Heterozygous Knock-Out of ETB Receptors Induces BQ-123-Sensitive Hypertension in the Mouse

Page created by Roberto Garza
 
CONTINUE READING
Heterozygous Knock-Out of ETB Receptors Induces
              BQ-123–Sensitive Hypertension in the Mouse
               Nathalie Berthiaume, Masashi Yanagisawa, Julie Labonté, Pedro D’Orléans-Juste

Abstract—Homozygous knock-out of ETA or ETB receptor genes results in lethal developmental phenotypes in the mouse. Such
  deleterious phenotypes do not occur in heterozygous littermates. However, it remains to be determined whether mice partially
  defective in ETA or ETB receptors display significant alterations in their responses to exogenous or endogenous endothelin-1
  (ET-1). Furthermore, the anesthetized ETB (⫹/⫺) knock-out mice showed a significantly higher mean arterial blood pressure
  than the ETA (⫹/⫺) knock-out or their wild-type littermates. The pressor response to ET-1 but not to a selective ETB agonist,
  IRL-1620, was significantly reduced in the ETA (⫹/⫺) knock-out mice. In ETB (⫹/⫺) knock-out mice, the pressor effect of
  IRL-1620 was more markedly altered than those induced by ET-1. In wild-type mice, both ETA and ETB receptors were found
  to be involved in the pressor effect of ET-1, as confirmed by the significant and specific antagonism induced by either BQ-123
  (ETA antagonist) or BQ-788 (ETB antagonist). Also, ETA-selective or mixed ETA/ETB- but not ETB-selective antagonists
  reversed the hypertensive state of the ETB (⫹/⫺) knock-out mice to the level of wild-type littermates. Finally, radiolabeled
  ET-1 plasmatic clearance was altered in ETB (⫹/⫺) but not ETA (⫹/⫺) knock-out mice when compared with wild-type
  animals. Thus, heterozygous knock-out of ETB receptors results in a hypertensive state, suggesting an important physiological
  role for that particular receptorial entity in opposing the endogenous ET-1– dependent pressor effects in the mouse.
  (Hypertension. 2000;36:1002-1007.)
                                      Key Words: receptors, genetic 䡲 arterial pressure 䡲 mice

T    he ETA or ETB receptor homozygous (⫺/⫺) knock-out
     (KO) mice show lethal embryonic defects and a delete-
rious megacolon phenotype, respectively.1,2 Unlike endothe-
                                                                           phenotypic alterations in the cardiovascular pharmacology of
                                                                           exogenous and endogenous ET-1. However, it was first
                                                                           required to fully identify the respective contribution of the
lin receptors, the total deletion of the B2 receptor for brady-            ETA and/or ETB receptors in the vasoactive effects of endo-
kinin or AT-1 receptor subtypes for angiotensin II does not                thelins in the WT littermates. We have therefore attempted in
induce short-term lethal effects in these genetically modified             this study to characterize the pharmacodynamic characteris-
animals,3,4 albeit the former is sensitive to high salt diets.5            tics of endothelin in the systemic circulation of the WT
Furthermore, heterozygous knock-out of the B2 or AT-1                      mouse by the use of the selective ETA antagonist, BQ-123,9
receptor does not significantly affect the vasoactive response             the selective ETB agonist, IRL-1620,10 and antagonist, BQ-
to bradykinin or angiotensin II (Ang II), respectively,5,6 in the          788,11 as well as the mixed ETA/ETB antagonist, SB 209670.12
murine model.                                                              We have also attempted to demonstrate the respective con-
   Unexpectedly, the heterozygous knock-out of endothelin-1                tribution of ETA or ETB receptor types as well as that of
(ET-1) induced a paradoxical mild yet significant elevation of             endogenous ET-1 in the regulation of blood pressure in both
basal mean arterial blood pressure (MAP) in these animals                  strains of anesthetized KO mice.
when compared with wild-type (WT) congeners.7 This hy-                        Finally, ETB receptors have been reported to be involved in
pertensive state may be caused by the adaptation of the ET-1               the clearance of endogenous endothelin.13 The effect of
(⫹/⫺) KO mouse through enhanced central and/or peripheral                  heterozygous knock-out of the ETB receptor on the clearance
sympathetic influences on the cardiovascular function.8                    of radiolabeled ET-1 has been analyzed in this report.
Whether the same hypertensive state as in ET-1 (⫹/⫺) KO
occurs after heterozygous knock-out of ETA or ETB receptors                                            Methods
remains to be reported.
                                                                           Animals Used for In Vivo Studies
   In the present study, we have therefore explored whether a              C57Bl/6⫻J129sv WT mice (weighing 25 to 35 g, either sex) served
partial defect in endothelin receptors, as in heterozygous ETA             as controls. Also, C57Bl/6⫻J129sv ETA or ETB (⫹/⫺) KO (25 to
or ETB KO mice, would be sufficient to induce significant                  35 g, either sex) mice were used. Colonies for each strain of mice

