Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico

 
CONTINUE READING
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Neutrino Mass
 and
 Lepton Number Violation

 =

 ICHEP 2020,
Björn Lehnert August 6th 2020
 bjoernlehnert@lbl.gov Prague, Czech Republic (online)
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Scope of this talk

 Sources of information:

• Neutrino masses from
 • Beta decay
 • Cosmology http://ichep2020.org
 • Double beta decay

• Lepton number violation

 https://conferences.fnal.gov/nu2020/
 (video recordings)

 Disclaimer:

 Part of &

 Experimental point of view
 Mini-Workshop series
 https://indico.fnal.gov/category/1172/
 Wide range to cover for 25 min (video recordings)
 Apologies if your favorite topic /
 experiment is not covered !2
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
28/7 Mariam Tórtola:
 Neutrino Parameters Global fits to neutrino
 masses and mixings

 ∑
 Neutrino mixing: PMNS (Pontecorvo-Maki-Nakagawa-Sakata) | νflavor > = U*
 αi
 ⋅ | νmass >
 i

 1 0 0 cΘ13 0 sΘ13 ⋅ e −iδ cΘ12 sΘ12 0 1 0 0
 Uαi = 0 cΘ23 sΘ23 0 1 0 −sΘ12 cΘ12 0 0 e −iα/2 0
 0 −sΘ23 cΘ23 −sΘ13 ⋅ e −iδ 0 cΘ13 0 0 1 0 0 e −iβ/2

 Neutrino masses: 2
 Δm12 ≈ 8 meV
 Mass2

 2
 Δm23 ≈ 50 meV

 ??? absolute mass
 scale unknown

 normal Ordering inverted Ordering

 2 2
• Precision measurements with oscillation: Θ12, Θ13, Θ23, Δm12, Δm23
 iδ 2
• Upcoming oscillation measurements (subdominant matter effects): CP phase e , ordering sign(Δm23)
• Not accessible with oscillations: absolute mass scale, Dirac (ν ≠ ν̄) or Majorana (ν = ν̄, α, β)

 Can be measured in neutrino mass and double beta decay experiments
 !3
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Different Neutrino Mass Observables

β-decay (kinematic)
model independent mβ mΣ cosmology
 model dependent
 mass eigenstate • ΛCDM
 mixing
 ∑
 mi2 | Uei |2
 mΣ = mi
 ∑
 mβ =
 i
 i m1 m
 m3 2

 double beta decay
 mββ
 miUei2 |
 ∑
 model dependent mββ = |
 • lepton number violation
 • light Majorana neutrino exchange i

 !4
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Different Neutrino Mass Observables

β-decay (kinematic)
model independent mβ mΣ cosmology
 model dependent
 mass eigenstate • ΛCDM
 mixing
 ∑
 mi2 | Uei |2
 mΣ = mi
 ∑
 mβ =
 i
 i m1 m
 m3 2

 double beta decay
 mββ
 miUei2 |
 ∑
 model dependent mββ = |
 • lepton number violation
 • light Majorana neutrino exchange i

 !5
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Beta Decay Measurements
 Precision spectroscopy Experimental signature:
 of β-decays • Spectral distortion at endpoint

 00
 x50
 Experimental Challenges:
Observable m2β: • High resolution
• Appears in β-spectrum: • Low background
 • Convenient isotope: half-life, Q-value
 3H (12 yr, 18.6 keV), 163Ho (4600 yr, 2.8 keV)

 Other kinematic limits [pdg]:
• No model dependence (only kinematics) •SN1987: m e < 5.8 eV
 • -decay: m < 190 keV
 • -decay: m < 18.2 MeV
 !6
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
30/7 Alexey Lokhov
 The KATRIN Experiment KATRIN experiment: first neutrino
 mass result and future prospects

 70 m beam line

 rear windowless T2 removal and main spectrometer pixel
 section tritium source e- transport as high pass filter Si det

 electric
molecular potential
tritium T2

 1011 Bq resolution: ~1 eV
 background: 0.29 cts/s
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
KATRIN data with 1 error bars 50
 30/7 Alexey Lokhov

