La dematerializzazione della fisica: l'Universo è un gigantesco computer quantistico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
La dematerializzazione della fisica: l’Universo è un gigantesco computer quantistico Giacomo Mauro D’Ariano Università di Pavia Giacomo Mauro D’Ariano Seralmente, Università degli Studi di Torino
Cosa dobbiamo capire: La realtà: ‣ non è così come ci appare ‣ è quantistica ‣ è un immenso computer quantistico ‣ la risoluzione è altissima
Cosa dobbiamo capire: La realtà: ‣ non è così come ci appare ‣ è quantistica ‣ è un immenso computer quantistico ‣ la risoluzione è altissima
Sappiamo che tutto il mondo fisico deve obbedire alla teoria quantistica La teoria quantistica è la grammatica della fisica
L’esperimento della doppia fenditura
L’esperimento della doppia fenditura Fred Alan Wolf Dott. Quantum
L’esperimento della doppia fenditura Fred Alan Wolf Dott. Quantum
Dualismo onda-corpuscolo vale per ogni tipo di particella: materiale, luce, …
L’esperimento della doppia fenditura
La meccanica quantistica è alla base della tecnologia attuale
Il computer Mark-I
Il transistor
Intel 4004
Pentium Intel
Applicazioni della meccanica quantistica editorial Quantum possibilities Commercial quantum devices are in their infancy, but the growing industry targeting quantum technologies is already having a tangible effect on the job market. A t the March meeting of the American that there are plenty of job opportunities “For the students, even the exposure to Physical Society in Los Angeles this for quantum physicists eager to start their the questions posed by these engineering year, the Google Quantum AI lab careers beyond academia. challenges makes a big difference.” presented Bristlecone, their newest quantum The symbiosis between academia and The first cohort of Bristol-trained processor and the latest development on high-tech companies has been a reality in quantum engineers started their doctoral the road towards a quantum computer1. many fields of physics for decades — a well- course in 2014, and several similar The machine boasts 72 qubits, but it’s known example being the semiconductor programmes have been set up around the possible that many young physicists at the industry. Nonetheless, just a few years ago same time elsewhere in the UK. Of course, the meeting were more interested in the fact it would have been difficult to imagine opportunities to obtain training that is well- that Google was also throwing a so-called a flourishing job market or widespread suited to research in the world of quantum quantum AI party. With IBM and Rigetti commercial prospects to be strong points technologies don’t stop at bespoke PhD Computing hosting similar events, it would in favour of starting a PhD in quantum programs or in the UK: aspiring quantum seem that now is a good time to be working information. Perhaps slightly more unusual technologists can already choose between a on quantum computing. is this sector’s thirst for theorists: the quantum computing professional certificate These companies belong to a Quantum Information Processing (QIP) from MIT, a Master in Science at QuTech burgeoning industry looking to develop conference, an event traditionally focused on Academy Delft or a junior quantum engineer and commercialize quantum technologies. theoretical work, hosted an industry session program hosted by Rigetti computing. No No matter how different the physics of a this year, with career opportunities in doubt many other courses will follow. quantum device may be with respect to its prominent display. The promise of quantum Although there are plenty of reasons classical analogues, the business landscape advantage for solving optimization problems to celebrate these working and learning that is taking shape around this technology and the need to develop native quantum possibilities, as often happens in the presence looks fairly standard in its makeup. The programming languages for future quantum of large-scale changes driven by massive dominating forces seem to be the quantum computers, however, explains it all. investments, eyebrows have also been raised. research arms of well-established computing Proficiency in quantum mechanics is It’s not uncommon to encounter, half- e molto companies, surrounded by an ecosystem an unavoidable requirement for those who whispered at conferences, that inevitable of start-ups and university spin-offs. These wish to develop the quantum technology scepticism born out of the concern that join companies such as ID Quantique and of tomorrow. However, the fast-paced sizable commercial interests may somehow D-Wave, pioneers from a previous wave environment of a research field on the compromise the purity of the fundamental of investment in quantum technologies2 verge of a technological turning point scientific endeavour. Moreover, there is also altro around the year 2000. poses challenges that the average quantum the danger that the industry’s potential better There is something for all tastes: from the physicists may not be trained to tackle — remuneration and career opportunities manufacturers of quantum computers on a even to make progress within academic may start to systematically siphon the most variety of platforms (the ones that regularly research. Since Stephanie Wehner, professor brilliant students away from academic make the headlines) to developers of quantum of quantum information in Delft, and quantum research. After all, choosing sensors or cryptographic devices. But there are also companies creating quantum algorithms, with varying degrees of classical hybridization and machine-learning thrown into the mix. And there are also consultants her team set about developing a quantum internet, they are faced with problems that traditionally fall in the remit of computer science. These included, for example, the development of packet-routing protocols: industry over academia no longer requires a step away from the quantum world. Regardless of how one feels about the rapid expansion of this industry, it’s fair to say that the mixture of excitement and ancora … tasked with addressing difficult problems by a task that has little to do with quantum investment in the quantum technologies dipping into the quantum world as the need physics itself, but requires that one takes industry seems to be all to the students’ arises, perhaps with the help of a quantum into account the quantum nature of the advantage. Graduates now have access to annealer. These are complemented by an array underlying information carriers. a growing quantum-focused job market of intermediaries seeking to help existing The need for professionals with a more that provides concrete alternatives to an companies understand how they could benefit varied skillset that includes, but is not academic career — a possibility that was not from the looming quantum revolution — or avoid being caught off-guard by it. To get limited to, quantum physics, has led to the creation of tailored degrees. “Industries editorial always available to their older colleagues. ❐ a feeling of the diversity of companies want people with this ability to function Quantum possibilities involved in this endeavour, the program of effectively in an interdisciplinary team, Published online: 6 April 2018 the Quantum Computing for Business because not everyone is going to have https://doi.org/10.1038/s41567-018-0125-9 conference provides a good example3. the same training or background when What form Commercial a commercial quantum devicesquantum working in are in their infancy, butquantum tech. Weindustry the growing think thattargeting quantum technologies is References revolution might take, or indeed whether this has benefits for the research field as 1. Kelly, J. A Preview of Bristlecone, Google’s new quantum already having there will a tangible be one effect at all, is the sort ofon the job market. question well,” explains Peter Turner, director of the processor. Google Research Blog (5 March 2018); http://go.nature. com/2IKWLIo investors bet on. But the rapid expansion of Quantum Engineering Centre for Doctoral
Cosa dobbiamo capire: La realtà: ‣ non è così come ci appare ‣ è quantistica ‣ è un immenso computer quantistico ‣ la risoluzione è altissima
Il quantum computer Un quantum computer utilizza “qubits”: quantum bits. Un quantum bit può assumere i valori 0 e 1, ma può anche assumere i due valori “contemporaneamente”, (in sovrapposizione)!
