Molecular Modeling and Simulation in Process Engineering

Page created by Josephine Peterson
 
CONTINUE READING
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                                          Prof. Dr.-Ing. H. Hasse

ASIM Workshop on Fundamentals of Modeling and Simulation
Molecular Modeling and Simulation
in Process Engineering

Hans Hasse1, Jadran Vrabec2
1Lehrstuhl für Thermodynamik, TU Kaiserslautern
2Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                                                  Prof. Dr.-Ing. H. Hasse

Technology Vision 2020: The U.S. Chemical Industry
Fields of Major New Developments
Chemical          Supply Chain      Information         Manufacturing
& Engineering     Management        Systems             & Operations
Science

Engineering Computational Technologies
Computational Computational      Process          Operations
Molecular     Fluid              Modeling &       Simulation &
Science       Dynamics           Simulation       Optimization

 => Link between Engineering and Chemistry
 => New processes, products, materials
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                                                          Prof. Dr.-Ing. H. Hasse

Molecular Modeling and Simulation Methods
Time / s
    100
                                                      Continuum Methods

(ms) 10-3                                Mesoscale
                                         Methods

(μs) 10-6
                   Molecular
                   Force Fields
(ns) 10-9
             Semiempirical
             QM
(ps) 10-12   Ab initio
             QM
(fs) 10-15

         10-10       10-9         10-8         10-7       10-6     10-5          10-4
                     (nm)                                 (μm)                Length / m
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                         Prof. Dr.-Ing. H. Hasse

   Moore‘s Law
GFLOPS / GIPS

                      Year
                                Further progress from
                 new simulation methods and software
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                  Prof. Dr.-Ing. H. Hasse

Bridging Scales
                      Examples
 Continuum
 Systems
                  Hybrid
 Mesoscale        CFD
 Systems
                       MD Large      COSMO
 Molecular             Systems         RS
 Systems
                  Born-Oppen-
 Quantum          heimer MD
 Systems
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                         Prof. Dr.-Ing. H. Hasse

Molecular Methods in Chemical Process Industries

Current Applications @ Evonik Degussa:
 ƒ Catalysis
 ƒ Thermo-physical data
 ƒ Polymers
 ƒ Crystallization
 ƒ Particle technology
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                                Prof. Dr.-Ing. H. Hasse

COSMO-RS @ Evonik
Quantum chemistry based method for prediction of
thermo-physical properties

                   ƒ Quantum chemistry based prediction
                     of energy of molecular interactions
                   ƒ Crude classical assumptions for entropy
                   ƒ Close co-operation between engineers
                     and quantum chemists
                   ƒ Benchmark against phenomenolgical
                     group contribution methods (UNIFAC)

Quantitative predictions
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                             Prof. Dr.-Ing. H. Hasse

Force-Field Methods @ Evonik
Example: MD simulations of Water-Polymer interface

 Qualitative results
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                               Prof. Dr.-Ing. H. Hasse

Mesoscale Methods @ Evonik
Example: Simulation of particle morphologies

                                                 α = 16
   α=1

                             α=4
Semiquantitative results
Molecular Modeling and Simulation in Process Engineering
Lehrstuhl für Thermodynamik
                                                      Prof. Dr.-Ing. H. Hasse

Industrial Applications of Molecular Methods
in Process Engineering

Molecular methods are:
ƒ already used
ƒ especially attractive if no sufficiently accurate
   - experiments
   - calculations with phenomenological methods
  are possible
ƒ recognized as a future key technology
Lehrstuhl für Thermodynamik
                                          Prof. Dr.-Ing. H. Hasse

Molecular Modelling (Force Fields)

                              Geometry:
                              ¾ Bond lengths and angles

                               Electrostatics:
                               ¾ Position and strength
                                 of dipoles, quadrupoles,
                                 partial charges

                              Dispersion and Repulsion:
                              ¾ Parameters of
                                Lennard-Jones potentials
                                     Many parameters
Lehrstuhl für Thermodynamik
                                                              Prof. Dr.-Ing. H. Hasse

Model Parameters from Quantum Chemistry
Geometry
   ¾ HF with small basis set (z.B. 6-31G) or DFT methods
Electrostatics from electronic density distribution
   ¾ MP2 with small polarizable basis set (e.g., 6-311+G**)
   ¾ Molecule embedded in dielectric cavity for modeling dense fluid
     phase (COSMO)
Dispersion and Repulsion
   ¾ Requires simulation of arrangements of at least two molecules
   ¾ CCSD(T) or MP2 with large basis sets (TZV or QZV)
   ¾ Very high computational effort
   ¾ Unsatisfactory accuracy
             Fit to thermo-physical data preferred
Lehrstuhl für Thermodynamik
                                     Prof. Dr.-Ing. H. Hasse

