Laboratory Course in Condensed Matter Physics Prof. Mario Rocca AA 2013-2014
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Laboratory Course in Condensed Matter Physics Prof. Mario Rocca AA 2013-2014 Prerequisites: concepts of solid state physics like direct and reciprocal space The progress in Physics is strictly connected with the Advancements in the methods of experimental investigation, disclosing new areas of research. E.g. : Superconductivity was discovered by serendipity when scientists understood how to reach extremely low temperatures. Surface Science developed following the establishment of ultra high vacuum technologies The course deals with the principal methods of crystallographic and spectroscopic investigation available today to recover information at atomic as well as nanoscopic scale, both in the bulk and at the surface of a specimen. •How to determine the crystallographic, electronic and magnetic structure in the bulk and at surfaces and interfaces. •How to determine the dynamical properties: vibrational, electronic and magnetic excitation spectra •How to modify and manipulate such properties following gas adsorption, chemical reactions and nanostructuring.
Probe particles for Surface Science Investigations The experimental information is mediated by probe particles. For their choice we have to consider: 1) the depth of the desired information 2) the interaction cross section (elastic as well as inelastic) e.g. for magnetic properties the probe particle must have a magnetic moment as it is the case for photons, neutrons and electrons 3) the desired time resolution 4) the availability and the intensity of the sources in the lab or in great scale facilities For bulk properties: photons and X Rays, neutrons, swift electrons and ions For surface properties: grazing incidence photons and X Rays, chemically inert atoms at thermal energy, slow electrons, low and medium energy ions Ultrarapid phenomena can be studied only with photons
Condition over l The necessary condition to see an object is that the wavelength l of the probe particle is comparable or smaller than the dimension of the object. For the crystallographic structure what matters is the lattice spacing (0.2 nm). This condition determines the energy scale of the probes 10 keV photons (X rays) 100 eV electrons (low energy electrons) 100 meV neutrons (thermal neutrons) 20 meV He atoms (thermal He beams) This energy scale is important to estimate the influence of the probe particle on the sample
Cristallography and Microscopy Accurate crystallographic information can only be retrieved from scattering experiments. Energy transfer is undesired. The smallest observable size is determined by the wavelength of the probe particle. The largest by the transfer width of the instrument. Choice of probe particles: Volume: X Rays, neutrons, swift electrons Surfaces: grazing incidence X Rays (XRD), thermal He atoms (HAS o TEAS), slow electrons (LEED) or swift electrons at grazing incidence (RHEED), low and medium energy ions. Alternatively one can use microscopy tools: 1) By image formation whereby the resolution is determined by probe particle wavelength and by the aberrations of the lenses 2) By scanning probe techniques: a beam is focussed on a small area and a macroscopically integrated response is assigned to it
Transfer width The transfer width w corresponds to the size of the area over which the wave associated with the incident particles is coherent (it has a well defined phase relationship q||=kf||-ki || transferred momentum q||= k |sinf-sin i| w=2/q|| with q|| uncertainty over q|| (width of diffraction spots) q||=(q|| /E) E+(q||/) one obtains two contributions: w=2/(kcosi i) wE=2 2 k/(E |sinf -sini|) For low energy electron diffraction (LEED) k 0.51 E (Ǻ-1) for E given in eV In LEED E 100 eV and f 10-2 rad w 100 Å
coherent sources Small area Far away Monochromatic Radiography using a laboratory X-Ray source Radiography using Synchrotron Radiation
Spectroscopy In spectroscopic studies a given amount of energy is transferred to the sample obtaining information on the fundamental as well as on the excited electronic states and on the roto-vibrational levels and the chemical composition of the sample. Possible measurements: Appearance spectroscopies Absorption spectroscopies (flux removed from the primary beam) Energy Loss Spectroscopy and Inelastic Scattering (energy and angle distribution of primary reflected or transmitted particles) Secondary particle analysis (e.g. Auger Electrons or Photons emitted by fluorescence) The information is mediated by the penetration depth of the primary particles and by the extraction depth of the secondary particles. The latter can be of the same sort as the primary ones or different (e.g. electron in - electron out or photon in - electron out)
• volume: absorption of photons of given frequency: IR: roto-vibrational properties, UV o raggi X: electronic properties inelastic scattering of weakly interacting particles neutrons or X Rays (through Raman effect), inelastic scattering of energetic particles : swift electrons (50 keV- 1 MeV), swift ions (1 MeV)
surfaces: Rotovibrational properties: Absorption of IR photons (if the volume is inactive) Electronic preoperties : Photoemission induced by UV o soft X Rays inelastic scattering of strongly interacting particles: atoms or slow electrons for vibrational properties low energy ions (keV) for the chemical analysis Chemical composition: emission of secondary ions and electrons or Auger electrons
Electrons as Probe particles Electrons play a particularly important role in surface science studies since: 1) They are easy to produce and detect. 2) The information depth depends on their kinetic energy: 10 eV
sonde spettroscopiche per superficie assorbimento IR in riflessione (se il volume è inattivo) proprietà rotovibrazionali scattering anelastico elettroni lenti (10-100 eV) elettroni veloci (1-10 keV) radenti alta risoluzione proprietà vibrazionali (0-0,5 eV) bassa risoluzione proprietà elettroniche (1-100 eV) fotoemissione indotta da raggi UV o X molli sfruttando il limitato libero cammino medio degli elettroni fotoemessi (XPS o ESCA e UPS) struttura elettronica scattering anelastico di ioni di qualche keV composizione chimica emissione di ioni secondari SIMS composizione chimica emissione di elettroni secondari ed Auger composizione chimica
sonde spettroscopiche per volume e superficie interfacce nascoste e composizione in profondità: con tecniche di superficie rimuovendo, nel corso della misura, gli strati più esterni del materiale. con fotoni emessi o assorbiti solo all’interfaccia (ottica non lineare) con metodi di volume tagliando il materiale in fette di spessore di poche centinaia di nanometri disposte verticalmente all’interfaccia con un Focussed Ion Beam (FIB) e studiando quindi il campione con microscopia di trasmissione di elettroni (TEM)
Cristallografia e Morfologia Le informazioni cristallografiche si possono ottenere mediante esperimenti di scattering elastico. La cessione di energia al corpo deve essere minimizzata per non alterarne le caratteristiche. La dimensione massima dei dettagli visualizzati dipende dalla coerenza delle particelle sonda, quella minima dalla lunghezza d’onda. La scelta della particella sonda dipende dalla proprietà in studio: Volume: raggi X, neutroni, elettroni ad alta energia Superficie: raggi X radenti (XRD), atomi di He termici (HAS o TEAS), elettroni lenti (LEED) o elettroni energetici radenti (RHEED), scattering di ioni. Alternativamente l’informazione si ricava mediante microscopia usando la particella sonda più conveniente. 1) con ricostruzione di immagini mediante lenti. La risoluzione raggiungibile è determinata dalle aberrazioni delle lenti e dalla lunghezza d’onda della sonda. 1) con misure in scansione, in cui il fascio delle particelle sonda viene focheggiato su un’area piccola misurando un segnale di risposta ad esso associabile Per migliorare il contrasto nelle immagini è utile la combinazione della microscopia con metodi spettroscopici (Spettromicroscopie).
Microspie e Spettromicroscopie condizione necessaria per vedere un oggetto è che 1) la sonda abbia lunghezza d’onda (λ=h/mv per particelle, λ=c/ν per i fotoni) paragonabile o inferiore alle dimensioni dell’oggetto stesso. 2) che vi sia contrasto 3) che la sonda sia coerente spazialmente e temporalmente
You can also read