Fattorizzazione in primi Algoritmo per fattorizzare in primi: complessità esponenziale! Esempio: nel 1994 ci sono voluti 8 mesi di calcolo parallelo di 1600 workstations per fattorizzare un numero di 129 cifre. Con la stessa potenza di calcolo ci vorrebbero 800,000 anni per un numero di 250 cifre e 10^25 anni per un numero di 1000 cifre!!!!
Fattorizzazione in primi Se avessimo un quantum computer potremmo usare l’algoritmo di Shor, che ha complessità polinomiale. Per un numero di 1000 cifre basterebbero pochi milioni di steps!!!
Una nuova informatica: l’Informatica quantistica QUANTUM TOMOGRAPHY QUANTUM TELEPORTATION
La lezione della teoria quantistica Non località dovuta all’entanglement: il risultato della misurazione è inerentemente probabilistico, ovvero non può essere interpretato come lettura di una realtà pre-esistente locale. Ci sono due alternative: 1.il risultato è generato all’atto della misurazione oppure 2.il risultato dipende da operazioni eseguite remotamente
a School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel; bSchmid College of Science and Technology, Chapman University, Orange, CA 92866; cInstitute for Quantum Studies, Chapman University, Orange, CA 92866; dDipartimento di Matematica, Politecnico di Milano, 20133 Milan, Italy; and eH. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom Contributed by Yakir Aharonov, November 12, 2015 (sent for review April 3, 2015; reviewed by Charles H. Bennett and Lucien Hardy) The pigeonhole principle: “If you put three pigeons in two pigeon- To find those instances we subject each particle to a second La lezione della teoria quantistica holes, at least two of the pigeons end up in the same hole,” is an obvious yet fundamental principle of nature as it captures the very essence of counting. Here however we show that in quantum me- chanics this is not true! We find instances when three quantum particles are put in two boxes, yet no two particles are in the same measurement: pffiffiffi we measure whether each pffiffiffi particle is in the state j+ ii = ð1= 2ÞðjLi + ijRiÞ or j− ii = ð1= 2ÞðjLi − ijRiÞ (these are two orthogonal states, so there exists a hermitian operator whose eigenstates they are––we measure that operator). The cases we are interested in are those in which all particles are box. Furthermore, we show that the above “quantum pigeonhole found in j + ii, i.e., the final state principle” is only one of a host of related quantum effects, and points to a very interesting structure of quantum mechanics that jΦi = j+ ii1 j+ ii2 j+ ii3 . [3] was hitherto unnoticed. Our results shed new light on the very notions of separability and correlations in quantum mechanics Importantly, neither the initial state nor the finally selected and on the nature of interactions. It also presents a new role for state contains any correlations between the position of the entanglement, complementary to the usual one. Finally, interfero- particles. Furthermore, both the preparation and the postse- metric experiments that illustrate our effects are proposed. Particolari stati “entangled”: lection are done independently, acting on each particle separately. | weak value and weak measurement entanglement and quantum Let us now check whether two of the particles are in the same | | | nonlocality correlations two-state vector formalism foundations of box. Because the state is symmetric, we could focus on particles 1 quantum mechanics and 2 without any loss of generality; any result obtained for this pair applies to every other pair. Particles 1 and 2 being in the same box means the state being in di tre particelle che possono solo stare in due scatole, Quantum Pigeonhole Principle Arguably the most important lesson of quantum mechanics is that we need to critically revisit our most basic assumptions about the subspace spanned by jLi1 jLi2 and jRi1 jRi2; being in different boxes corresponds to the complementary subspace, spanned by jLi1 jRi2 and jRi1 jLi2. The projectors corresponding to these non ce ne sono mai due nella medesima scatola! nature. It all started with challenging the idea that particles can subspaces are have, at the same time, both a well-defined position and a well- defined momentum, and went on and on to similar paradoxical facts. But, the pigeonhole principle that is the subject of our paper Πsame LL 1,2 = Π1,2 + Π1,2 RR RL , [4] (Aharonov et al., Proc Natl Acad Sci USA, 113 532 2016.) seems far less likely to be challenged. Indeed, although on one hand it relates to physical properties of objects––it deals, say, with Πdiff 1,2 = Π LR 1,2 + Π1,2 actual pigeons and pigeonholes––it also encapsulates abstract where mathematical notions that go to the core of what numbers and counting are so it underlies, implicitly or explicitly, virtually the Significance whole of mathematics. [In its explicit form the principle was first stated by Dirichlet in 1834 (1) and even in its simplest form its uses We show that quantum mechanics violates one of the funda- in mathematics are numerous and highly nontrivial (2).] It seems mental principles of nature: If you put three particles in two therefore to be an abstract and immutable truth, beyond any boxes, necessarily two particles will end up in the same box. doubt. Yet, as we show here, for quantum particles the principle We find instances when three quantum particles are put in two does not hold. boxes, yet no two particles are in the same box, a seemingly Consider three particles and two boxes, denoted L (left) and R impossible and absurd effect. This is only one of a host of re- (right). To start our experiment, we prepare each particle in a lated quantum effects which we discovered and which point to superposition of being in the two boxes, a very interesting structure of quantum mechanics that was hitherto unnoticed and has major implications for our un- 1 derstanding of nature. It requires us to revisit some of the most j+i = pffiffiffi ðjLi + jRiÞ. [1] 2 basic notions of quantum physics––the notions of separability, of correlations, and of interactions. The overall state of the three particles is therefore