Molecular Simulation Basic Methods
Molecular Dynamics (MD)
 ƒ Numerical solution of
   Newtonian equations of motion
 ƒ Deterministic
 ƒ Static and dynamic properties

Monte-Carlo (MC)
 ƒ Statistical Method
 ƒ Energetic acceptance criteria
 ƒ Static properties only
Lehrstuhl für Thermodynamik
                                                 Prof. Dr.-Ing. H. Hasse

Direct Simulation of Phase Equilibria
Example: Vapor-liquid equilibirum of Ethylene Oxide @ 375 K

                                             3500 molecules
Lehrstuhl für Thermodynamik
                                                                               Prof. Dr.-Ing. H. Hasse

Phase Equilibrium from Grand Equilibrium Method
              Specs: T, x
                   Liquid                                        Vapor

     Simulation:                                     Pseudo grand canonical simulation
                                                       (Specification of μ i ( p ) V, T)
                                                                           l
     ¾Chemical potentials
     ¾Partial molar volumes

    μ li ( p ) ≈ μ li ( p 0 ) + v li ⋅ ( p − p 0 )           Result: p, y
Lehrstuhl für Thermodynamik
                                                                                                                      Prof. Dr.-Ing. H. Hasse

High Performance Parallel Computing
Scaling on selected hardware platforms:
                                                          40
                Strider

                                Execution time / 1000 s
                                                          30

                                                          20
                Cacau

                                                          10

                XC6000                                Nu
                                                               1
                                                                   2
                                                                       4 8
                                                           mb                16                                             Mo
                                                                   er o            32                              Str        za
                                                                          f pr          64             XC    Ca        ide       rt
                                                                                 oce              SX     60    ca         r
                                                                                       sso          -8     00     u
                                                                                             rs

                          Own parallel FORTRAN codes:
                SX 8      ms2                                      thermo-physical properties
                          ls1                                      nano-scale processes
Lehrstuhl für Thermodynamik
                                                            Prof. Dr.-Ing. H. Hasse

Polar Two Center Lennard-Jones Models
     μ /Q                               Vapor pressure

 ε                                                          typ. deviation
                       σ                                    < 2%

            L

 4 Model parameters
 ε energy             dispersion
 σ size
                      repulsion
 L elongation
 μ dipole                                   Simulation          Exp. (corr.)
 or                   polarity
 Q quadrupole                      ƒ Models of 80 simple pure components
                                   ƒ Parametrization: VLE data only
Lehrstuhl für Thermodynamik
                                                           Prof. Dr.-Ing. H. Hasse

Pure Component Models: Extrapolations
Joule-Thomson Inversion

                                               Ethylene
  p / MPa

                                    Oxygen

                                         Symbols: Simulation
                                         Linies: Reference EOS
                        Nitrogen

   red: critical data              T/K
Lehrstuhl für Thermodynamik
                                          Prof. Dr.-Ing. H. Hasse

Ethylene Oxide
                 ƒ Worldwide annual production
                   about 18 Mio. tons
                 ƒ Use: PET and anti-freeze
                 ƒ Properties:
                    - explosive
                    - toxic
                    - highly flammable
                    - cancerogenic
                    - mutagenic
                 ƒ Explosion @ Sterigenics Intl.,
                   Ontario, CND (2004):
                   4 wounded, hall destroyed
Lehrstuhl für Thermodynamik
                                               Prof. Dr.-Ing. H. Hasse

Industrial Property Simulation Challenge 2007

                 Industrial Fluid Properties
                 Simulation Collective
Lehrstuhl für Thermodynamik
                                                           Prof. Dr.-Ing. H. Hasse

Molecular Model of Ethylene Oxide

ƒ 3 LJ Sites (one for the oxygen atom, one for each methylene group)
ƒ 1 static point dipole along symmetry axis
ƒ Rigid, non-polarizable
ƒ Adjustment of five parameters (σO, εO, σCH2, εCH2, μ) to experimental
  VLE data
Lehrstuhl für Thermodynamik
                                                          Prof. Dr.-Ing. H. Hasse