   Received November 29, 1999; first decision January 3, 2000; revision accepted June 6, 2000.
   From the Department of Pharmacology, Institute of Pharmacology Medical School, Université de Sherbrooke, Sherbrooke (Québec), Canada (N.B.,
J.L., P.D.-J.); and Howard Hughes Medical Institute and Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, Tex (M.Y.).
   Correspondence to Pedro D’Orléans-Juste, Department of Pharmacology, Institute of Pharmacology Medical School, Université de Sherbrooke,
Sherbrooke (Québec), J1H 5N4, Canada. E-mail labpdj@courrier.usherb.ca
   © 2000 American Heart Association, Inc.
  Hypertension is available at http://www.hypertensionaha.org

                                                                1002
                                Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
Berthiaume et al           Endothelins in Heterozygous Knock-Out Mice                      1003

(WT or KO) were developed from heterozygous [ETA (⫹/⫺) or ETB
(⫹/⫺) KO] genitor couples that were derived from previously
characterized colonies in the laboratory of Dr Masashi Yanagisawa.

In Vivo Experiments
The mice were anesthetized with ketamine/xylazine (74/9.3 mg/kg
IP, supplemented as needed). Polyethylene catheters (PE-10) were
inserted into the left external jugular vein for drug administration and
in the right carotid artery to monitor MAP and heart rate, according
to a previously reported method14; a cannula (PE-50) was also
inserted into the trachea to facilitate breathing. After surgery, the
anesthetized animals were allowed to stabilize for 15 to 20 minutes. The
pharmacological responses to the various agonists were assessed for
ⱖ20 minutes after the administration of a single bolus dose ranging
from 0.01 to 2.5 nmol/kg (ET-1 and Suc-[Glu,9 Ala11,15]-ET-1 [8-21]
[IRL-1620]) or 5 nmol/kg (norepinephrine, NE); injection volumes
never exceeded 40 ␮L.