p Il concetto di particella non è sostenibile what is Q U A N T U M P H YS I C S Meinard Kuhlmann, a philosophy professor at Bielefeld University in Germany, received dual degrees in physics and in philosophy and has worked at the universities of Oxford, Chicago and Pittsburgh. As a student, he had an inquisitive reputation. “I would ask a lot of questions just for fun and because they produced an entertaining confusion,” he says. 32 Scientific American, August 2013 Physicists routinely describe the universe as © 2013 Scientific American being made of tiny subatomic particles that push and pull on one another by means of force fields. They call their subject “particle physics” and their instruments “particle accel- ican articles. However compelling it might appear, it is not at erators.” They hew to a Lego-like model of the all satisfactory. what is real? world. But this view sweeps a little-known For starters, the two categories blur together. Quantum field fact under the rug: the particle interpretation theory assigns a field to each type of elementary particle, so there is an electron field as surely as there is an electron. At the of quantum physics, as well as the field inter- same time, the force fields are quantized rather than continu- pretation, stretches our conventional notions ous, which gives rise to particles such as the photon. So the dis- of “particle” and “field” to such an extent that tinction between particles and fields appears to be artificial, and physicists often speak as if one or the other is more fundamen- ever more people think the world might be tal. Debate has swirled over this point—over whether quantum made of something else entirely. field theory is ultimately about particles or about fields. It start- ed as a battle of titans, with eminent physicists and philoso- Physicists speak of the world as being made of particles and force fields, but it is not at all clear The problem is not that physicists lack a valid theory of the phers on both sides. Even today both concepts are still in use for what particles and force fields actually are in the quantum realm. The world may instead consist subatomic realm. They do have one: it is called quantum field the- illustrative purposes, although most physicists would admit of bundles of properties, such as color and shape ory. Theorists developed it between the late 1920s and early 1950s that the classical conceptions do not match what the theory By Meinard Kuhlmann by merging the earlier theory of quantum mechanics with Ein- says. If the mental images conjured up by the words “particle” Photographs by Travis Rathbone © 2013 Scientific American August 2013, ScientificAmerican.com 33 stein’s special theory of relativity. Quantum field theory provides and “field” do not match what the theory says, physicists and the conceptual underpinnings of the Standard Model of particle philosophers must figure out what to put in their place. physics, which describes the fundamental building blocks of mat- With the two standard, classical options gridlocked, some phi- ter and their interactions in one common framework. In terms of losophers of physics have been formulating more radical alterna- empirical precision, it is the most successful theory in the history tives. They suggest that the most basic constituents of the materi- of science. Physicists use it every day to calculate the aftermath of al world are intangible entities such as relations or properties. particle collisions, the synthesis of matter in the big bang, the ex- One particularly radical idea is that everything can be reduced to
non-relativistic spacetimes (as well as for relativistic spacetimes); thoug of course, we should not expect either causality condition to hold in th Il problema della non-relativistic case. Malament (1996) localizzazione Theorem 1 (Malament). Let (H,A H-> E&,a *-* U(a)) be a locali tion system over Minkowski spacetime that satisfies: (1) Localizability (2) Translation covariance (3) Energy bounded below (4) Microcausality Then EA = 0 for all A.
la particella è uno “stato” del campo quantistico! la particella è una regola di probabilità! come un numero fra 1 e 6 lo è per un dado o i valori 0 e 1 sono per il bit classico Ma è un dado quantistico!
La lezione della teoria quantistica Holismo: La conoscenza del tutto non implica la conoscenza delle parti. Esistono proprietà del tutto che sono incompatibili con qualunque proprietà delle parti.
La lezione della teoria quantistica La nozione di oggetto come “insieme di proprietà” è insostenibile. Occorre sostituirla con quelle di sistema e di evento. “oggetto” “sistema”
Fondation Jean Piaget Osserviamo eventi, non oggetti! Chapitre)original)servant)d’introduction)au)recueil)d’articles) Psychologie)et)épistémologie)publié)chez) Denoël