 Count rate (cps)
 Fit result
 KATRIN - First Results 10 1 KATRIN experiment: first neutrino
 mass result and future prospects

Dataset: 33 d (22% column density) 10 0 KATRIN data with 1 error bars 50

 Count rate (cps)
 Fit result
 10 1 PRL 123, 221802 (2019)
Best fit: m = 2
 1.0+0.9 eV 2
 AAACE3icbVDLSgMxFM3UV62vqks3wSKI4jBTBHUhFN24rGAf0MeQSW/b0GRmSDJCGcZvcOOvuHGhiFs37vwb08dCWw9cODnnXnLv8SPOlHacbyuzsLi0vJJdza2tb2xu5bd3qiqMJYUKDXko6z5RwFkAFc00h3okgQifQ80fXI/82j1IxcLgTg8jaAnSC1iXUaKN5OWPhNf0QZN2EV/iE9d22smxY1+kXmIebvqQNKXAUG0X05yXLzi2MwaeJ+6UFNAUZS//1eyENBYQaMqJUg3XiXQrIVIzyiHNNWMFEaED0oOGoQERoFrJ+KYUHxilg7uhNBVoPFZ/TyREKDUUvukURPfVrDcS//Mase6etxIWRLGGgE4+6sYc6xCPAsIdJoFqPjSEUMnMrpj2iSRUmxhHIbizJ8+TatF2Hdu9PS2UrqZxZNEe2keHyEVnqIRuUBlVEEWP6Bm9ojfryXqx3q2PSWvGms7soj+wPn8AJL2bLg==
 1.1
 -40 -30 -20 mβ2
 -10 0 10 20 30 40

 Time (h) Residuals ( )
• 19% probability to get same or smaller value 2 0 normalization Stat. Stat. + syst.
 background
 10 endpoint
 0
Limit setting:
 -2
• Lokhov-Tkachov: mβ < 1.1 eV (90% CL) -40
 -40 -30
 -30 -20
 -20 -10
 -10 00 1010 2020 3030 4040

 Residuals ( )
 identical to sensitivity
 40 2
 Stat. Stat. + syst.
• Feldman-Cousins: mβ < 0.8 eV (90% CL) 20 0

• Bayesian: mβ < 0.9 eV (90% CI) 0-2
 -40
 -40 -30
 -30 -20
 -20 -10 00 1010 2020 3030 4040
 flat prior m2β
 -10
 >0 Retarding energy - 18574 (eV)
 40

 Time (h)
 20

 0
 -40 -30 -20 -10 0 10 20 30 40
 Retarding energy - 18574 (eV)

 Mainz m < 2 eV First KATRIN dataset:
 β
 Troitsk KATRIN • Statistics improved by x2
 • Systematic improved by x6

 !8
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
30/7 Alexey Lokhov
 KATRIN - Outlook KATRIN experiment: first neutrino
 mass result and future prospects

Uncertainty budget:
• Dominated by statistics
• Largest systematic from background

Sensitivity goal:
• 3 yr data (5 yr operation)
• 0.2 eV (90% CL)
• 0.35 eV (3 )

More data recorded: Background reduction: Other analyses:
 0.29 → 0.15 cts / s eV and keV sterile neutrinos
 • spectrometer bake-out
 • alternative operating mode

 (this dataset)

 (finished
 last week)

 !9
Neutrino Mass and Lepton Number Violation - Björn Lehnert - CERN Indico
Nu2020: Noah Oblath
 Project 8 Project 8 [link]

Idea: measure frequency very precisely Ultimate plan:
CRES (Cyclotron Radiation Emission Use atomic tritium
Spectroscopy) of β-decay electrons to reduce molecular
 final states

 atomic

 molecular
 Status:
 First measurement of T2 spectrum with preliminary analysis

 mβ (meV)
 Projected sensitivity:

 !10
Nu2020: Maurits Haverkort
 ECHo and HOLMES Mass measurements with
 Ho-163 [link]

Electron capture in 163Ho: Technology:
• T1/2 = 4570 yr • pixelated cryogenic bolometers (
Different Neutrino Mass Observables

β-decay (kinematic)
model independent mβ mΣ cosmology
 model dependent
 mass eigenstate • ΛCDM
 mixing
 ∑
 mi2 | Uei |2
 mΣ = mi
 ∑
 mβ =
 i
 i m1 m
 m3 2

 double beta decay
 mββ
 miUei2 |
 ∑
 model dependent mββ = |
 • lepton number violation
 • light Majorana neutrino exchange i

 !12
Cosmological mΣ signatures
 Nu2020: Lloyd Knox
 Cosmological probes of standard
 neutrino scenarios [link]

Matter distributions influenced by mΣ Cosmic microwave background (CMB)
Heavy neutrinos wash out gravitational wells
 influenced by mΣ
and disfavor small structures

 CMB anisotropies

power spectrum of matter distribution
 [Y. Wong]

 CMB lensing

 • Visible effect of m∑
 • No effect from flavor

 larger smaller

 !13
Outlook for cosmology
Current limits: Future limits:
• mΣ < 120 meV (95% CL) Planck + BAO [arXiv:1807.06209v2] • mΣ ~ 20 meV (CMB-S4 + BAO)
• tightest bound on neutrino mass • mass ordering with 2-4 σ

 Project 8 goal
 Future experiments:
 CMB: LiteBIRD, Simons Obs.,
 CMB-S4, BICEP Array, …
 Surveys: EUCLID, ROMAN,
 DESI, PFS, VERA RUBIN, …

 4/8 David P. Kirkby
 CMB, cosmology, other
 astroparticle physics

 [arXiv:1907.04473] Distant future:
 CνB measurement with PTOLEMY
 29/7 Stefano Gariazzo
 Neutrino physics with the
 PTOLEMY project
Keep in mind:
• mΣ model dependent (ΛCDM, systematics, parameter correlations) 29/7 Marcello Messina
• Complementary with β-decay measurements
 The PTOLEMY experiment to look
 at the first second of the Universe
• Tension between mβ and mΣ would point to new physics
 !14
Different Neutrino Mass Observables

β-decay (kinematic)
model independent mβ mΣ cosmology
 model dependent
 mass eigenstate • ΛCDM
 mixing
 ∑
 mi2 | Uei |2
 mΣ = mi
 ∑
 mβ =
 i
 i m1 m
 m3 2

 double beta decay
 mββ
 miUei2 |
 ∑
 model dependent mββ = |
 • lepton number violation
 • light Majorana neutrino exchange i

 !15
Neutrinoless Double Beta Decay & Lepton Number Violation

 Double beta decays: Experimental signature:
 • Peak search at Q-value
 2⌫ : (Z, A) ! (Z + 2, A) + 2e + 2¯
 ⌫e • Measure half-life of 0νββ decay
 0⌫ : (Z, A) ! (Z + 2, A) + 2e
 Lepton number
 violation: ΔL = 2
 Majorna neutrinos

 observed in 11 nuclei to be observed

 produced L prod. asymmetry
 B prod.
 equally by heavy observed B ≠ 0
Why looking for lepton number violation? ν decay B-L = const.
 L=0, B=0

 • Lightness of neutrinos could be
 explained by see-saw mechanism(s)

 • Predicts heavy Majorana neutrinos
109+1 109
matter antimatter • Neutrino decay generates lepton
 number in early Universe
 • Baryogenesis through Leptogenesis
matter - antimatter
 asymmetry
 !16
Standard Mechanism: Light Majorana Neutrino Exchange

 (T1/2)
 −1 0ν 0ν 2 2
 = G ⋅ | M | ⋅ | mββ |
 phase nuclear matrix effective Majorana
 measured
 space element neutrino mass
 half-life
 factor
 experiment atomic physics nuclear physics particle physics