Effects of Endothelin Antagonists on ET-1– or
IRL-1620 –Induced Pressor Response and on Basal
MAP in Mice
For some experiments, BQ-123 or BQ-788 (0.01, 0.1, 0.25, and 1
mg/kg) were administered intravenously 5 minutes before a single
bolus injection of either agonist. In another series of experiments, the
direct hemodynamic effects of BQ-123 (1 and 10 mg/kg IP), BQ-788
(10 mg/kg IP), or the metabolically stable ETA/ETB antagonist SB
209670 (10 mg/kg IP) were monitored for 90 minutes in WT or ETB
(⫹/⫺) KO mice.
                                                                            Figure 1. Vasopressor responses to ET-1 (0.1 nmol/kg) or IRL-
Plasmatic Clearance Studies                                                 1620 (0.5 nmol/kg) in absence (䡺) or presence of (A) BQ-123 0.01
In a first series of experiments, radiolabeled [125I]-ET-1 (0.073           mg/kg (o), 0.1 mg/kg (f), 0.25 mg/kg (v), or 1 mg/kg (z) or (B)
pmol/mouse, subthreshold dose) or [125I]-Ang II (0.11 pmol/mouse,           BQ-788 0.01 mg/kg (o), 0.1 mg/kg (f), 0.25 mg/kg (v) or 1 mg/kg
subthreshold dose) were injected in the left jugular vein of WT, ETA,       (z) in WT (A and B), ETA (⫹/⫺) KO (A) or ETB (⫹/⫺) KO (B) mice.
or ETB (⫹/⫺) KO mice. Simultaneously, blood samples were                    Each column with bar represents mean⫾SEM of 4 to 6 experi-
                                                                            ments. *P⬍0.05, **P⬍0.01, ***P⬍0.001 (when compared with con-
collected through a cannulated carotid artery at 3-second time
                                                                            trol). Probability values were derived from Student’s t test.
intervals for 2 minutes. Subsequently, radioactivity in each blood
sample was measured (counts per minute) with a ␥-emission counter
(1470 Wizard Gamma Counter Wallac).                                         obtained by monitoring the response of ET-1 or IRL-1620 (at doses
   In a second series of experiments, BQ-123 (1 mg/kg) or BQ-788            generally selected within the ED50 range) in the presence of increas-
(1 mg/kg) was administered through the left jugular vein of WT mice         ing doses (0.01 to 1 mg/kg) of either BQ-123 or BQ-788. ED50 or
5 minutes before the injection of radiolabeled [125I]-ET-1 (0.073           ID50 values were interpolated by linear regression of the dose-
pmol/mouse). Blood samples were collected and radioactivity levels          response curve in a 0% to 100% limit (no values rejected on the
were measured as described above.                                           curve) with the Quattro Pro Program for Windows (Version 5.00).
                                                                            Furthermore, maximal responses (Emax) were systematically attained
Drugs                                                                       for all peptidic agonists.
ET-1 and IRL-1620 were purchased from American Peptide Co.
BQ-123 was synthesized in our laboratory. BQ-788 was purchased              Ethics
from Peptides International. NE was purchased from Sigma. SB                The care of the animals and all research protocols conform to the
209670 was a generous gift from SmithKline Beecham. [125I]-ET-1             guiding principles for animal experimentation as enunciated by the
and [125I]-Ang II were purchased from Peninsula Laboratories. All           Canadian Council on Animal Care and approved by the Ethics
agents were prepared and administered in PBS (pH 7.4, Sigma),               Committee on Animal Research of the Université de Sherbrooke
except for BQ-123 and BQ-788, which were first dissolved in                 Medical School.
PBS⫹20% dimethylsulfoxide (DMSO) to obtain 10 mg/mL stock
solutions. DMSO was used because these antagonists are insoluble in
aqueous solution at that concentration. [125I]-ET-1 and [125I]-Ang II
                                                                                                         Results
were dissolved in distilled water. Finally, NE was prepared in an           Baseline Parameters
ascorbic acid solution (Baker).                                             The basal MAP (in mm Hg) of mice under ketamine/xylazine
                                                                            anesthesia was averaged for WT (70.1⫾0.7, male; 70.2⫾0.6,
Statistics
Data used in the text and figures are expressed as mean⫾SEM of the
                                                                            female, n⫽118), for ETA (⫹/⫺) KO (71.6⫾1.7, male;
number of observations. Student’s t or Mann-Whitney U tests (when           69.7⫾1.5, female, n⫽23), or for ETB (⫹/⫺) KO (93.2⫾1.1,
recommended by the Statistical Program Graph Pad Instat) were               male; 91.9⫾2.1, female, n⫽53), the latter strain showing a
used for parametric grouped data. Probability values of ⱕ0.05 were          significantly higher blood pressure (P⬍0.05) when compared
considered significant.                                                     with ETA (⫹/⫺) KO or WT animals. No gender-dependent
                                                                            differences in MAP were depicted. Furthermore, basal heart rate
Pharmacodynamic Parameters
The apparent affinities (ED50) for ET-1 or IRL-1620 were calculated         was not significantly different between WT (164.9⫾11.9 bpm,
by linear regression analysis of the full dose-response curve for in        n⫽14), and ETA (⫹/⫺) KO (154.8⫾14.9 bpm, n⫽10) or in ETB
vivo experiments. The apparent affinities for antagonists (ID50) were       (⫹/⫺) KO mice (180.2⫾18.3 bpm, n⫽12) (data not shown).

                                  Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
1004      Hypertension         December 2000

                                                                                           Figure 2. Profile of basal MAP after in-
                                                                                           traperitoneal administration of BQ-123 (1
                                                                                           mg/kg) (A), BQ-123 (10 mg/kg) (B), SB
                                                                                           209670 (10 mg/kg) (C), or BQ-788 (10
                                                                                           mg/kg) (D) in WT (䡺) or ETB (⫹/⫺) KO
                                                                                           mice (F). Each symbol with bar repre-
                                                                                           sents mean⫾SEM of 5 to 15 experi-
                                                                                           ments. A and C: *P⬍0.05 compared with
                                                                                           MAP before administration of BQ-123 (1
                                                                                           mg/kg) or SB 209670 (10 mg/kg). B:
                                                                                           *P⬍0.05, ETB (⫹/⫺) KO vs WT; #P⬍0.05,
                                                                                           WT in presence vs absence of antago-
                                                                                           nist. Probability values were derived from
                                                                                           Mann-Whitney U test.