Teoria operazionale D H sistema K C G L I J F B A E evento
. Since the theory hence associates a joint probability to any ork, it will be convenient to represent the joint probability o ork by the network Teoria itself,operazionale e. g. p(i, j, k, l, m, n, p, q|circuit) DAG Netta separazione A fra teoria B e dato sperimentale: C D - la teoria dà una descrizione C matematica l di sistemi ed eventi e ne predice la A probabilità j E n E F G G - dato sperimentale: quali eventi effettivamente accadono Dm q i H L M N Bk Fp O P evento sistema
Teoria dell’informazione Run del programma subroutine registro
La teoria quantistica è una La teoria quantistica è un teoria dell’informazione estensione della logica Teoria operazionale: probabilità congiunte degli eventi possibili Non si tratta quindi di modificare + la logica (come pensava von connessioni fra gli eventi Neumann), bensì di estenderla In quanto estensione del calcolo delle probabilità è un’estensione della logica
Principi per la teoria quantistica AND PERINOTTI CHIRIBELLA D’ARIANO, ” s r y. ki the o b oo p,’ Causalità s d u s. m thi ” a ntu i o n, roun ulate ses! q u u t e g st c i ind trib th po xer b eh c on from retic the e le s rc h c s eo ll Discriminabilità perfetta t he OF G e d e EN p pr VAin E cip a r t gin m a e ori antu e inf d rea u s l ea hani n-th do a l r mec mati it an or l o d d h y al e y s s tr u c s, te m t t h e si c c o n s b ot to m n p q p u p n r t he m o IT Y ild sim sho c Discriminabilità locale , cifi e ca om antu sing the ok ok y bo VERS xtbo ‘rebu ce of ation o pe r f s o w w l e s f e qu l e s . U o n s , v e a r NI te t to e n rm ry s h r u of t h n c i p i v a t i e c t i in U s u o nic ffor seq info e w ord IN, th o t um t s ri er sp t a k sh an p e c s t p t d p e r o r x tra GIS e cha ous e l con tum jus boo e qu e as m fir ficien new tion f er e t r y. FROM FIRST PRINCIPLES QUANTUM THEORY S m aci ica uan o is th iv f t Atomicità della composizione o a “An COL A m d g q t is n y. Th ding ntuit l s fr ore e ically form mpu theo u t , au e l o rn I l s. bilit bui ter toc d m rad i o o in s , c f t h e NI an si c r t qu ating as th to lea T p e n o h y p l i c a b y r c o u n p r t e r a n i n g a a nt u h y s i c i n g o m t I l p , e o r u p and “Pa ascin ting i hing N, M a s r t h at i h o r f f e t i c al a p l e s O d q in t ore ivers rinci aste nform ith ase. r y an ents ders a f s en s w i s N S O e m e M t h n l p to m i w e he o tu r u d n nt u f t h Compressione ideale f u d l pre dent ARO o a m n a s ua ow o o u l w i t h r e t i c h o w a nt u n s , a t i o n u m t a l s , e e p e s Q l y A s r k eo u o c e p a nt i o n a d e F el em U Stu OT T he o h a r n t q at i x i s t m e w i o n - t il l l e s t r u c e q u i t h e of q u of e s k i n g s ch te a e i s a A c a d C y t e T S o r f a t r ma e r w c o n s e n d w r s e , p s e r e e h . H the nd th e w r e e u s r r IT f a m ne nfo ead ly r pre ilat t co her ide he Q U r o o n n t u h e r a s i x i t h e r c i e n t t o r e s s im c i e n e a r c o u t s y, w roup embe icati Xi ). Purificazione t N a i T Qu rat rom tep, ef fi tion nd a ef fi t res ious r s g n of a l t i ve he a m mu ( FQ ce b u o r y f b y s o w t o l n o t a o d a n s a n ed a e c u r Un ads t rica, C om itute en r et i c Y i A a S o i i l e me o ni c In s t c e o up the Step nd h hica erst onta s aim as th t P nd av A t s S te r T h . up rld, a grap e und ok c ook well i r a r y, a t y of Pho stion pu e f or n Gr o U R o m Q HEO FIRLESach o s e o o c ie r f o Q ue r C o t i tu t ui a o wo itive an b he b The b y, as s of e T h of u t i nt o r y c e l d , t e s . s o p h a P r t u m i c a l S e nt e o n a l e nt r I n s o l l o q i o n s i o n s C e the the fi adua philo is an p t e at i r tm et l C est at n g r I A NO of Qu the O , of th ound e p a e r im t i o n a l Q u p p l i c o d e r an d R s o f r e F e D f P na n a ra un e n c e ’A on d te he t h w o te r at i o e f o es O D a t i y a n L e t of t at o n d z sci UR ound ciet ze e and s o r F el l t he I oun l P r i e ac h T ROM CIPl Appro A s g of h e F y t s M dF S o e n IL , of e i n e he on O M O s a n s i c al f S c i te r n e P r V i s i t i t t e e r of t a n n W e re ndati C ic y G I A c h a n n P h a r d o t hw e o s t c i a i s a o mm b e e r m wh fou y. ty r a s s o g . H e n g C me m h e H r s i ed o n t h e o t h e M e e r i c L o mb t N o r i A s on ndi a dt i v e s d f A m t u t o in g a A n d e U n c u fie l do d t i t E L L o n g K e St a c s , a a r d n . a v i a i s f o t um i ) , a n a r d e . s u B h i w y F RINmationa I mp I R I of H r of t P h y s a s a a t i o t P it n X w s Co CH t y w m r a c t i v qu a ( F Q a s a t i o n e IO versi emb ds in , he infor sso rch a and titute he w unda L GIU Uni , a m etho 201 tum 0 f e ro sea nic s Ins 016 m fo O IAN tP s e T h y s i c s i c al M X i ) . In qu a n s t a n i s r e e c h a t i o n . I n 2 a nt u i H s o n n qu h t P ore ( F Q r y i n s A s o r y um . m e Q u i at i R PAn Infor D’A i e T h t i tu te t h e o T I i s T h e u a nt i o n a l s s o c a r c h s p O T o n q a t A s e In r o u R IN ati tion, und res r re RO g PE nform rma e Fo ruc tu ze fo of O OL I PA antum um i ber o ntum ann nf o f t h St p r i U A MA ELL t Q u u a n e m Q u a e um q m of i s a i o n a l v o n N He ernat hof f- M O R I B T TI I nt B i r k t he C O CHI INO A GI ULIO PER ISBN 978-1-107-04342-8 GI OLO Cover design: Andrew Ward PA 9 781 1 07 043428 >