 Mass of a virtual electron neutrino propagator:
 | mββ | = m1 | Uei2 | + m2 | Ue2
 2
 | e i(α2−α1) + m3 | Ue3
 2
 | e −i(α1+2δ)

 Im
 inverted ordering
 mee
 m (eV)
 2
 |
 ββ
 ee

 Re
 = G0⌫ · |M0⌫ |2 · |m

 δ)
 +2

 m 2 | Ue2
 Im −i
 (α 1

 normal ordering 2
 |
 e
= G2⌫ · |M2⌫ |2

 e3
 |U

 |2 e
 Advances in High Energy
 m3

 i(α 2−α1
 Physics Vol 2016, 2162659 mee

 )
 m1 | Ue1 |2
 Re
 !17
Double Beta Decay Experiments
 Experimental challenges: Many possible DBD isotopes:
 • Large exposure: tonne-scale (> 1028 nucl. x yr) • 35 isotopes β-β-
 • Low background: < 1 cts / tonne / yr / ROI • 34 isotopes ECEC, β+EC, β+β+

 Most promising technologies (next slides):
 • Liquid scintillators
 • Xenon TPCs
 • Cryogenic bolometers
 • High Purity Germanium (HPGe)

 Many more experiments:
 CANDLES, CDEX, SuperNEMO, SELENA,
 NuDEx, ZICOS, AMoRE, C0BRA, Theia,
 PandaX, AXEL, R2D2, … Secondary signatures:
 • 2νββ decay
Poster: Malak Hoballah: 30/7 Anselmo Meregaglia: • Excited state transitions
Calibration status of the Preliminary results of the R2D2 project: a new • Spectral shapes
SuperNEMO calorimeter neutrinoless double beta decay experiment

 sample

 Comprehensive comparison of experiments: ββ
 use of small setups
 Nu2020: Jason Detwiler e.g. low background ɣ

 Future Neutrinoless Double γ - spectroscopy
 HPGe
 Beta Decay Experiments [link]

 !18
Nu2020: Christopher Grant
 Liquid Scintillators: KamLAND-ZEN (136Xe), SNO+ (130Te) KamLAND-ZEN and SNO+ [link]

 Advantage LS: Large target mass,
KamLAND-ZEN
 self-shielding, multi-purpose detectors
 1 kt LS, ~1900 PMTs (~34% coverage)
 91% enriched 136Xe

 KL-Zen 400 KamLAND 2 Zen (future)
 KL-Zen 800 • x5 light collection,
 • 2011-2015
 • since 2019 scintillating balloon,
 • 350 kg Xe
 mini-ballon • 745 kg Xe new electronics
 • T1/2 > 1.1 x 1026 yr
 • mββ < 61 - 165 meV
 with Xe • T1/2 ~ 5 x 1026 yr (goal) • 1 tonne Xe
 • T1/2 ~ 2 x 1027 yr (goal)
 PRL 117, 082503 (2016)

 @Kamioka, Japan

SNO+
 Status July: filling with liquid scintillator

 780 t LS, ~9300 PMTs (~50% coverage)
 natTe (34% 130Te)

 Sensitivity for natTe loading:
 • 0.5%: T1/2 ~ 2 x 1026 yr (goal)
 • 1.5%: T1/2 ~ 4 x 1026 yr (goal)
 • 2.5%: T1/2 ~ 1 x 1027 yr (goal)

 (0.5% loading ~1.3 t 130Te)

 @SNOLAB, Canada !19
Nu2020: J J Gomez-Cadenas
 Xe TPCs: nEXO, NEXT, Darwin (136Xe) Xe-136 Experiments, present and
 future [link]
 Advantage Xe TPC:
LXe TPC single phase: EXO-200, nEXO • signal: charge + scintillation light Self-shielding, Particle ID
 • enriched 136Xe (90%)

