LIGHT HARVESTING IN LARGE-AREA NANOSTRUCTURED 2D-MOS 2 LAYERS - MATTEO GARDELLA UNIVERSITÀ DI GENOVA - DIPARTIMENTO DI FISICA JOINT EPS-SIF ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Light harvesting in large-area nanostructured 2D-MoS2 layers Matteo Gardella Università di Genova - Dipartimento di Fisica Joint EPS-SIF International School on Energy 2021 Tuesday, July 20th
Why this talk? Evolution of solar cells: 1° generation → silicon (p-n junctions) 2° generation → thin films 3° generation → new concepts (e.g. nanostructured solar cells) ➢ 2D-semiconductors (like MoS2) represent ultimate thin films ➢ Efficient light harvesting is required for increasing optical absorption ➢ Absorption enhancement is only a first step towards competitive performances for solar cells (other challenges to be faced: e.g. high quality material growth, electrical performances)
Transition Metal Dichalcogenides (TMDCs) 2D materials portfolio Jariwala et al., ACS Photonics 2017, 4, 2962−2970 TMDCs promising materials for opto-electronics and MoS2 bandgap energy between 1,2eV and 1,9eV photovoltaics!
Fabrication routes Mechanical exfoliation Large area growth e.g. Chemical Vapor Deposition ▪ crystalline quality ▪ large area ▪ good electronic properties ▪ scalable ▪ small area ▪ conformal growth ▪ randomic process ▪ polycristalline 2μm ▪ expensive lithography ▪ lower properties
Light harvesting strategies Despite the MoS2 high optical absorption coefficient, the atomical thickness reduces the effective absorption requiring light harvesting strategies Plasmonic coupling Diffractive anomalies Light deviated parallel to the active 2D material surface Rayleigh Anomaly Guided Mode Anomaly Atwater, Polman, Nature Mater 9, 205–213 (2010) (launched by the grating) q ➢ Light scattering = ⋅ + θ ➢ Back-reflection ➢ Localized surface plasmons E H ➢ Surface plasmon polaritons Bhatnagar et al., Nanoscale, 2020, 12, 24385–24393 Bhatnagar et al., ACS Appl. Mater. Interfaces 2021, 13, 13508-13516
Large area 2 (cm ) gratings fabrication Photoresist SiO2 λ P= 2 sin θ Laser Interference Lithography (LIL) Lloyd’s mirror LIL configuration Polymer mask 1 1. MoS2 nanostripes arrays MoS2 deposition 2 Al deposition 2. Continuous MoS2 films Metal mask Reactive Ion SiO2 grating on silica grating Etching MoS2 deposition
MoS2 nanostripes arrays Growth of 4nm thick MoS2 stripes Diffractive anomaly (different stripes width) MoS2 SiO2 Normalizing to the MoS2 surface coverage, higher extinction with less material comparing to continuous flat MoS2 film! Bhatnagar et al., Nanoscale, 2020, 12, 24385–24393
Continuous MoS2 films on silica gratings Diffractive anomaly Conformal growth of 4nm MoS2 layers on top of silica gratings q (°) 60 = ⋅ + θ 55 MoS2 Extinction (a.u.) 50 45 SiO2 40 700 A 35 30 25 600 B (nm) 20 Sample 2 (P=450nm) 15 10 Sample 1 (P=290nm) 5 500 0,25 0 C 60 D C B A 400 D 50 RAair 40 300 200 0 5 10 15 20 25 30 35 q (°) q() 30 z (nm) 100 P=290nm 20 Tunability in a broad spectral range 10 RAsub (300-700nm) by controlling either GMA 0 0 250 500 750 300 400 500 600 700 800 900 the period or the incidence angle x (nm) (nm) Bhatnagar et al., ACS Appl. Mater. Interfaces 2021, 13, 13508-13516
Total integrated transmission measurements 0,4 0,4 Flat MoS2 Sample 1 0,3 0,3 q=0° q=0° q=35° q=35° Absorption Absorption 0,2 q=40° 0,2 q=40° q=45° q=45° 0,1 0,1 0,0 0,0 500 600 700 800 900 500 600 700 800 900 Integrating sphere setup (nm) (nm) Detected signal (S): integrated ✓ Resonant absorption enhancement up to 240% at θ=45° transmission, reflection and ✓ Averaged absorption gain (470-750nm) ≈110% at θ=45° diffuse scattering Absorption: A=1-S Bhatnagar et al., ACS Appl. Mater. Interfaces 2021, 13, 13508-13516
Conclusions ➢ Scalable fabrication of large area nanostructured samples (either MoS2 stripes arrays or conformal MoS2 layers on silica gratings) ➢ Tunable and broadband absorption enhancement in MoS2 ultra-thin films via diffractive anomalies Co-authors acknowledgements F Buatier de Mongeota, MC Giordanoa, M Bhatnagara, D Chowdhurya, C Mennuccia, A Mazzantib, G Della Valleb, C Martellac, P Tummalac, A Lampertic, A Mollec (a) Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy (b) Dipartimento di Fisica and IFN-CNR, Politecnico di Milano, Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy (c) CNR-IMM Unit of Agrate Brianza, via C. Olivetti 2, Agrate Brianza, I-20864, Italy
You can also read