Info-theoretical principles for Quantum Theory and Quantum Field Theory PRINCIPLES THEORY RESTRICTIONS INTERPRETATION Operational Strict symmetric monoidal category theory Information MATH. FRAMEWORK equivalence implication B needs A framework A B AND PERINOTTI CHIRIBELLA D’ARIANO, .” s or y ki the oo ,’ m t his b nd up s. ” nt u , ou late es! ua on dq uti e gr stu rcis hin n trib m th tic po exe b e c o fr o re th e le s rch c s -theo o all cip ea ani Local Atomicity of Perfect Ideal rin p p E VA ginal res ech ation and m rm d it d s ys uc t s, te m t h e Causality Purification e e de GEN o ri ntum info rea i c al o n s t r t t o m discriminability composition discriminability compressibility on ok RSIT th OF Y k, rt a pa ld qu impl houl oo bui of s n s e d s hy e c c p n r t h e um g cifi ca pe we from quan . Usin s, the bo t bo xtb to ‘re nce atio fs r y NIVE s s a t e e m r y o s how rule f the ciple ation c tive d in , U i t c s ffor equ nfor o o the show ntum c ts t prin deri erspe r v r N n i t r ao ISI c ha s e on s m u a st ook qua asp firs ient w p n fo e G c j ex AS me aciou ical uantu ot is b the itive rom ef fi ly n c e o at i u te r o r y . FROM FIRST PRINCIPLES QUANTUM THEORY n n h g f l “A COL s t u o l s o r e i c a f o r o mp t h e m tum ud i T og q . It it y. ildin rin an ng, a the l learn d e NI u y s ic s abil rebu unte rotoc nd m a ra um in ic s, c of th r t q ati t as to c a t IT ph ppli , by e co ion p r ter ring uan phys ding al “Pa ascin ting i hing N, M s e tic al a iple ter th rmat sho . Of f nd q ts in rstan ore er s c as a a f sen s wis NSO o h e n e the niv prin m inf wit eas eor y tude und t um t h e M r e nt O of ith u tical w to tum , and nal th l s , s per a n w of p de R u l n s o r k w e o r e n h o q u a i o n s e p t i nt u m i o n a d e e o Qu A A e s e l l o my U tu S OT T e r t c ach is a F cade i s t h e w o -t h l e a u c t u a n l t r q h ex f qua fess ing a t e r y fram atio wil ons ent e t A SC i o ro ek e e T eo r th ew form ade rec res ate cour ers er d w se , p se e h . H t he er I T of d an tum er a n ix in he re iently o rep simil ient arch utsid w h p Q U er tion . an it y, ou emb ica i) N s t e o Qu rath rom tep, t ef fic tion nd as ef fic t res ious T ers he gr a m mun ( FQ X of t f a b u o r y b y s o w t o l n o t o d a s a ed a e c u r n n i v t , te c e c al Y a m ien et i a U eads eric ic C o stitu A S c eor p S o the Step nd h hica erst ontain s aim as th av i l A m t o n s In t P nd te r T h u . up rld, a grap e und ok c ook well i r a r y, a t y of Pho stion pu e f or n Gr o R QUHEO FIRLESach o o s s e o o c ie r f o r ue m wo itive an b he b The b y, as C o t i tu t ui a o of e T h Q of u t int or y c eld, tes. soph a P r t u m i c a l S e nt e o n a l e nt r I n s o l l o q i o n s i o n s the the fi adua philo is an pt e C at i ar t m e te l C e s t c at NO f Qu he O of th ound ep erim ion l Q ppl a u i on dergr and R I A s o o f t r e, F e D f P n at o n a r a un e n c e D’A tion and ette f the t t h w o te r at i e f o es Quantum sci U RO unda iet y e e L nd o s o r a ello he In ound Priz F ch te a n s T ROM CIPl Appro A Fo oc ,a s t l O M nd l S c i e n IL z ofe in g of h e F e y he Locality Reciprocity Homogeneity Isotropy Unitarity 9781107043428: D’Ariano, Chiribella and Perinotti: PPC: C M Y K o O M i c s a y s i c a of S s t e r n e P r V i s i t i t t e e r of t a n n W e re ndati C t h c i a i s a o mm b e e r m ou Theory G I A c h a n n P h a r d o t hw e a M e e r i c L o mb t N o r s s o . H e g C me m e H is A ong ndin nd a ed th w it y n f or y e r s d o t he t he n i v u s e e l d d of d . Am tuto ing a LA K ta a d a U foc fi n e i I s t mp u t B E L H o n g t h e S s i c s , aw a r o n . a v i t y i s nt u m X i ) , a w a r d s . F RINmationa I I R of r of P h y a s t i t P i Co CH t y w ma r a c t i v qu a ( F Q a s a t i o n e IO versi emb ds in , he infor sso rch a and titute he w unda NO L 0 f e GIU Uni , a m etho 201 tum ro a cs s 6 fo e t P ese ani s In 201 m T h y s i c s i c al M X i ) . In qu a n t a n i s r e c h s t i o n n . I n u a nt u Ph oret ( FQ r y in si s . H A s o r y um m ue tio q R IA PAn Infor D’A Q ia in e T h t i tu te t h e o T I i s T h e u a nt i o n a l s s o c a r c h T n q t A e se In s r o u p INO atio n, nda es r g E R r m at i o o u tu r f o r O UR A of O P Info form the F Struc rize OL f p PA antum um in ber o ntum ann MA ELL t Q u u a n e m Q u a e um q m of i s a i o n a l v o n N He ernat hof f- O RIB TI Quantum Cellular Int Birk OM HI OT t he I AC IO C ERIN Automata on a Cayley G UL P ISBN 978-1-107-04342-8 GI OLO graph of G Cover design: Andrew Ward PA 9 781 1 07 043428 > Quantum Walk on Cayley graph of G Linearity m>0: deformed De Sitter GR heuristics Quantum Walk G virtually Relativity Principle Particle as Poincaré Cayley graph on Cayley graph Abelian without space-time invariant quasi-isometrically of Abelian G embeddable in Euclidean space m=0: deformed Lorentz Relativistic limit Free Quantum Field Theory m ∈ S1 LTM Standards discrete proper time
L’algoritmo della “particella relativistica” è l’algoritmo quantistico più semplice! La meccanica quantistica relativistica delle particelle discende da principi puramente informatici, senza usare: meccanica, cinematica, spazio-tempo, relatività, … In particolare, si ricava la relatività ristretta… Si ricava la fisica da matematica pura, senza usare primitive fisiche. La fisica emerge da un grande schermo digitale quantistico!
