?
 Car price 205 13/11 What is the price of a car?
 Student grade 649 13/17 What is a student’s final grade?
 Regression Crimes 1,994 99/0 How many violent crimes will happen?
 Bike rental 17,379 6/6 How many bikes will be rented/hour?
 California housing 20,640 8/0 What is the value of a house?

www.nuelecture.de 16.11.2022 26
Evaluation of predictive performance (RQ1)

 Interpretable Models Black-box Models
 Dataset
 Splines EBM NAM GAMI-Net ExNN LR DT RF GBM XGB MLP
 Water* 0.557 0.631 0.469 0.634 0.632 0.464 0.609 0.548 0.633 0.642 0.646
 Stroke* 0.928 0.927 0.928 0.928 0.927 0.928 0.917 0.928 0.928 0.930 0.928
 Telco* 0.800 0.797 0.723 0.799 0.787 0.799 0.747 0.780 0.790 0.782 0.790
 FICO* 0.725 0.725 0.619 0.728 0.709 0.718 0.667 0.716 0.722 0.710 0.716
 Adult* 0.854 0.866 0.727 0.854 0.851 0.846 0.846 0.827 0.867 0.868 0.850
 Bank* 0.893 0.895 0.833 0.893 0.899 0.888 0.892 0.859 0.899 0.899 0.898
 Airline* 0.935 0.945 0.773 0.934 0.951 0.875 0.950 0.921 0.958 0.963 0.958
 Car** 0.132 0.083 1.112 1.001 0.129 0.089 0.148 0.093 0.098 0.097 0.106
 Student** 0.732 0.730 1.239 1.000 1.390 0.731 1.239 0.712 0.757 0.800 0.781
 Crimes** 0.503 0.311 1.152 0.388 0.511 0.312 0.620 0.319 0.320 0.343 0.351
 Bike** 0.182 0.060 1.214 0.145 0.114 0.499 0.08 0.202 0.045 0.041 0.079
 Housing** 0.242 0.181 1.131 0.266 0.223 0.352 0.261 0.357 0.171 0.163 0.214
 *Classification performance measured with F1-score ** Regression performance measure with mean square error (MSE)

www.nuelecture.de 16.11.2022 28
Evaluation of predictive performance (RQ1)

 Interpretable Models Black-box Models
 Dataset
 Splines EBM NAM GAMI-Net ExNN LR DT RF GBM XGB MLP
 Water* 0.557 0.631 0.469 0.634 0.632 0.464 0.609 0.548 0.633 0.642 0.646
 Stroke* 0.928 0.927 0.928 0.928 0.927 0.928 0.917 0.928 0.928 0.930 0.928
 Telco* 0.800 0.797 0.723 0.799 0.787 0.799 0.747 0.780 0.790 0.782 0.790
 FICO* 0.725 0.725 0.619 0.728 0.709 0.718 0.667 0.716 0.722 0.710 0.716
 Adult* 0.854 0.866 0.727 0.854 0.851 0.846 0.846 0.827 0.867 0.868 0.850
 Bank* 0.893 0.895 0.833 0.893 0.899 0.888 0.892 0.859 0.899 0.899 0.898
 Airline* 0.935 0.945 0.773 0.934 0.951 0.875 0.950 0.921 0.958 0.963 0.958
 Car** 0.132 0.083 1.112 1.001 0.129 0.089 0.148 0.093 0.098 0.097 0.106
 Student** 0.732 0.730 1.239 1.000 1.390 0.731 1.239 0.712 0.757 0.800 0.781
 Crimes** 0.503 0.311 1.152 0.388 0.511 0.312 0.620 0.319 0.320 0.343 0.351
 Bike** 0.182 0.060 1.214 0.145 0.114 0.499 0.080 0.202 0.045 0.041 0.079
 Housing** 0.242 0.181 1.131 0.266 0.223 0.352 0.261 0.357 0.171 0.163 0.214
 *Classification performance measured with F1-score ** Regression performance measure with mean square error (MSE)

www.nuelecture.de 16.11.2022 29
With some overlap, GAMs
 achieved best results in
 Evaluation of predictive performance (RQ1)
 5 out of 12 datasets.