IFPSC Challenge 2007 : Problem Description
ƒ Development of a new molecular model for Ethylene Oxide
ƒ Prediction of 17 properties in 3 categories
  ƒ Vapor liquid equilibria /    ƒ Second derivatives/
    thermal properties             surface tension
  ƒ Saturated densities          ƒ Heat capacity
  ƒ Vapor pressure               ƒ Isothermal compressibility
  ƒ Enthalpy of vaporization     ƒ Surface tension
  ƒ Critical properties
                                 ƒ Transport properties
  ƒ Normal boiling temperature
                                 ƒ Shear viscosity
  ƒ Second virial coefficient
                                 ƒ Thermal conductivity

ƒ Benchmarked to “reference data”
Lehrstuhl für Thermodynamik
                                                                             Prof. Dr.-Ing. H. Hasse

  Deviations from Reference Data
              sat. liquid density
              sat. vapor density
            2nd virial coefficient
                                                                                       uncertainty
                  vapor pressure                                                       of reference
      enthalpy of vaporization
  normal boiling temperature                                                           Round-Robin
                   critical density                                                    model
            critical temperature
sat. liquid isob. heat capacity                                                        new model
sat. vapor isob. heat capacity                                                         score:
   sat. liq. isoth. compressib.                                                        331/350
  sat. vap. isoth. compressib.
                 surface tension
     sat. liquid shear viscosity
    sat. vapor shear viscosity
 sat. liq. thermal conductivity
sat. vap. thermal conductivity

                                      -40   -20     0       20       40     60
                                            deviation from
                                            deviation  fromexperiment
                                                           reference / /%
                                                                        %
Lehrstuhl für Thermodynamik
                   Prof. Dr.-Ing. H. Hasse

IFPSC Party 2007
Lehrstuhl für Thermodynamik
                                                     Prof. Dr.-Ing. H. Hasse

Ethanol

                      δρ = 0,3 %                   δp = 3,7 %

ƒ 3 LJ sites plus 3 point charges
ƒ Point charges model both electrostatics and H-bonding
Lehrstuhl für Thermodynamik
                                                        Prof. Dr.-Ing. H. Hasse

H-Bonded-Species in Methanol + CO2
ƒ Geometrical H-bonding criterion of Haughney et al.
ƒ Equimolar mixture @ 350 K, 0.1 MPa

                                                       Legend:
                                                       ƒ Donor:
                                                         light blue
                                                       ƒ Acceptor:
                                                        single: orange
                                                        double: red
Lehrstuhl für Thermodynamik
                                                Prof. Dr.-Ing. H. Hasse

1H-NMR   Spectroscopy of H-Bonding Mixtures

                             293,15 K

                                               Methanol - CO2

                       ppm
                                    338,15 K       p = 15 MPa

                                                   Experiment
                                                  Simulation
Lehrstuhl für Thermodynamik
                                                                                        Prof. Dr.-Ing. H. Hasse