Version April 24, 2018 submitted to Entropy 12 of 16 La teoria che si ricava è un automa cellulare quantistico Figure 5. We show the evolution of a bound state of the two particles peaked around the value of the total momentum p = 0.035p. The mass paramater is m = 0.6 and the coupling constant c = 0.2p. On nel caso della teoria the left is depicted the probability distribution of the initial state and on the right the that of the evolved state after t = 128 time-steps. One can notice that in the relative coordinate x1 x2 the probability delle particelle non distribution remains concentrated on the diagonal, highlighting that the two particles are in a bound state. The diffusion of the state happens only in the centre of mass coordinate. interagenti è un quantum walk
D’Ariano, Mosco, Perinotti, Tosini, Entropy 2016 18 228 Dirac 3d mass: 0.002 sigma: 32 x0: [140,140,140] k0: [0.05,0.05,0.05] spinor: ["Exp[I k0.#]",0,0,0]
BGMP Yi , A j , Bk , Dm Cl , En , F p , Gq BGMP A B e Dm A EA Fenomenologia nuova Cl , En , F p , Gq A j B e F B e e E Aj F e p(A j , Yi ) = Yi A j p(A j , Y , i) = Y , HE e F e i H A p(A jA B , Yi ) = Yi O e , e j H ee E F e O e = Yi O, e H e —————— 1. tutto è Fermionico GR + QFT: la scala di Planck O e —————— —————— 2. “raddoppiano” le specie di particelle Due particelle che collidono all’energia di Planck —————— 2p 2p (.54MWh) producono un buco nero! kx k⇤ 3. ) afrequenza ⇤= w w⇤ ) t⇤ = , , massima m m⇤ k⇤ w⇤ 2p 2p 2p Una particella con una massa 2ptroppo grande x k⇤ ) a = 4. vettore , w w ) t kx k⇤ ) a⇤w= = , m mw -5g)wdiventa ⇤ ) tun mm k⇤ d’onda massimo , (2.18*10 ⇤= , ⇤ ⇤ ⇤ ⇤ 1 h̄k ⇤ k⇤ w⇤ buco nero! m⇤ = lim 2pp w 5. wmassa ⇤ ) tdi⇤= particella m c(0) k!0 , 3pmassima c(k) m⇤ w⇤ 1 h̄k Planck mass m⇤ = lim p a ⇤ 1 h̄k c := c(0)k!0 6. dispersione del vuoto = h̄ = mc(0) ,3p c(k) ⇤ a⇤ c m⇤ = lim p c⇤ k!0 3p c(k) c(0) 1 h̄k a⇤ = lim 7. … p c := c(0) = , h̄ = m⇤ a⇤ c k!0 3p c(k) c(0) c⇤ a⇤ c := c(0) = , h̄ = m⇤ a⇤ c a⇤ c⇤ 0) = , h̄ = m⇤ a⇤ c c⇤
Cosa dobbiamo capire: La realtà: ‣ non è così come ci appare ‣ è quantistica ‣ è un immenso computer quantistico ‣ la risoluzione è altissima
Aj e —————— E F e p(A j , Yi ) = Yi H—————— e , —————— Teoria puramente matematica contiene i suoi standards LTM e O 2p —————— 2p 2p kx k⇤ 2p ) a⇤ = , kw k⇤ w x = t⇤ , = w , w⇤ ) t⇤m )⇤a⇤) = 2p k m m⇤w⇤ k⇤ kx k⇤ ) a⇤ = , w ⇤ w⇤ ) t⇤ = , 2p k⇤ 2p w⇤ kx k⇤ ) a⇤ = , w w⇤ ) t⇤ = , m m⇤ 1 h̄k k⇤ w⇤ m⇤ = lim p Utilizzando l’argomento 1 h̄k 1 h̄k k!0 3p c(k) c( del mini buco nero si ha1 m lim m⇤ = lim p h̄kp a⇤ } = m⇤ = lim⇤p m∗ : massa di Planck 3p c(k) c(k) c(0) k!0 3p k!0 k!0c(0)3p c(k)c := c(0) c(0)= , t⇤ h̄ = m a⇤ h̄ =am⇤⇤ a⇤ c c := c(0) = , t⇤ c := c(0) = , h̄ = ma ⇤⇤ a⇤ c c44 := c c(0) = , h̄ = m⇤ a⇤ c a⇤ = 1.62 ⇤ 10 35 m, t⇤ = 5.39 ⇤ 10 s, ⇤ m⇤ = 2.18 ⇤ 10 c8⇤ kg dal limite “relativistico”
electron The Planck scale 1cm3 —> 2.35*1098 = 1 tera di tera di .. di tera (8 volte) di qB
p(A j , Yi ) = Yi H —————— , e BGMP O —————— e —————— A j , Bk , Dm Cl , En , F p , Gq Teoria puramente matematica contiene i suoi standards LTM —————— 2p 2p 2p kw k⇤ w A B kx kA⇤ 2p) a ⇤ e= , x 2p = t⇤ , = w , w⇤ ) t⇤m )⇤a⇤) = k m m⇤w⇤ j k kx k⇤ )2p a⇤ = E , e w 2pw⇤ ) t⇤ = F ⇤ , ⇤ A jk,xYi )k⇤=)Y a⇤i = H , kw⇤ w⇤ ) t⇤ =, , m m⇤ w⇤ k⇤ e w⇤ 1 h̄k m⇤ = lim p Utilizzando l’argomento O e 1 h̄k 1 h̄k 1 h̄k k!0 3p c(k) c( del mini bucom⇤nero si p m = lim ha lim m = lim p a⇤ } = p ⇤ m∗ : massa di Planck ⇤ k!0 3p c(k) c(0) k!0 3p c(k) k!0c(0) 3p c(k)c := c(0) c(0)= , t⇤ h̄ = m —————— a⇤ c := c(0) = , h̄ =am⇤ a⇤ c t⇤ c := c(0) = ⇤ , h̄ = a m ⇤⇤ a⇤ c c := c c(0) = , h̄ = m⇤ a⇤ c a⇤ = 1.6210 35 m, t⇤ = 5.3910 44 s, ⇤ a⇤ = 2.1810 8ckg⇤ 2p 2p a⇤ = , w w⇤ ) t⇤ = , m m⇤ k⇤ w⇤ In principio m∗ si può misurare! 1 h̄k dal limite m⇤ = lim p “relativistico” k!0 3p c(k) c(0) a
ARTICLES PUBLISHED: 5 JUNE 2017 | VOLUME: 1 | ARTICLE NUMBER: 0139 In vacuo dispersion features for gamma-ray-burst neutrinos and photons ARTICLES Giovanni Amelino-Camelia1,2*, Giacomo D’Amico1,2, Giacomo Rosati3 and Niccoló Loret4 NATURE ASTRONOMY Over the past 15 years there has been considerable interest in the possibilityThe main challenges for the ininterpretation of quantum-gravity-induced of the photon fea- vacuo dispersion, 105 the possibility that spacetime itself might behave essentially like a dispersive ture inmedium terms offorthe particle modelpropagation. (5) come from Twoprevious recent data analyses studies have exposed what might be in vacuo dispersion features for gamma-ray-burst (GRB) neutrinos of energy in based on equation (5), which had given negative the rangeresults35–37. Most of 100 TeV and for GRB photons with energy in the range of 10 GeV. We of here show these that these previous two features analyses are roughly focused mainly com- photons associ- on single 4 patible 10 with a description such that the same effects apply over four orders ated toofamagnitude in energy.results GRB, and produced We alsothatshow thattoitbe incompatible appear should not happen so frequently that such pronounced features arise accidentally, as a result of (still unknown) aspects of the with values of η of about 30 (as considered in the present study). mechanisms producing photons at GRBs or as a result of background neutrinos accidentallyγ fitting the profile of a GRB neutrino affected by in vacuo dispersion. 