Molecular Modeling and Simulation in Process Engineering
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse ASIM Workshop on Fundamentals of Modeling and Simulation Molecular Modeling and Simulation in Process Engineering Hans Hasse1, Jadran Vrabec2 1Lehrstuhl für Thermodynamik, TU Kaiserslautern 2Lehrstuhl für Thermodynamik und Energietechnik, Universität Paderborn
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Technology Vision 2020: The U.S. Chemical Industry Fields of Major New Developments Chemical Supply Chain Information Manufacturing & Engineering Management Systems & Operations Science Engineering Computational Technologies Computational Computational Process Operations Molecular Fluid Modeling & Simulation & Science Dynamics Simulation Optimization => Link between Engineering and Chemistry => New processes, products, materials
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Modeling and Simulation Methods Time / s 100 Continuum Methods (ms) 10-3 Mesoscale Methods (μs) 10-6 Molecular Force Fields (ns) 10-9 Semiempirical QM (ps) 10-12 Ab initio QM (fs) 10-15 10-10 10-9 10-8 10-7 10-6 10-5 10-4 (nm) (μm) Length / m
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Moore‘s Law GFLOPS / GIPS Year Further progress from new simulation methods and software
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Bridging Scales Examples Continuum Systems Hybrid Mesoscale CFD Systems MD Large COSMO Molecular Systems RS Systems Born-Oppen- Quantum heimer MD Systems
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Methods in Chemical Process Industries Current Applications @ Evonik Degussa: Catalysis Thermo-physical data Polymers Crystallization Particle technology
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse COSMO-RS @ Evonik Quantum chemistry based method for prediction of thermo-physical properties Quantum chemistry based prediction of energy of molecular interactions Crude classical assumptions for entropy Close co-operation between engineers and quantum chemists Benchmark against phenomenolgical group contribution methods (UNIFAC) Quantitative predictions
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Force-Field Methods @ Evonik Example: MD simulations of Water-Polymer interface Qualitative results
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Mesoscale Methods @ Evonik Example: Simulation of particle morphologies α = 16 α=1 α=4 Semiquantitative results
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Industrial Applications of Molecular Methods in Process Engineering Molecular methods are: already used especially attractive if no sufficiently accurate - experiments - calculations with phenomenological methods are possible recognized as a future key technology
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Modelling (Force Fields) Geometry: ¾ Bond lengths and angles Electrostatics: ¾ Position and strength of dipoles, quadrupoles, partial charges Dispersion and Repulsion: ¾ Parameters of Lennard-Jones potentials Many parameters
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Model Parameters from Quantum Chemistry Geometry ¾ HF with small basis set (z.B. 6-31G) or DFT methods Electrostatics from electronic density distribution ¾ MP2 with small polarizable basis set (e.g., 6-311+G**) ¾ Molecule embedded in dielectric cavity for modeling dense fluid phase (COSMO) Dispersion and Repulsion ¾ Requires simulation of arrangements of at least two molecules ¾ CCSD(T) or MP2 with large basis sets (TZV or QZV) ¾ Very high computational effort ¾ Unsatisfactory accuracy Fit to thermo-physical data preferred
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Simulation Basic Methods Molecular Dynamics (MD) Numerical solution of Newtonian equations of motion Deterministic Static and dynamic properties Monte-Carlo (MC) Statistical Method Energetic acceptance criteria Static properties only
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Direct Simulation of Phase Equilibria Example: Vapor-liquid equilibirum of Ethylene Oxide @ 375 K 3500 molecules
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Phase Equilibrium from Grand Equilibrium Method Specs: T, x Liquid Vapor Simulation: Pseudo grand canonical simulation (Specification of μ i ( p ) V, T) l ¾Chemical potentials ¾Partial molar volumes μ li ( p ) ≈ μ li ( p 0 ) + v li ⋅ ( p − p 0 ) Result: p, y
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse High Performance Parallel Computing Scaling on selected hardware platforms: 40 Strider Execution time / 1000 s 30 20 Cacau 10 XC6000 Nu 1 2 4 8 mb 16 Mo er o 32 Str za f pr 64 XC Ca ide rt oce SX 60 ca r sso -8 00 u rs Own parallel FORTRAN codes: SX 8 ms2 thermo-physical properties ls1 nano-scale processes