Effects of ET-1 and IRL-1620 on MAP of Mouse                        IRL-1620 (0.5 nmol/kg) (control, 21.3⫾2.2; ⫹BQ-788,
in Presence or Absence of ETA- or                                   8.6⫾0.2 mm Hg, P⬍0.05), respectively, 90 minutes after ad-
ETB-Selective Antagonists                                           ministration of the antagonists.
ET-1 (0.1 nmol/kg) was more efficient to increase MAP                  BQ-123 (1 mg/kg IP) had no influence on the basal MAP
(25.5⫾1.2 mm Hg) than IRL-1620 (0.1 nmol/kg, 12.1⫾1.0;              of WT mice. In contrast, the same dose of the ETA antagonist
0.5 nmol/kg, 21.3⫾2.2 mm Hg). A 5-minute treatment with             induced a significant reduction in MAP of ETB (⫹/⫺) KO
BQ-123 or BQ-788 (0.01 to 1 mg/kg IV, 5 minutes) dose-              mice. The hypotensive response to BQ-123 (1 mg/kg IP)
dependently reduced ET-1–induced vasopressor response               reached significance 20 minutes after administration. How-
(ID50 for BQ-123, 0.22 mg/kg; for BQ-788, 0.22 mg/kg)               ever, ETB (⫹/⫺) KO mice treated for 90 minutes still
(Figure 1, A and B). The IRL-1620 –induced pressor response         displayed significantly higher MAP (P⬍0.05 at all time
was also dose-dependently reduced by BQ-788 (ID50, 0.10             points) than the BQ-123–treated WT littermates (Figure 2A).
mg/kg) but not by BQ-123 (Figure 1, A and B). In contrast,             Figure 2B shows that BQ-123 (10 mg/kg) administered
NE-induced increase in MAP was not altered by treatment with        intraperitoneally significantly reduced (by ⬇10 mm Hg)
BQ-123 or BQ-788 even at the highest dose of antagonists            basal MAP of WT mice after 1 or 2 minutes after injection of
(1 mg/kg) (NE before BQ-123 or BQ-788: 30.4⫾1.7 mm Hg;              the antagonist. This reduction in MAP was maintained for
after BQ-123, 35⫾3.2 mm Hg; after BQ-788,                           ⱖ90 minutes. Interestingly, the same treatment also reduced
33.6⫾3.5 mm Hg) (data not shown). In another series of              by ⬇30 mm Hg the MAP of ETB (⫹/⫺) KO mice, bringing
experiments, BQ-123 and BQ-788 showed the same apparent             it back to the level of the BQ-123–treated WT counterparts.
affinities against ET-1 in ETA (⫹/⫺) KO (0.22 mg/kg) and ETB        BQ-123 (10 mg/kg) administered intraperitoneally for 60
(⫹/⫺) KO (0.21 mg/kg) mice, respectively, when compared             minutes in WT mice had no significant effect on the pressor
with WT littermates (Figure 1, A and B).                            response to NE (5 nmol/kg) (control, 29.6⫾3.2 mm Hg; in
                                                                    presence of BQ-123, 30.2⫾3.0 mm Hg). On the other hand, a
Treatment With ETA-Selective Antagonist                             treatment with BQ-788 (10 mg/kg) administered intraperito-
Reverses Hypertensive State of ETB (ⴙ/ⴚ)                            neally had no effect on basal MAP either in WT or in ETB
KO Mice                                                             (⫹/⫺) KO mice (Figure 2D). Finally, SB 209670 (10 mg/kg IP)
Intravenous administration of the highest dose of BQ-123 or         induced a significant hypotensive response (starting at time point
BQ-788 (10 mg/kg each) was avoided because of a significant         1 minute with a maximal hypotension of ⱖ18 mm Hg) in ETB
depressor effect of the vehicle (PBS⫹DMSO, 20%). In contrast,       (⫹/⫺) KO but not in WT animals (Figure 2C).
the same vehicle did not significantly affect MAP when admin-
istered intraperitoneally in WT mice (0 minutes,                    Effect of Partial KO of ETB Receptors or of
72.1⫾4.1 mm Hg; 10 minutes, 69.1⫾3.5 mm Hg; 30 minutes,             BQ-123 or BQ-788 on Plasmatic Clearance of
69.1⫾3.2 mm Hg; and 90 minutes, 71.7⫾3.6 mm Hg after                Exogenously Applied [125 I]-ET-1
administration). Furthermore, BQ-123 and BQ-788 (1 mg IP)           Figure 3A illustrates the increase in [125I]-ET-1 (expressed in
significantly reduced the pressor response to ET-1 (0.1 nmol/kg)    counts per minute) in blood samples collected from ETB
(control, 25.8⫾1.2; ⫹BQ-123, 12.5⫾1.5 mm Hg, P⬍0.05) and            (⫹/⫺) KO mice when compared with WT animals. Our