1,000 This might suggest that the correct (‘fundamental’) description of the effects considered here is of a statistical nature, such that it |∆t|/(1 + z) (s) might be unnoticeable in certain analyses focused on a single par- T possibility of quantum-gravity-induced in vacuo disper- Model ticle. Still, we feel that the 30 GeV photon observed from the short he100 sion, an energy dependence of the travel times of ultrarelati- The class of scenarios wedeserves GRB090510 intend tospecial contemplate here is grounded consideration, even ifinthe fundamental vistic (that is, of negligible mass) particles from a given source some much-studied descriptionmodels of theofeffects spacetime quantization is statistical 1–8 and, for in nature. the 30 GeV photon That to a given detector, has been suggested in several studies . Part of type of data 1–10 wasanalyses we are observed 35 interested in, has the implication that within the half-second time window where most 10 the interest in this possibility comes from the fact that it is a rare the time needed for a ultrarelativistic particle to travel from a given GRB090510 photons with energy between 1 and 10 GeV were also example of a candidate quantum-gravity effect that could lead to source to a given detector receives a quantum spacetime correction, observably large manifestations—even if, as it appears to be safe to here denoted observed. as Δt. WeInfocus lightonofthethis, classitofisscenarios naturalwhose to assume predic-that the 30GeV assume, its1 characteristic length scale is of the order of the minute tions for energy photon(E)could not have dependence of accrued Δt can allan beindescribed vacuo dispersion in terms effect of more Planck length (inverse of the Planck energy scale MP ≃ 1028 eV) or, of the following than half a second, equation travelling (working in unitsfrom a redshift with the of 0.9 (the redshift of speed-of-light at the most, not much larger than that. scale c setGRB090510), to 1): which implies |ηγ| < 1. It might be significant that the The best opportunity 10 for 100such experimental 1,000 tests 10 has4 so far 105 30 GeV photon from GRB090510 is the only photon in our sample been provided by observations of gamma-ray bursts (GRBs) , 1–4 E E E*/(1 + z) (GeV) comingΔtfrom = ηX a short D(z ) ±GRB: δX if(zthe D ) effect is present (1 ) for long GRBs which set up a sort of race among photons of different ener- M M and absent for short GRBs, then the interpretation should be astro- P P gies and (probably) neutrinos11–14, all emitted within a relatively physical. Alternatively, it could be noted that GRB090510, with its Figuretime small 3 | |Δt|/(1 window.+ z) The versus E*/(1 fact + z) that for understanding our our GRB photonsofand theGRB Here the redshift (z) dependent D(z) carries information neutrino candidates. mechanisms producing Here the content GRBs remainsof Figs 1 and 2 is primitive hasthe been combined main redshift of 0.9, is one of the closest GRBs relevant for our photon on the distance between source and detector, and it factors in challenge, to allow ansince any ofgiven overview time-of-arrival the correlation between |Δt|/(1 + z) difference between and E*/(1 the analysis. + z).interplay A scenario between quantuminspacetime which theeffectseffect and is pronounced the cur- only at large two particles can, in principle, always be attributed to the emis- vature of redshifts spacetime.could be of quantum As usually done in the spacetime relevant origin, but literature 1–3of course would sion mechanism. (keeping require in mind athat quantum spacetime the possibility picture indescriptions, of alternative which the dependence on 20
Conclusioni la lezione della teoria quantistica, la logica, la matematica ci insegnano che la realtà: non è fatta di particelle, ma di informazione pura. È un immenso computer grafico quantistico con risoluzione altissima ed enorme potenza di calcolo