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Polar Two Center Lennard-Jones Models μ /Q Vapor pressure ε typ. deviation σ < 2% L 4 Model parameters ε energy dispersion σ size repulsion L elongation μ dipole Simulation Exp. (corr.) or polarity Q quadrupole Models of 80 simple pure components Parametrization: VLE data only
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Pure Component Models: Extrapolations Joule-Thomson Inversion Ethylene p / MPa Oxygen Symbols: Simulation Linies: Reference EOS Nitrogen red: critical data T/K
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Ethylene Oxide Worldwide annual production about 18 Mio. tons Use: PET and anti-freeze Properties: - explosive - toxic - highly flammable - cancerogenic - mutagenic Explosion @ Sterigenics Intl., Ontario, CND (2004): 4 wounded, hall destroyed
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Industrial Property Simulation Challenge 2007 Industrial Fluid Properties Simulation Collective
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Model of Ethylene Oxide 3 LJ Sites (one for the oxygen atom, one for each methylene group) 1 static point dipole along symmetry axis Rigid, non-polarizable Adjustment of five parameters (σO, εO, σCH2, εCH2, μ) to experimental VLE data
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse IFPSC Challenge 2007 : Problem Description Development of a new molecular model for Ethylene Oxide Prediction of 17 properties in 3 categories Vapor liquid equilibria / Second derivatives/ thermal properties surface tension Saturated densities Heat capacity Vapor pressure Isothermal compressibility Enthalpy of vaporization Surface tension Critical properties Transport properties Normal boiling temperature Shear viscosity Second virial coefficient Thermal conductivity Benchmarked to “reference data”
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Deviations from Reference Data sat. liquid density sat. vapor density 2nd virial coefficient uncertainty vapor pressure of reference enthalpy of vaporization normal boiling temperature Round-Robin critical density model critical temperature sat. liquid isob. heat capacity new model sat. vapor isob. heat capacity score: sat. liq. isoth. compressib. 331/350 sat. vap. isoth. compressib. surface tension sat. liquid shear viscosity sat. vapor shear viscosity sat. liq. thermal conductivity sat. vap. thermal conductivity -40 -20 0 20 40 60 deviation from deviation fromexperiment reference / /% %
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse IFPSC Party 2007
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Ethanol δρ = 0,3 % δp = 3,7 % 3 LJ sites plus 3 point charges Point charges model both electrostatics and H-bonding
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse H-Bonded-Species in Methanol + CO2 Geometrical H-bonding criterion of Haughney et al. Equimolar mixture @ 350 K, 0.1 MPa Legend: Donor: light blue Acceptor: single: orange double: red
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse 1H-NMR Spectroscopy of H-Bonding Mixtures 293,15 K Methanol - CO2 ppm 338,15 K p = 15 MPa Experiment Simulation
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Overview Pure Component Models Non-polar, 1CLJ Dipolar, 1CLJD Quadrupolar, 2CLJQ Polar, Muti-CLJ Neon (Ne), Argon (Ar) R32 (CH2F2) Flour (F2) iso-Butan (C4H10) Krypton (Kr), Xenon (Xe) R30 (CH2Cl2) Chlor (Cl2) Cyclohexan (C6H12) Methan (CH4) R30B2 (CH2Br2) Brom (Br2) Methanol (CH3OH) CH2I2 Iod (I2) Ethanol (C2H5OH) Dipolar, 2CLJD Dipolar, 2CLJD (contd.) Stickstoff (N2) Formaldehyd (CH2=O) Sauerstoff (O2) Dimethylether (CH3-O-CH3) Kohlenmonoxid (CO) R20B3 (CHBr3) Kohlendioxid (CO2) Aceton (C3H6O) R11 (CFCl3) R21 (CHFCl2) Kohlendisulfid (CS2) Ammoniak (NH3) R12 (CF2Cl2) R12B2 (CBr2F2) R12B1 Ethan (C2H6) Methylamin (NH2-CH3) R13 (CF3Cl) (CBrClF2) Ethylen (C2H4) Dimethylamin (CH3-NH-CH3) R13B1 (CBrF3) R10B1 (CBrCl3) Ethin (C2H2) R227ea (CF3-CHF-CF3) R22 (CHF2Cl) R161 (CH2F-CH3) R116 (C2F6) Schwefeldioxid (SO2) R23 (CHF3) R150a (CHCl2-CH3) (1,1,2) C2F4 Ethylenoxid (C2H4O) R41 (CH3F) CHCl2-CH2Cl C2Cl4 Dimethylsulfid (CH3-S-CH3) R123 (CHCl2-CF3) R140a (CCl3-CH3) Propadien (CH2=C=CH2) Blausäure (NCH) R124 (CHFCl-CF3) R130a (CH2Cl-CCl3) Propin (CH3-C≡CH) Acetonitril (NC2H3) R125 (CHF2-CF3) C2H5Br (CH2Br-CH3) Propylen (CH3-CH=CH2) Thiophen (SC4H4) R134a (CH2F-CF3) (1,1) CHBr2-CH3 SF6 Nitromethan (NO2CH3) R141b (CH3-CFCl2) CH2F-CCl3 R14 (CF4) Phosgen (COCl2) R142b (CH3-CF2Cl) (2,2,2) CHClBr-CF3 R10 (CCl4) Benzol (C6H6) R143a (CH3-CF3) R112a (CCl3-CF2Cl) R113 (CFCl2-CF2Cl) Toluol (C7H8) R152a (CH3-CHF2) CHF=CH2 R114 (CF2Cl-CF2Cl) Chlorbenzol (C6H5Cl) R40 (CH3Cl) CF2=CH2 R115 (CF3-CF2Cl) Dichlorbenzol (C6H4Cl2) R40B1 (CH3Br) C2H3Cl (CHCl=CH2) R134 (CHF2-CHF2) Cyclohexanol (C6H11OH) CH3I CHCl=CF2 CFCl=CF2 (1,2) CH2Br-CH2Br Cyclohexanon (C6H10O) R30B1 (CH2BrCl) CFBr=CF2 CBrF2-CBrF2 R20 (CHCl3) CHCl=CCl2