Overview Pure Component Models
Non-polar, 1CLJ            Dipolar, 1CLJD              Quadrupolar, 2CLJQ      Polar, Muti-CLJ
Neon (Ne), Argon (Ar)      R32 (CH2F2)                 Flour (F2)              iso-Butan (C4H10)
Krypton (Kr), Xenon (Xe)   R30 (CH2Cl2)                Chlor (Cl2)             Cyclohexan (C6H12)
Methan (CH4)               R30B2 (CH2Br2)              Brom (Br2)              Methanol (CH3OH)
                           CH2I2                       Iod (I2)                Ethanol (C2H5OH)
Dipolar, 2CLJD             Dipolar, 2CLJD (contd.)     Stickstoff (N2)         Formaldehyd (CH2=O)
                                                       Sauerstoff (O2)         Dimethylether (CH3-O-CH3)
Kohlenmonoxid (CO)         R20B3 (CHBr3)               Kohlendioxid (CO2)      Aceton (C3H6O)
R11 (CFCl3)                R21 (CHFCl2)                Kohlendisulfid (CS2)    Ammoniak (NH3)
R12 (CF2Cl2)               R12B2 (CBr2F2) R12B1        Ethan (C2H6)            Methylamin (NH2-CH3)
R13 (CF3Cl)                (CBrClF2)                   Ethylen (C2H4)          Dimethylamin (CH3-NH-CH3)
R13B1 (CBrF3)              R10B1 (CBrCl3)              Ethin (C2H2)            R227ea (CF3-CHF-CF3)
R22 (CHF2Cl)               R161 (CH2F-CH3)             R116 (C2F6)             Schwefeldioxid (SO2)
R23 (CHF3)                 R150a (CHCl2-CH3) (1,1,2)   C2F4                    Ethylenoxid (C2H4O)
R41 (CH3F)                 CHCl2-CH2Cl                 C2Cl4                   Dimethylsulfid (CH3-S-CH3)
R123 (CHCl2-CF3)           R140a (CCl3-CH3)            Propadien (CH2=C=CH2)   Blausäure (NCH)
R124 (CHFCl-CF3)           R130a (CH2Cl-CCl3)          Propin (CH3-C≡CH)       Acetonitril (NC2H3)
R125 (CHF2-CF3)            C2H5Br (CH2Br-CH3)          Propylen (CH3-CH=CH2)   Thiophen (SC4H4)
R134a (CH2F-CF3)           (1,1) CHBr2-CH3             SF6                     Nitromethan (NO2CH3)
R141b (CH3-CFCl2)          CH2F-CCl3                   R14 (CF4)               Phosgen (COCl2)
R142b (CH3-CF2Cl)          (2,2,2) CHClBr-CF3          R10 (CCl4)              Benzol (C6H6)
R143a (CH3-CF3)            R112a (CCl3-CF2Cl)          R113 (CFCl2-CF2Cl)      Toluol (C7H8)
R152a (CH3-CHF2)           CHF=CH2                     R114 (CF2Cl-CF2Cl)      Chlorbenzol (C6H5Cl)
R40 (CH3Cl)                CF2=CH2                     R115 (CF3-CF2Cl)        Dichlorbenzol (C6H4Cl2)
R40B1 (CH3Br)              C2H3Cl (CHCl=CH2)           R134 (CHF2-CHF2)        Cyclohexanol (C6H11OH)
CH3I                       CHCl=CF2 CFCl=CF2           (1,2) CH2Br-CH2Br       Cyclohexanon (C6H10O)
R30B1 (CH2BrCl)            CFBr=CF2                    CBrF2-CBrF2
R20 (CHCl3)                                            CHCl=CCl2
Lehrstuhl für Thermodynamik
                                                                    Prof. Dr.-Ing. H. Hasse

Molecular Modelling of Mixtures
                   σA, εA
       A                        A               Predictions ξ = 1
                                                or
                 σAB, εAB
                                                Fit to one experimental
                                                data point p(T,x) oder H(T)
      B                        B
                   σB, εB

Unlike interaction A-B:
ƒ Electrostatics fully predictive
ƒ Lennard-Jones parameters from combination rules

  Modified                  σ AB = ( σ A + σB ) /2
  Lorentz-Berthelot
                            ε AB = ξ ⋅ ε A εB
Lehrstuhl für Thermodynamik
                                                  Prof. Dr.-Ing. H. Hasse

Vapor-Liquid Equilibrium of
Heptafluoropropane + Ethanol

                                                  International
                                                  Fluid
                                                  Properties
                                                  Simulation
                                                  Challenge
                                                  2006

                                                 Data basis:
                                                 => VLE @ 283 K
                                                 Problem:
                                                 => H-bonds

        Peng-Robinson EOS      Simulation,ξ =1   + Experiment
Lehrstuhl für Thermodynamik
                                                         Prof. Dr.-Ing. H. Hasse

Henry’s law constant von Oxygen in Ethanol

                                                          International
                                                          Fluid
                                                          Properties
                                                          Simulation
                                                          Challenge
                                                          2004

  □, ∆ ,   Experiment   Simulation, ξ = 1   Simulation, ξ fitted
Lehrstuhl für Thermodynamik
                                          Prof. Dr.-Ing. H. Hasse

Extrapolation to multicomponent mixtures
                              R14 + R23 + R13
                               +   Experiment

                                   PR-EOS, kij fitted to
                                   binary subsystems
                                   Simulation, ξ fitted to
                                   binary subsystems

                                     ƒ Fully predictive
                                     ƒ No ternary
                                       parameters
Lehrstuhl für Thermodynamik
                                        Prof. Dr.-Ing. H. Hasse

MD Simulation of Nanoscale Processes: Condensation

                                             N = 40 000
                                             1 CLJ
Lehrstuhl für Thermodynamik
                                       Prof. Dr.-Ing. H. Hasse

MD Simulation of Nanoscale Processes: Condensation

                                           N = 40 000
                                           1 CLJ
Lehrstuhl für Thermodynamik
                                          Prof. Dr.-Ing. H. Hasse

Prediction of Nucleation Rates

                                 Ethane
                                    Simulation
                                    Class. nucleation theory
                                    Laaksonen et al.