                              Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
Berthiaume et al        Endothelins in Heterozygous Knock-Out Mice                   1005

                                                                                            Figure 3. Profile of [125I]-ET-1 (0.073
                                                                                            pmol/mouse) (A and B) or [125I]-Ang II
                                                                                            (0.11 pmol/mouse) (C) plasma levels after
                                                                                            being intravenously administered in WT
                                                                                            (E) or ETB (⫹/⫺) KO mice (F) (A and C)
                                                                                            or ETA (⫹/⫺) KO mice (f) (B) in function
                                                                                            of time. Each symbol with bar represents
                                                                                            mean⫾SEM of 8 experiments. *P⬍0.05.
                                                                                            Probability values were derived from Stu-
                                                                                            dent’s t test.

results show a reduced clearance of [125I]ET-1 in ETB (⫹/⫺)          induced pressor response was observed, and the two receptor
KO (Figure 3A) but not in ETA (⫹/⫺) KO mice (Figure 3B)              blockers show similar apparent affinity against the response to
when compared with the WT littermates (n⫽8, P⬍0.05)                  ET-1. Curiously, unlike the observations reported in many other
starting at the 9-second time point. In contrast, no differences     animal species, such as the rabbit,14 the rat,11 the dog,15 and
were found in the clearance of [125I]-Ang II in blood samples        humans,16 selective blockade of ETB receptors with BQ-788 did
of ETB (⫹/⫺) KO mice when compared with WT mice                      not potentiate the pressor responses to ET-1 in the mouse. On the
(Figure 3C) (n⫽8). In a fashion similar to the partial KO of         other hand, in WT mice, ETA and ETB receptor activation
the ETB receptors, a treatment with an ETB antagonist,               accounts for ⬇70% and 30%, respectively, of the maximal
BQ-788, but not with BQ-123 induced an increase in [125I]-           pressor responses induced by ET-1, as shown in the present
ET-1 in the blood of WT mice (n⫽6, P⬍0.05) (Figure 4, A              study (Table). ETA but not ETB receptors for endothelin appear
and B).                                                              to be importantly involved in the vasoconstrictive properties of
                                                                     endogenous endothelin in the human brachial arteries.16 In
                                                                     addition, it has been shown that blockade of ETB receptors per se
                         Discussion                                  in both the rabbit and humans promotes an enhancement of
We have shown that intravenously administered ET-1 and               vascular resistance, suggesting a predominant role for this
IRL-1620 both induced a dose-dependent increase in MAP of            receptor type in the modulation of endogenous endothelin-
the anesthetized mouse, illustrating the significant contribution    dependent constriction.14,16 The above-mentioned considerations
of both ETA and ETB receptors on systemic resistance in that         illustrate that the mouse model is quite different from the
species. Those results have been confirmed by the use of the         majority of other species studied, as far as the contribution of
selective ETA or ETB antagonists BQ-123 and BQ-788. With             ETA and ETB receptors is concerned in the vasoactive effects of
either of these antagonists, a significant reduction of ET-1–        endothelins.

                                                                                          Figure 4. Profile of [125I]-ET-1 plasma lev-
                                                                                          els before (F) or after (E) treatment with
                                                                                          BQ-788 (1 mg/kg IV) (A) or BQ-123 (1
                                                                                          mg/kg IV) (B) in WT mice. Each symbol
                                                                                          with bar represents mean⫾SEM of 6
                                                                                          experiments. *P⬍0.05. Probability values
                                                                                          were derived from Student’s t test.

