Impacts of climate change on the production of crops used in French livestock systems - SHMU
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Impacts of climate change on the production of crops used in French livestock systems Ruget F.(1), Moreau J.-C., Ferrand M., Poisson S.(2), Gate P., Lacroix B., Lorgeou J.(3), Cloppet E. and Souverain F. (4). (1) UMR 1114 EMMAH INRA 84914 AVIGNON cedex 9 (2) Institut de l’Elevage, Auzeville 31326 CASTANET -TOLOSAN and 149 Rue de Bercy 75011 PARIS, (3) Arvalis Institut du végétal, La Minière 78210 Guyancourt/ 31450 Baziège/91170 Boigneville, (4) Météo-France, 42 Av G Coriolis 31000 Toulouse
Introduction Aim of the project : assess the possible effects of climate change on the main livestock systems in France Method : using climate projections of GCM to calculate agroclimatic indices or as inputs of a crop model Aim of this talk : present some of the results of this project temporal and spatial distribution of main climate changes in France, some agroclimatic indices, effects of climate change mainly on forage crops, show some examples of system adaptation.
Climate Temperatures and rain changes Scenario A2 , distant futur (2070-2099) Distant A2 - Reference T °C Distant A2 - Reference T °C Spring Summer ++ ++++ + ++ Distant A2 / Reference Rain Distant A2 / Reference Rain Spring Summer + Data from CNRM Météo-France - (0,4 = - 60%) ACTA CC COST Project 734 Zamok Topol'cianky 4 May 2011 1. Climate
Indicators • dates of practices defined according to the zones (MFA) • criteria defined for each season – first grazing date: several days without rain (favourable) or high rain (saturated soil, un favourable) – production : too high temperatures, low or very high rainfall – hay harvest: several consecutive days without rain for drying • criteria calculation and mapping COST 734 Zamok Topol'cianky 2. Climatic indicators 4 May 2011
Soil trafficability for early grazing more less Number of years among ten when more or less unfavourable conditions will occur in the distant A2 scenario Agro-climatic indicator for the soil trafficability for early grazing is the occurrence of a period of 5 days with rainfall higher than 60 mm occurs at the beginning of spring (500 °C. d after 1st feb.) We compare the number of years with this occurrence in each temporal period COST 734 Zamok Topol'cianky 2. Climatic indicators 4 May 2011
Wheat : increase of shrivelling Arpège 2007- Scenario A2 % of decrease of KW as function of the reference period Trémie semé le 20 octobre 30 84 25 5 3147 3446 33 pertes de PMG s imulées Loss of yield 20 11 78 64 45 37 3 54 2163 12 69 67 (model Panoramix) 3585 51 71 1589 25 2071-2096 2071 à 2096 15 2 40 87 2021-2046 2021 à 2046 56 6 in the near future (red) bisecting line Bissectrice 80 14 in the distant future 10 (green) 29 5 0 0 5 10 15 20 25 30 % of decrease ofperte thede PMG 1000de la pèriode kernel de référence weight (KW) of the reference period More days with high temperatures during grain filling shrivelling worse grain filling COST 734 Zamok Topol'cianky 4. Phenological models 2. Climatic indicators 4 May 2011
Crops: grass, alfalfa, maize COST 734 Zamok Topol'cianky 3. Crop model results 4 May 2011
Short or long term and CO2 effects near A2 – OB near A2 – OB with CO2 without CO2 distant A2 – OB distant A2 – OB with CO2 without CO2 Ratio between the difference future-present and the present yield of grass OB= observed=reference, soil with low water reserve (66 mm), mowing (spaced out cuttings) COST 734 Zamok Topol'cianky 3. Crop model results 4 May 2011
Annual production for alfalfa and grass near A2, green distant A2 red distant B1 orange Alfalfa Grass Ratio between the difference future - present and the present production for 34 actual and ficitve stations COST 734 Zamok Topol'cianky 3.soil Cropwith highresults model water reserve (208 mm). 4 May 2011
Changes of seasonal daily production 60 d_A2 50 n_A2 d_B1 40 obs 30 20 10 0 1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 -10 Aurillac (Lon 02° 26', lat 44° 55', altitude 639 m, Massif Central) Daily dry matter production (kg.ha-1.day1), in the western slope of Massif Central COST 734 Zamok Topol'cianky 3. Crop model results 4 May 2011
Livestock systems COST 734 Zamok Topol'cianky 4. Livestock systems adaptation 4 May 2011
Some french dairy and meat systems intensive and economical dairy system meat and milk, maximum grazing ingestion en kgMS par jour légende ingestion en kgMS par jour légende 18 Ens Herbe Ens Herbe 18 16 16 14 Ens Maïs Ens Maïs 14 12 Foin 12 10 Foin 10 8 eurubannage 8 6 eurubannage 4 6 2 pature 4 2 pature 0 1-janv 15-févr 30-avr 30-juin 1-sept 15-nov 1-janv 0 1-janv 15-avr 1-juin 1-août 15-oct 1-janv Bretagne, Rennes Lorraine, Nancy meat, grazing maize hay semi-intensive mixed dairy system Limousin grazing grass ingestion en kgMS par jour légende 18 16 14 12 Ens Herbe Ens Maïs silage 10 Foin 8 6 eurubannage 4 2 pature 0 1-janv 15-mars 15-avr 20-juin 15-sept 1-nov 1-janv Ségalas, Sud-Ouest Massif-Central, Aurillac maize and zero grazing dairy system ingestion en kgMS par jour légende 18 Ens Herbe 16 14 Ens Maïs 12 10 Foin 8 6 eurubannage 4 2 pature 0 1-janv 1-mars 15-mars 15-juin 1-sept 20-oct 1-nov 1-janv Bassin Adour, Pau COST 734 Zamok Topol'cianky 4. Livestock systems adaptation 4 May 2011
Dairy cows in Lorraine (NE) Nancy : present (and recent past) 1980-2006 ingestion en kgMS par jour légende 18 Ens Herbe 16 14 Ens Maïs 12 10 Foin 8 6 eurubannage 4 2 pature 0 1-janv 15-avr 1-juin 1-août 15-oct 1-janv Near future : 2020-2050 ingestion en kgMS par jour légende 18 Ens Herbe 16 14 Ens Maïs 12 10 Foin 8 6 eurubannage 4 2 pature 0 1-janv 13-avr 1-juin 1-août 25-sept 1-janv Distant future 2070-2099 ingestion en kgMS par jour légende 18 Ens Herbe 16 14 Ens Maïs 12 10 Foin 8 6 eurubannage 4 2 pature 0 1-janv 1-avr 1-juin 1-août 7-oct 1-janv COST 734 Zamok Topol'cianky 4. Livestock systems adaptation 4 May 2011
Conclusion Most important results : changes of dates : all is earlier (more sure because processes involved are well known) changes in production seem to be low in the near future and high in the distant future, especially in the "pessimistic" scenario, which seems to be near from reality. In the distant future, they depend more on the effect of CO2 which is in debate. Moreover, the importance of the processes involved in stresses will take more importance : as the crops will take place in non optimal conditions, some processes like setting of roots and the volume where they can extract water or nutrients become more and more important, and the ability to understand and predict it will have more influence than now.
Thank you for your attention
You can also read