                                 Carbon Dioxide
                                   Simulation
                                   Class. nucleation theory
                                   Laaksonen et al.
Lehrstuhl für Thermodynamik
                                                          Prof. Dr.-Ing. H. Hasse

Molecular Simulation of Hydrogels
What are Hydrogels?
ƒ Three-dimensional hydrophilic polymer networks
ƒ Extreme swelling/shrinking
ƒ Very sensitive to surroundings & conditions

Examples for applications:
ƒ Super-absorber
ƒ Contact lenses
ƒ Drug Delivery
ƒ Sensors
                                                                      200 µm
ƒ Actors (e.g., micro-valves)                             3 actors
ƒ Biocatalysis
                                                   flow channel
Lehrstuhl für Thermodynamik
                                                          Prof. Dr.-Ing. H. Hasse

Swelling of Hydrogels
Parameters:                      Influence of temperature
 ƒ Temperature
 ƒ pH-value
                                              Theta-
 ƒ Salt(s)                                  temperature
 ƒ Solvent(s)
 ƒ Co-polymers
 ƒ Crosslinker

                                 PNiPAM, MBA

 PNiPAM by electron-microscope
Lehrstuhl für Thermodynamik
                                                Prof. Dr.-Ing. H. Hasse

MD-Simulation of Hydrogels
• Mainly PNiPAM (numerous experimental data)
            PVA        PNiPAM          PAA

• Solvents: Water, Ethanol, aqueous NaCl solution
• Temperatures: 260 K - 340 K
• Force fields from literature
Lehrstuhl für Thermodynamik
                                    Prof. Dr.-Ing. H. Hasse

MD-Simulation: Collapse of Hydrogel

                             primitive PVA-network
                                                            39
Lehrstuhl für Thermodynamik
                                                      Prof. Dr.-Ing. H. Hasse

Force Field Study

PNiPAM                  Water: SPCE              Water: TIP4P
Gromos96 UA                     -                     -
Gromacs53a6 UA                  -                     +
OPLS AA                       ++                      +

Legend:
   Default Water model of force field
- Temperature dependence not observed
+ Temperature dependence observable
++ Temperature dependence reasonably predicted
Lehrstuhl für Thermodynamik
                              Prof. Dr.-Ing. H. Hasse

MD-Simulation PNiPAM-Chains

                               T < TΘ

                               T > TΘ

                                                      41
Lehrstuhl für Thermodynamik
                                                          Prof. Dr.-Ing. H. Hasse

Survey of Coordinated Research Programs
ƒ DFG SPP 1155:
  Molekulare Modellierung und Simulation in der Verfahrenstechnik
ƒ ProcessNet Arbeitsausschuss MMS:
  Molekulare Modellierung und Simulation für das Prozess- und
  Produktdesign
ƒ DFG SFB 716:
  Dynamische Simulation von Systemen mit großen Teilchenzahlen
ƒ DFG TFB 66:
  Molekulare Modellierung und Simulation zur Vorhersage von Stoffdaten
  für industrielle Anwendungen
ƒ BMBF IMEMO:
  Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare
  Simulation

                                                           SFB              716
Lehrstuhl für Thermodynamik
                                   Prof. Dr.-Ing. H. Hasse

Summary
Molecular Modelling and Simulation in
Process Engineering
 ƒ used in industry
 ƒ high potential is recognized
 ƒ future key technology
 ƒ truly interdisciplinary field

   Co-operation between
      ¾ Engineering
      ¾ Natural Science
      ¾ Computer Science
      ¾ Mathematics
Lehrstuhl für Thermodynamik
                                              Prof. Dr.-Ing. H. Hasse

Thanks to co-workers…
ƒ Jürgen Stoll
ƒ Thorsten Schnabel
ƒ Gimmy Fernandez
ƒ Bernhard Eckl
ƒ Isaiah Huang
ƒ Martin Horsch
ƒ Thorsten Merker     …and colleagues from industry
ƒ Gabriela Guevara      ƒ Johannes Vorholz (Evonik)
ƒ Jonathan Walter       ƒ Robert Franke (Evonik)
ƒ Stephan Deublein      ƒ Bernd Eck (BASF)
ƒ Cemal Engin           ƒ Manfred Heilig (BASF)
You can also read