                               Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
1006          Hypertension          December 2000

Pharmacodynamic Characteristics of ET-1ⴚInduced and                         contribution of ETB receptors in resistance vessels is substan-
IRL-1620ⴚInduced Pressor Response in Anesthetized WT, ETA,                  tiated by the fact that in ETB heterozygous KO mice, the
or ETBⴙ/ⴚKO Mouse In Vivo                                                   maximal pressor response to ET-1 is unaltered, unlike that of
       Agonist/Genotype    ED50, nmol/kg   RA, %     Emax, mm Hg            the selective ETB agonist IRL-1620 (Table).
       ET-1
                                                                               The pivotal role of increased ET-1 levels in the hyperten-
                                                                            sive state of ETB KO (⫹/⫺) mice is further substantiated by
         WT                 0.12⫾0.02        100      56.8⫾3.7
                                                                            the fact that we were able to significantly reverse the
         ETA⫹/⫺KO           0.50⫾0.01*       24*      52.4⫾4.8
                                                                            hypertensive state of these animals with the ETA-selective and
         ETB⫹/⫺KO           0.45⫾0.09*       27*      53.0⫾5.4              specific antagonist BQ-123 as well as with the orally avail-
       IRL-1620                                                             able ETA/ETB antagonist SB 209670 but not with the ETB
         WT                 0.08⫾0.01        100      21.3⫾2.2              blocker BQ-788. We also demonstrated an increase in exog-
         ETA⫹/⫺KO           0.08⫾0.01        100      19.4⫾1.2              enously applied [125I]-ET-1 in blood samples of ETB (⫹/⫺)
         ETB⫹/⫺KO                                 䡠䡠䡠       7.1⫾3.5*        KO mice when compared with WT animals. This suggests an
   ED50 indicates effective dose inducing 50% of maximal response of the    altered ETB-dependent clearance mechanism in mice partially
agonist; RA, relative affinity in percentage; and Emax, maximal response.   deficient in ETB receptors. Furthermore, a treatment with the
   Pressor responses (change in MAP) are measured in mm Hg. Each value      ETB blocker BQ-788 but not with the ETA blocker BQ-123
represents mean⫾SEM of at least 6 experiments.                              also significantly increased radiolabeled ET-1 in the blood of
   *P⬍0.05 when compared with values in WT animals.                         WT mice.
                                                                               On the other hand, one should note that the interpretation
   The important contribution of ETB receptors in the pressor               of our results should be limited to the condition of anesthesia
and constrictive effects of ET-1 in the murine model confirms               prevailing in the studied animals. Whether this hypertensive
the observations by Giller et al17 in nonlethal piebald mice, in            state occurs in physiological situations, such as in conscious
which only 25% of normal mRNA for the ETB receptor has                      ETB (⫹/⫺) KO mice, remains to be investigated.
been reported. In this model, it was shown that another                        It is concluded that heterozygous knock-out of ETA or ETB
selective ETB agonist, sarafotoxin S6C, was devoid of initial
                                                                            receptors is sufficient to alter the pharmacodynamic proper-
hypotensive effect albeit it induced a marked pressor re-
                                                                            ties of ET-1. Furthermore, ETB KO (⫹/⫺) mice display an
sponse.17 In the piebald lethal mice, in which the ETB receptor
                                                                            ETA antagonist–sensitive hypertension suggested to be related
is fully mutated and functionally null, the response to sarafo-
                                                                            to the impaired clearance of endogenous ET-1.
toxin S6C was abolished when compared with the nonlethal
                                                                               Interestingly, a significant correlation has been reported
piebald mice.17
                                                                            between the mutation of the ETB receptor gene locus and the
   Albeit not demonstrated in the present report, heterozygous