 Interpretable Models Black-box Models
 Dataset
 Splines EBM NAM GAMI-Net ExNN LR DT RF GBM XGB MLP
 Water* 0.557 0.631 0.634 0.632 0.464 0.609 0.548 0.633 0.642 0.646
 Stroke* 0.928 0.927 0.928 0.927 0.928 0.917 0.928 0.928 0.930 0.928
 Telco* 0.800 0.797 0.799 0.787 0.799 0.747 0.780 0.790 0.782 0.790
 FICO* 0.725 0.725 0.728 0.709 0.718 0.667 0.716 0.722 0.710 0.716
 Adult* 0.854 0.866 0.854 0.851 0.846 0.846 0.827 0.867 0.868 0.850
 Bank* 0.893 0.895 0.893 0.899 0.888 0.892 0.859 0.899 0.899 0.898
EBM best performing
 Airline* model
 interpretable 0.935 0.945 0.934 0.951 0.875 0.950 0.921 0.958 0.963 0.958
 XGB overall
 Car**
 in 6 out of 12 tasks
 0.132 0.083 1.001 0.129 0.089 0.148 0.093 0.098 0.097 best
 0.106
 model in
 Student** 0.732 0.730 LR model
 1.000achieves
 1.390 0.731 1.239 0.712 0.757 0.800 60.781
 out of 12
 Crimes** 0.503 0.311
 second-highest
 0.388 0.511 0.312 0.620 0.319 0.320 0.343 0.351
 performance in
 Bike** 0.182 0.060 0.145 0.114 0.499 0.080 0.202 0.045 0.041 0.079
 3 out of 12 tasks.
 Housing** 0.242 0.181 0.266 0.223 0.352 0.261 0.357 0.171 0.163 0.214
 *Classification performance measured with F1-score ** Regression performance measure with mean square error (MSE)

www.nuelecture.de 16.11.2022 30
Evaluation of training times (measured in seconds)

 Interpretable Models Black-box Models
 Dataset
 Splines EBM NAM GAMI-Net ExNN LR DT RF GBM XGB MLP
 Water* 0.15 1.51 32.51 11.74 0.02 0.01 0.22 0.66 0.11 0.26
 Stroke* 1.23 0.69 46.70 23.36 0.01 0.01 0.11 0.44 0.08 0.43
 Telco* 2.09 1.51 57.51 16.72 0.02 0.02 0.15 0.90 0.12 0.66
 FICO* 2.37 1.66 95.37 14.52 0.03 0.04 0.27 1.74 0.12 0.95
 Adult* 38.54 21.64 519.72 44.04 0.10 0.07 0.45 3.48 0.46 3.34
 Bank* 15.45 9.49 777.13 63.40 0.12 0.09 0.61 3.97 0.47 4.33
 Airline* 17.75 31.02 627.22 225.09 0.10 0.21 2.02 12.07 0.72 9.47
 Car** 0.68 1.83 6.99 8.06 0.01 0.01 0.08 0.05 0.04 0.02
 Student** 0.41 0.44 16.01 7.91 0.01 0.01 0.10 0.09 0.05 0.06
 Crimes** 3.04 1.57 92.95 9.24 0.01 0.05 1.32 1.91 0.12 0.20
 Bike** 0.84 3.82 299.09 42.54 0.01 0.03 0.85 1.27 0.15 1.42
 Housing** 0.18 6.97 418.85 46.38 0.01 0.06 1.88 2.83 0.30 1.42

www.nuelecture.de 16.11.2022 32
Evaluation of interpretability (RQ2) – Adult dataset (target: income>50k$)

 Splines EBM GAMI-Net

Feature:
age

 EBM captures
 detailed patterns.

Feature:
capital_gain Feature plots of GAMI-Net
 are smoother and thus
 appear more appealing for
 interpretation purposes.

www.nuelecture.de 16.11.2022 33
Evaluation of interpretability (RQ2) – Adult dataset (target: income>50k$)

 NAM ExNN

 ExNN is hardly
 interpretable when many
 features are involved.

 NAM showed extremely
 jagged behavior in our
 experiments due to overfitting.

www.nuelecture.de 16.11.2022 34
Merits and limitations of related work

 Model Feature Shapes Model Compactness Controllability Training Effort

 Controllable sparsity, Simple configuration,
 Splines Smooth behavior Low complexity
 controllable smoothing medium training times

 Piecewise constant Increased complexity Controllable number Simple configuration,
 EBM
 with sharp jumps due to missing sparsity of interactions fast training times

 Controllable regularization Extensive HP tuning,
 NAM Jagged behavior Low complexity
 for limiting jagged behavior slow training times

 Controllable sparsity,
 Moderate HP tuning,
 GAMI-Net Smooth behavior Low complexity controllable smoothness,
 moderate training times
 controllable interactions

 Smooth behavior High complexity due Controllable sparsity, Moderate HP tuning,
 ExNN
 of feature projections to feature projections controllable smoothness moderate training times

www.nuelecture.de 16.11.2022 35
Merits and limitations of related work

 Model Feature Shapes Model Compactness Controllability Training Effort

 Controllable sparsity, Simple configuration,
 Splines Smooth behavior Low complexity
 controllable smoothing medium training times

 Increased complexity
 Piecewise constant Controllable number Simple configuration,
 EBM due to missing
 with sharp jumps of interactions fast training times
 sparsity

 Controllable regularization Extensive HP tuning,
 NAM Jagged behavior Low complexity
 for limiting jagged behavior slow training times