Projects: A Quantum-Digital Universe, Grant ID: 43796 Quantum Causal Structures, Grant ID: 60609 G. Chiribella, G. M. D'Ariano, P. Perinotti, Informational derivation of Quantum Theory, Phys. Rev A 84 012311 (2011) AND PERINOTTI CHIRIBELLA D’ARIANO, .” s or y ki the oo ,’ is b up . n tum n , th ound lates es! ” ua o dq uti e gr stu rcis trib th c po exe G. M. D'Ariano, P. Perinotti, The Dirac Equation from Principles of information hin con rom eti he be p l es ar ch ic s f theor all t n o nc i ese cha ion d d - s, pri VA al r me rmat it an te m t h e ep E gin m s y s tr u c t processing, Phys. Rev. A 90 062106 (2014) d e EN o d al t he OF G r t ori antu e inf d rea y si c c o n s b ot to m a qu mp oul l p h e r t he m on Y ,p fic an ok build of si n sh g o ok RSIT o p eci we c from uantu Usin , the b VE xtb ‘re ce atio s ry I of h o w u l e s t h e q l e s . t i o n s i v e d ina , UN i c s te or t to quen form t h ry eo ows um r ts of rincip eriva spec t r n ff se in t t a k sh an p e c s t p t d p e r o r ao SIN cha ous e l con tum jus boo e qu e as m fir ficien new tion f er extr S GI e t r y. FROM FIRST PRINCIPLES QUANTUM THEORY m i a n o hi s t h iti v f ro f l l y ma pu t “An COL A m dac logic qua sn g It i it y. T ildin rintu col s more dica infor com e th e eo NI ntu au n c s. ua ting, s the lear bu te ra th il to , q h ysi licab y re coun pro r and g a ntum ysic s g of A. Bisio, G. M. D'Ariano, P. Perinotti, Quantum Cellular Automaton Theory of Light, r t a ta t o IT p p b n al l ap les, r the atio hor t f fer qu in ph and e in a in “Pa ascin ting i hing N, M tic ore er s a cip te form ith s se. O y and nts erst a f sen s wis NSO as the univ al prin to m m in nd w al ea heor stude r und m e M nt u of t h pre dent ARO l of h c u a n t , e ua o u k w i t o r e t i h o w u a nt o n s , p t i o t u m n a l s d e e p s Q l ow y Stu OT T A s he a F el d em U t he wor -the earn uc t q uati exce quan ssio g a a c a Ann. Phys. 368 177 (2016) is e on ll tr eq th f fe in te is c SC or y fram mati r wil cons sent d wi rse o , pro seek he He the A nd T t he w r e e e u s r re IT. e f a e fo ad r re at c o er e w h p Q U er tion o tum er a n ix in he re iently o rep simil ient arch utsid it y, grou emb nica Xi ). an N s t e o Qu rath rom tep, t ef fic tion nd as ef fic t res ious T er s m u FQ of t b u o r y f b y s o w t o l n o t a o d a s a n ed a e c u r n i v s t h e c a , a o mm u t e ( c e c al Y U a ead eri ic C stit ien et i A S c eor p S o the Step nd h hica erst ontain s aim as th av i l . a p d i t P , and of Am hoton ns In puter or Th rou QUHEOR FIRLESach p u r ld , a n c k l l r a o G gr e u o o k o o we y s s o e o r iet o r y P s ti m u te f o n wo itive an b he b The b y, as e Co u t of e T h l S o c nt e r f a l Q u of I n s t i t o q u i a s int or y c eld, tes. soph Pr m a Ce n nt l n ns s a nt u t i c tio me te r C o l s t i o t i o the the fi adua philo O i Qua e Op f the unda ar t rime onal Que plica A. Bisio, G. M. D'Ariano, P. Perinotti, Special relativity in a discrete quantum r A N f t h o e p e i l p on derg and R I n s o d o f e r e, e F o e D f P n at o o na f or a ’A o t h tt h r at i un e n c e O D a t i y a n L e t d of t w r a ello e In und riz te e ch es sci UR und iet e e n s s o g F f th Fo y l P te a s T ROM CIPl Appro M A d F o S o c e nz IL , a ofe sitin tee o f the n We he t i o n 9781107043428: D’Ariano, Chiribella and Perinotti: PPC: C M Y K M O a n c al S c i r n Pr re a C O n i c s h y s i o of e s t e a t e a V i mi t b e r o m a n he ound . universe, Phys. Rev. A 94, 04a2120 (2016) I A c i i s m r w f y G c h a n P a r d t hw o em H e ty s s o He g C r a M e e r i c L o mb t N o r r s i ed o n t h e o t h e s A ong. ndin d a m d the i ve f Am tuto ing a Ai n e Un cus field and o ed L L n g K St a s , a a r d . v ia s f o m , d i I s t mp u t IB E f H o f t h e y s i c s aw t i o n P a v i t y i a nt u Q X i ) a w a r n s . F RINmationa I R o o h a a t i F Co O CH sit y ber in P e wa orm s s or ac t nd qu ute ( was datio L I i ve r em hods 10, h m in f f e ar c h c s a s t i t 6 he f oun NO I U n m r o e i n 1 G eU ,a et 2 0 nt u P I nt s r e s c h a n i o n s I n 2 0 nt u m T h y s i c s i c al M X i ) . In qu a RIA sta i e t . a Ph oret ( FQ r y in ssi r y. H m m Ques iation in qu is A eo PAn Infor D’A e tu l c h T h t i tu te t h e o T T I n T h qu an t i o n a A s s o e ar c s p O o a s In r o u IN mati tion, und ures r re O G. M. D’Ariano, N. Mosco, P. Perinotti, and A. Tosini, Path-sum solution of the Weyl quantum g E R a o t fo UR A of r O P Info form the F Struc rize OL f p PA antum um in ber o ntum ann MA ELL t Q u u a n e m Q u a e um q a m al n N f o is ion vo O R I B TI walk in 3 + 1 dimensions, Phil. Trans. R. Soc. A 375: 20160394 (2017) He ernat hof f- Int Birk t he AC OMCHI INOT GI ULIO PER ISBN 978-1-107-04342-8 GI OLO Cover design: Andrew Ward PA G. M. D’Ariano, M. Erba, P. Perinotti, A. Tosini, Virtually Abelian Quantum Walks, J. Phys. 9 781 1 07 043428 > A: Math. Theor. 50 035301 (2017) A. Bisio, G. M. D’Ariano, P. Perinotti, A. Tosini, The Thirring quantum cellular automaton, Phys. Rev. A 97, 032132 (2018) Paolo Perinotti Alessandro Bisio Alessandro Tosini Nicola Mosco Marco Erba
Grazie per la vostra attenzione! Follow project on Researchgate: The algorithmic paradigm: deriving the whole physics from information-theoretical principles. REVIEW G. M. D’Ariano, Physics without Physics, Int. J. Theor. Phys. 128 56 (2017), [in memoriam of D. Finkelstein]
You can also read