 EXO-200 nEXO
 • 200 kg enrXe • 5 tonne enrXe
 • T1/2 > 3.5 x 1025 yr (90% CL) • T1/2 ~ 1028 yr (goal)
 • mββ < 93 - 286 meV • mββ ~ 6 - 18 meV (goal)
 EXO-200 TPC @WIPP, USA PRL 123, 161802 (2019) arXiv:1805.11142 @ SNOLAB

HPXeEL TPC: NEXT Future potential: external Ba
 measurement
 barium tagging
 Experimental plans:
 NEXT-White (5 kg)
 NEXT-100 (100 kg)
 internal Ba
 NEXT-HD (1 t, ~1027 yr) measurement
 NEXT-BOLD (~1028 yr)

 NEXT-100 TPC @Canfranc, Spain ββ topology ID arXiv:1906.01743

LXe TPC dual phase: Dark Matter detectors
• Xe WIMP detectors also sensitivity to 0νββ - decay
• Discovery of 2νECEC in 124Xe (Xenon-1t)
 Nature 568, 532 (2019)

DARWIN: 29/7 Adriano Di Giovanni:
• 50 tonne natXe (9%), The DARWIN experiment: the
 ultimate detector for direct
• T1/2 ~ 2.4 x 1027 yr (goal) Nature 569, 203 (2019)
 dark matter search.
 arXiv:2003.13407 !20
Nu2020: Thomas O'Donnell
Bolometers: CUORE (130Te), CUPID (100Mo) CUORE Results and the CUPID
 Project [link]
 Advantage bolometers: Good
 resolution, segmented, flexible isotope

 @LNGS, Italy
 30/7 Andrea Giachero:
 New results from the
 CUORE CUORE experiment CUPID
 • natTeO2 crystals • Li2100MoO4 crystals (enriched)
 • Heat • Heat + light
 • T1/2 > 3.2 x 1025 yr (90% CI) similar mass but major • T1/2 ~ 1027 yr (goal)
 • mββ < 75 - 350 meV background reduction • mββ ~ 10 - 20 meV (goal)
 PRL 124, 122501 (2020)

 30/7 Davide Chiesa:
 Double beta decay results
New results CUORE:
 from the CUPID-0 experiment
• 130 Te 2νββ measurement
• 130Te 0ν and 2ν excited state limit
New results CUPID-Mo: New results CUPID-0:
• 100Mo 0νββ half-life limit • 82Se 0νββ half-life limit
 T1/2 > 1.4 x 1024 yr (90% CI) T1/2 > 3.5 x 1024 yr (90% CI)
 mββ < 310 - 540 meV mββ < 311 - 638 meV
• 100Mo 2νββ half-life measurement • 82Se 2νββ half-life measurement
 !21
Nu2020: Yoann Kermaidic
 HPGe Detectors: GERDA, MJD, LEGEND (76Ge) GERDA, Majorana and LEGEND - towards a
 background-free ton-scale Ge76 experiment [link]
 Advantage HPGe:
 30/7 Konstantin Gusev: Best resolution, segmented
 Results of the GERDA
 Phase II experiment • T1/2 > 1.8 x 1026 yr (90% CL)
GERDA
 • mββ < 80 - 182 meV
 Majorana Demonstrator
• HPGe array in liquid argon • HPGe array in vacuum cryostat
• Lowest background in ROI • Best energy resolution in DBD
• World best half-life limit • Leading limit on excited states

 @SURF, USA
 @LNGS, Italy
 combining technology + new concepts

 29/7 Wenqin Xu:
 30/7 Luis Manzanillas: Status and Recent Results of the
 Usage of PEN as self-vetoing structural
 material in low background experiments
 LEGEND-200 MAJORANA DEMONSTRATOR
 • Under construction in
 Poster: Clay Barton:
 GERDA infrastructure Neutron Background Simulations for
 • T1/2 ~ 1027 yr (goal) LEGEND-1000 in a Geant4-based
 Framework