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Modelling of Mixtures σA, εA A A Predictions ξ = 1 or σAB, εAB Fit to one experimental data point p(T,x) oder H(T) B B σB, εB Unlike interaction A-B: Electrostatics fully predictive Lennard-Jones parameters from combination rules Modified σ AB = ( σ A + σB ) /2 Lorentz-Berthelot ε AB = ξ ⋅ ε A εB
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Vapor-Liquid Equilibrium of Heptafluoropropane + Ethanol International Fluid Properties Simulation Challenge 2006 Data basis: => VLE @ 283 K Problem: => H-bonds Peng-Robinson EOS Simulation,ξ =1 + Experiment
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Henry’s law constant von Oxygen in Ethanol International Fluid Properties Simulation Challenge 2004 □, ∆ , Experiment Simulation, ξ = 1 Simulation, ξ fitted
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Extrapolation to multicomponent mixtures R14 + R23 + R13 + Experiment PR-EOS, kij fitted to binary subsystems Simulation, ξ fitted to binary subsystems Fully predictive No ternary parameters
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse MD Simulation of Nanoscale Processes: Condensation N = 40 000 1 CLJ
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse MD Simulation of Nanoscale Processes: Condensation N = 40 000 1 CLJ
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Prediction of Nucleation Rates Ethane Simulation Class. nucleation theory Laaksonen et al. Carbon Dioxide Simulation Class. nucleation theory Laaksonen et al.
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Molecular Simulation of Hydrogels What are Hydrogels? Three-dimensional hydrophilic polymer networks Extreme swelling/shrinking Very sensitive to surroundings & conditions Examples for applications: Super-absorber Contact lenses Drug Delivery Sensors 200 µm Actors (e.g., micro-valves) 3 actors Biocatalysis flow channel
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Swelling of Hydrogels Parameters: Influence of temperature Temperature pH-value Theta- Salt(s) temperature Solvent(s) Co-polymers Crosslinker PNiPAM, MBA PNiPAM by electron-microscope
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse MD-Simulation of Hydrogels • Mainly PNiPAM (numerous experimental data) PVA PNiPAM PAA • Solvents: Water, Ethanol, aqueous NaCl solution • Temperatures: 260 K - 340 K • Force fields from literature
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse MD-Simulation: Collapse of Hydrogel primitive PVA-network 39
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Force Field Study PNiPAM Water: SPCE Water: TIP4P Gromos96 UA - - Gromacs53a6 UA - + OPLS AA ++ + Legend: Default Water model of force field - Temperature dependence not observed + Temperature dependence observable ++ Temperature dependence reasonably predicted
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse MD-Simulation PNiPAM-Chains T < TΘ T > TΘ 41
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Survey of Coordinated Research Programs DFG SPP 1155: Molekulare Modellierung und Simulation in der Verfahrenstechnik ProcessNet Arbeitsausschuss MMS: Molekulare Modellierung und Simulation für das Prozess- und Produktdesign DFG SFB 716: Dynamische Simulation von Systemen mit großen Teilchenzahlen DFG TFB 66: Molekulare Modellierung und Simulation zur Vorhersage von Stoffdaten für industrielle Anwendungen BMBF IMEMO: Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation SFB 716
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Summary Molecular Modelling and Simulation in Process Engineering used in industry high potential is recognized future key technology truly interdisciplinary field Co-operation between ¾ Engineering ¾ Natural Science ¾ Computer Science ¾ Mathematics
Lehrstuhl für Thermodynamik Prof. Dr.-Ing. H. Hasse Thanks to co-workers… Jürgen Stoll Thorsten Schnabel Gimmy Fernandez Bernhard Eckl Isaiah Huang Martin Horsch Thorsten Merker …and colleagues from industry Gabriela Guevara Johannes Vorholz (Evonik) Jonathan Walter Robert Franke (Evonik) Stephan Deublein Bernd Eck (BASF) Cemal Engin Manfred Heilig (BASF)
You can also read