                                                                            occurrence of Hirschprung disease.20 Thus, it may be of
knock-out of the receptor gene for ETA or ETB receptors
                                                                            interest to monitor the parents of these patients for a possibly
results in a significant reduction (40% to 50%) in the mRNA
                                                                            higher prevalence of hypertensive states.
and protein in the genetically manipulated mice2 (M. Yanagi-
sawa, personal communication). In our hands, this partial
knock-out of either gene resulted in a significant alteration in                                   Acknowledgments
                                                                            This project was financially supported by the Medical Research
the cardiovascular properties of endothelins in the mouse (see
                                                                            Council of Canada (MT-12889 and R-13272) and the Heart and
Table). Heterozygous knock-out of the ETB receptor, in                      Stroke Foundation of Québec. M. Yanagisawa is an investigator of
contrast to that of the ETA receptor gene, resulted in a                    the Howard Hughes Medical Institute, P. D’Orléans-Juste is a
significant increase in MAP of nearly 25 mm Hg, as also                     scholar of the Fonds de la recherche en santé du Québec, and N.
previously reported in heterozygous KO mice for the ET-1                    Berthiaume is in receipt of a studentship of the Heart and Stroke
gene.7 Albeit the hypertensive state occurring in ET-1 KO                   Foundation of Canada. The authors gratefully acknowledge the
                                                                            secretarial assistance of Pascale Martel and Helen Morin and the
mice was demonstrated to involve cardioreflex dysregula-                    efficient technical assistance of Shelley Dixon and Sahar Seyedkalal.
tion,7,8 one can postulate that partial knock-out of the ETB
receptor will preferably result in a modification of the                                                 References
ETB-dependent clearance mechanisms initially reported by                     1. Clouthier DE, Hosoda K, Richardson JA, Williams SC, Yanagisawa H,
Fukuroda et al.13 We suggest that partial knock-out of the ETB                  Kuwaki T, Kumada M, Hammer RE, Yanagisawa M. Cranial and cardiac
receptor may first affect the high-affinity ETB clearance                       neural crest defects in endothelin-A receptor-deficient mice. Devel-
                                                                                opment. 1998;125:813– 824.
receptors that have been reported on the endothelium.18 Such                 2. Hosoda K, Hammer RE, Richardson RA, Baynash AG, Cheung JC, Giaid
alterations in ETB receptor clearance mechanisms would                          A, Yanagisawa M. Targeted and natural (piebald-lethal) mutations of
favor a significant increase in luminal and basolateral ET-1                    endothelin-B receptor gene produce megacolon associated with spotted
concentrations, as recently reported by Ohuchi et al.19 In                      coat color in mice. Cell. 1994;79:1267–1276.
                                                                             3. Borkowski JA, Ransom RW, Seabrook GR, Trumbauer M, Chen H, Hill
support of that hypothesis, Giller et al17 suggested a role for                 RG, Strader CD, Hess JF. Targeted disruption of a B2 bradykinin receptor
increased ET-1 plasma levels in the hypertensive state occur-                   gene in mice eliminates bradykinin action in smooth muscle and neurons.
ring in piebald lethal mice. In conditions in which the ETB                     J Biol Chem. 1995;270:13706 –13710.
receptor is fully repressed, as in ETB KO (⫺/⫺) mice, this                   4. Matsusaka T, Fogo A, Ichikawa I. Targeting the genes of angiotensin
                                                                                receptors. Semin Nephrol. 1997;17:396 – 403.
particular phenomenon (ie, reduction in ETB receptor clear-                  5. Alfie ME, Yang XP, Hess F, Carretero OA. Salt-sensitive hypertension in
ance) is compensated by the complete loss of this receptorial                   bradykinin B2 receptor knock-out mice. Biochem Biophys Res Commun
entity at the vascular smooth muscle level. The significant                     1996;224:625– 630.