 LEGEND-1000
 • Tonne scale
 • Underground argon
 • T1/2 ~ 1028 yr (goal)
 • mββ ~ 10 - 20 meV (goal)
 PEN: new scintillating structural material !22
Future of Double Beta Decay
What if oscillation experiments determine the normal ordering?
• Most probable parameter space still accessible (assuming flat priors) M. Agostini, G. Benato, J. Detwiler:
 PRD 96, 053001 (2017)

 normal ordering inverted ordering

 next generation goal

 current β-decay

 current β-decay
 cosmology

 cosmology
 Bayesian sampling assuming
 flat priors for Majorana phases
 current

 current
Nuclear Matrix Elements:

 (T1/2)
 −1 0ν 0ν 2 2
 uncertainties (x3) = G ⋅ | M | ⋅ | mββ |
 nuclear matrix
 element
 Nu2020: Javier Menéndez nuclear physics
 Double beta decay matrix
 elements [link]

 • Need nuclear models: Shell model, QRPA, IBM, …
 • Recent advances with EFT
 • Informed by 2νββ, excited states, spectral shapes
 isotopes !23
What if we discover 0νββ decay?
• Lepton number violation exists 2

 (T1/2)
 −1 0ν 0ν
 ∑
 =G ⋅ Mi ⋅ ηi
• Neutrinos are Majorana particles
 (Schechter-Valle theorem)
 mech i
 different dominant LNV mechanism?
 coherent sum of multiple LNV mechanisms?

 light Majorana Higgs right handed
BUT: What is the LNV mechanism? SUSY particle
 neutrinos triplet currents
• Disentangle mechanism with
 observation in multiple isotopes
• Strong motivation for different 0νββ
 decay experiments / isotopes

Signatures in particle colliders: LNV with rare Kaon decay:
 + +
• Same sign di-lepton di-jet searches • K → π νν
 0
 • KL → π νν

 31/7 Kåre Fridell:
 Implications of Rare Kaon Decays on
 Lepton Number Violating Interactions

 [Un-ki Yang Nu2020]
 !24
Global Picture & Conclusion
Neutrino masses 1 year ago:
[from Eligio Lisi, TAUP19]

 Neutrino masses measured in three observables:
 • Beta Decay (recent results from KATRIN) mβ < 1.1eV
 • Cosmology (results from Planck + BAO) mΣ < 120 meV
 • Double beta decay (new results from GERDA) mββ < 60 − 130 meV

 Lepton number violation tested:
 • Double beta decay experiments
 • Collider experiments

 (assuming no sterile neutrinos)
 !25
Global Picture & Conclusion
Neutrino masses 1 year ago:
[from Eligio Lisi, TAUP19]
 KATRIN 2019 Neutrino masses measured in three observables:
 • Beta Decay (recent results from KATRIN) mβ < 1.1eV
 • Cosmology (results from Planck + BAO) mΣ < 120 meV
 • Double beta decay (new results from GERDA) mββ < 60 − 170 meV

 Lepton number violation tested:
 • Double beta decay experiments
 • Collider experiments

 KATRIN 2019

 (assuming no sterile neutrinos)
 !26
Global Picture & Conclusion
Neutrino masses 1 year ago:
[from Eligio Lisi, TAUP19]
 KATRIN 2019 Neutrino masses measured in three observables:
 • Beta Decay (recent results from KATRIN) mβ < 1.1eV
 • Cosmology (results from Planck + BAO) mΣ < 120 meV
 • Double beta decay (new results from GERDA) mββ < 60 − 170 meV

 Lepton number violation tested:
 • Double beta decay experiments
 • Collider experiments
 Thank you for
 your attention!

 KATRIN 2019

 (assuming no sterile neutrinos)
 !27
Backup
Nu2020: Jason Detwiler
Comparing DBD Experiments Future Neutrinoless Double
 Beta Decay Experiments [link]

 !29
Nu2020: Jason Detwiler
Comparing DBD Experiments Future Neutrinoless Double
 Beta Decay Experiments [link]

 !30
You can also read