 Controllable sparsity,
 Moderate HP tuning,
 GAMI-Net Smooth behavior Low complexity controllable smoothness,
 moderate training times
 controllable interactions

 Smooth behavior High complexity due Controllable sparsity, Moderate HP tuning,
 ExNN
 of feature projections to feature projections controllable smoothness moderate training times

www.nuelecture.de 16.11.2022 36
Outlook: The vision of our White-Box AI group

 Model restrictions with impact Domain expert knowledge Interpretation
 on shape functions and physical constraints
 ▪ Inspection and comparison
 with own expert knowledge
 Shape functions
 ▪ Detection of error sources
 IGANN Feature 1 Feature 2 during modeling
 (e.g., height) (e.g., age)
 Model 1 ▪ Detection of biases and
 Model 1: Linear shape
 discrimination
 functions
 ▪ Acquisition of new insights
 Model 2: Feature 1 Model 2
 through interpretation of
 with upper bound the shape functions
 Model 3
 Model 3: Unrestricted ▪ …
 shape functions

www.nuelecture.de 16.11.2022 37
Don‘t hesitate to contact me!

 Patrick Zschech
 patrick.zschech@fau.de
 Thank you very much
 for your attention! FAU Erlangen-Nürnberg
 Assistant Professor for
 Intelligent Information Systems

 Relevant publications/submissions for this study
 — Zschech P., Weinzierl S., Hambauer N., Zilker S., Kraus M. (2022) GAM(e) Changer or Not? An Evaluation of Interpretable
 Machine Learning Models Based on Additive Model Constraints. In: Proceedings of the 30th European Conference on
 Information Systems (ECIS), Timișoara, Romania. (https://aisel.aisnet.org/ecis2022_rp/106/)

 — Kraus M., Tschernutter D., Weinzierl S., Zschech P. (2023) IGANN: Interpretable Generalized Additive Neural Networks.
 Submitted to European Journal of Operational Research (EJOR).

www.nuelecture.de 16.11.2022 38
References

 Agarwal, R., Melnick, L., Frosst, N., Zhang, X., Lengerich, B., Caruana, R., and Hinton, G. 2021. “Neural Additive Models: Interpretable
 Machine Learning with Neural Nets,” ArXiv:2004.13912 [Cs, Stat]. (http://arxiv.org/abs/2004.13912).
 Gunning, D., and Aha, D. 2019. “DARPA’s Explainable Artificial Intelligence (XAI) Program,” AI Magazine (40:2), pp. 44–58.
 (https://doi.org/10.1609/aimag.v40i2.2850).
 Hastie, T., and Tibshirani, R. 1986. “Generalized Additive Models,” Statistical Science (1:3). (https://doi.org/10.1214/ss/1177013604).
 Lou, Y., Caruana, R., and Gehrke, J. 2012. “Intelligible Models for Classification and Regression,” in Proceedings of the 18th ACM SIGKDD
 International Conference on Knowledge Discovery and Data Mining - KDD ’12, Beijing, China: ACM Press, p. 150.
 (https://doi.org/10.1145/2339530.2339556).
 Lou, Y., Caruana, R., Gehrke, J., and Hooker, G. 2013. “Accurate Intelligible Models with Pairwise Interactions,” in Proceedings of the 19th
 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago Illinois USA: ACM, August 11, pp. 623–631.
 (https://doi.org/10.1145/2487575.2487579).
 Nori, H., Jenkins, S., Koch, P., and Caruana, R. 2019. “InterpretML: A Unified Framework for Machine Learning Interpretability,”
 ArXiv:1909.09223 [Cs, Stat]. (http://arxiv.org/abs/1909.09223).
 Vaughan, J., Sudjianto, A., Brahimi, E., Chen, J., and Nair, V. N. 2018. “Explainable Neural Networks Based on Additive Index Models,”
 ArXiv:1806.01933 [Cs, Stat]. (http://arxiv.org/abs/1806.01933).
 Yang, Z., Zhang, A., and Sudjianto, A. 2021a. “Enhancing Explainability of Neural Networks Through Architecture Constraints,” IEEE
 Transactions on Neural Networks and Learning Systems (32:6), pp. 2610–2621. (https://doi.org/10.1109/TNNLS.2020.3007259).
 Yang, Z., Zhang, A., and Sudjianto, A. 2021b. “GAMI-Net: An Explainable Neural Network Based on Generalized Additive Models with
 Structured Interactions,” Pattern Recognition (120), p. 108192. (https://doi.org/10.1016/j.patcog.2021.108192).

www.nuelecture.de 16.11.2022 39
Backup
Multi-layer perceptron, gradient descent, and backpropagation

 https://images.app.goo.gl/FNRtxcMf1k6rd2cr7
www.nuelecture.de 16.11.2022 41
Example of how to read the prediction from a gradient boosting algorithm

www.nuelecture.de 16.11.2022 42
You can also read