                                   Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
Berthiaume et al            Endothelins in Heterozygous Knock-Out Mice                                   1007

 6. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura H, Fogo A,                       Brooks DP, Weinstock J, Feuerstein G, Poste G, Ruffolo RR, Gleason JG,
    Utsunomiya H, Inagami T, Ichikawa I. Murine double nullizygotes of the             Elliott JD. SB 209670, a rationally designed potent nonpeptide endothelin
    angiotensin types 1A and 1B receptor genes duplicate severe abnormal               receptor antagonist. Proc Natl Acad Sci U S A. 1994;91:8052– 8056.
    phenotypes of angiotensinogen nullizygotes. J Clin Invest. 1998;101:         13.   Fukuroda T, Fujikawa T, Ozaki S, Ishikawa K, Yano M, Nishikibe M.
    755–760.                                                                           Clearance of circulating endothelin-1 by ETB receptors in rats. Biochem
 7. Kurihara Y, Kurihara H, Suzuki H, Kodama T, Maemura K, Nagai R,                    Biophys Res Commun. 1994;199:1461–1465.
    Oda H, Kuwaki T, Cao WH, Kamada N, Jishage K, Ouchi Y, Azuma S,              14.   Gratton JP, Cournoyer G, Löffler BM, Sirois P, D’Orléans-Juste P. ETB
    Toyoda Y, Ishikawa T, Kumada M, Yasaki Y. Elevated blood pressure                  receptor and nitric oxide synthase blockade induce BQ-123-sensitive
    and craniofacial abnormalities in mice deficient in endothelin-1. Nature.          pressor effects in the rabbit. Hypertension. 1997;30:1204 –1209.
    1994;368:703–710.                                                            15.   Tsuchiya K, Naruse M, Sanaka T, Naruse K, Zeng ZP, Nitta K, Demura
 8. Ling GY, Cao WH, Onodera M, Ju KH, Kurihara H, Kurihara Y, Yasaki,                 H, Shizume K, Sugino N. Renal and hemodynamic effects of endothelin
    Y, Kumada M, Fukuda Y, Kuwaki T. Renal sympathetic nerve activity in               in anaesthetized dogs. Am J Hypertens. 1990;3:792–795.
    mice: comparison between mice and rats and between normal and                16.   Verhaar MC, Strachan FE, Newby DE, Cruden NL, Koomans HA,
    endothelin-1 deficient mice. Brain Res. 1998;808:238 –249.                         Rabelink TJ, Webb DJ. Endothelin-A receptor antagonist-mediated vaso-
 9. Ihara M, Noguchi K, Saeki T, Fukuroda T, Tsachida S, Kimura S, Fukami              dilatation is attenuated by inhibition of nitric oxide synthesis and by
    T, Ishikawa K, Nishikibe M, Yano M. Biological profiles of highly potent           endothelin-B receptor blockade. Circulation. 1998;97:752–756.
    novel endothelin antagonists selective for the ETA receptor. Life Sci.       17.   Giller T, Breu V, Valdenaire O, Clozel M. Absence of ETB-mediated
    1992;50:247–255.                                                                   contraction in piebald-lethal mice. Life Sci. 1997;61:255–263.
10. Takai M, Umemura I, Yamasaki K, Watakabe T, Fujitami Y, Oda K,               18.   Ozaki S, Ohwaki K, Ihara M, Fukuroda T, Ishikawa K, Yano M. ETB
    Urade Y, Inui T, Yamamura T, Okada T. A potent and specific agonist,               mediated regulation of extracellular levels of endothelin-1 in cultured human
    Suc-[Glu9, Ala11,15]-endothelin-1(8 –21), IRL-1620, for the ETB receptor.          endothelial cells. Biochem Biophys Res Commun. 1995;209:483–489.
    Biochem Biophys Res Commun. 1992;184:953–959.                                19.   Ohuchi T, Kuwaki T, Ling GY, deWit D, Ju KH, Onodera M, Cao WH,
11. Ishikawa K, Ihara M, Noguchi K, Mase T, Mino M, Saeki T, Fukuroda T,               Yanagisawa M, Kumada M. Elevation of blood pressure by genetic and
    Fukami T, Ozaki S, Nagase T, Nishikibe M, Yano M. Biochemical and                  pharmacological disruption of the ETB receptor in mice. Am J Physiol.
    pharmacological profile of a potent and selective endothelin-B receptor            1999;276:R1071–R1077.
    antagonist, BQ-788. Proc Natl Acad Sci U S A. 1994;91:4892– 4896.            20.   Puffenburger EG, Hosoda K, Washington SS, Nakao K, deWit D,
12. Ohlstein EH, Nambi P, Douglas SA, Edwards RM, Gellai M, Lago A,                    Yanagisawa M, Chakravarti A. A missense mutation of the endothelin-B
    Leber JD, Cousins RD, Gao A, Frazee JS, Peishoff CE, Bean JW,                      receptor gene in multigenic Hirschsprung’s disease. Cell. 1994;79:
    Eggleston DS, Elshourbagy NA, Kumar C, Lee JA, Yue TL, Louden C,                   1257–1266.

                                     Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
Heterozygous Knock-Out of ETB Receptors Induces BQ-123 −Sensitive Hypertension in
                                     the Mouse
    Nathalie Berthiaume, Masashi Yanagisawa, Julie Labonté and Pedro D'Orléans-Juste

                                    Hypertension. 2000;36:1002-1007
                                     doi: 10.1161/01.HYP.36.6.1002
   Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
                    Copyright © 2000 American Heart Association, Inc. All rights reserved.
                              Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
                                       World Wide Web at:
                                 http://hyper.ahajournals.org/content/36/6/1002

 Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
 in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
 Office. Once the online version of the published article for which permission is being requested is located,
 click Request Permissions in the middle column of the Web page under Services. Further information about
 this process is available in the Permissions and Rights Question and Answer document.

 Reprints: Information about reprints can be found online at:
 http://www.lww.com/reprints

 Subscriptions: Information about subscribing to Hypertension is online at:
 http://hyper.ahajournals.org//subscriptions/

                       Downloaded from http://hyper.ahajournals.org/ by guest on July 27, 2015
You can also read