GERDA, MAJORANA and LEGEND - towards a background-free ton-scale Ge-76 experiment - INDICO-FNAL
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
GERDA, MAJORANA and LEGEND towards a background-free ton-scale Ge-76 experiment Yoann KERMAÏDIC for the GERDA, MAJORANA and LEGEND collaborations XXIX International Conference on Neutrino Physics Virtual meeting July 2020
Physics case: neutrinoless !! decay Search for a natural double beta decay without the standard emission of two anti-neutrinos (0#!!) n n n p $% ? $% n p 0#!! decay is a search for lepton number violation: ☞ sheds light on Majorana nature of neutrinos ☞ tests theories with lepton number violating interactions ☞ constrains baryon asymmetry scenarios !! decay is energetically favoured in many isotopes: 76Ge – 82Se – 100Mo – 130Te – 136Xe – … 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 2
0#!! experimental signature in 76Ge Counts /(keV.kg.yr) Counts /(keV.kg.yr) R (T=U) 0.06 X = @A 0.04 1 0.02 26.3 h 0 1800 1900 2000 Energy (keV) EF DDAs -1 ?×OP?O Q 10 2 !% @A >?
Outline 76 Ge (88% enr.) 1030 long-term LEGEND 1029 M ton 1000 XNY M/= > MN =[ yr 1028 T1/2 3s DS [years] LEGEND mid-term 1027 200 =NN kg XNY M/= > MN => yr 1026 IO mmin bb range GERDA Background free MAJORANA 0.1 counts/FWHM-t-y running/ended 1025 1.0 count/FWHM-t-y MN =? yr 1024 -3 10-2 10-1 3 10 1 10 102 10 Exposure [ton-years] 1. Status of MAJORANA and GERDA data taking new results 2. Joint worldwide community: LEGEND at this conference! 3. Prospective towards a ton-scale experiment 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 4
MAJORANA DEMONSTRATOR Searching for neutrinoless double-beta decay of 76Ge in HPGe detectors and additional physics beyond the standard model Source & Detector: Array of p-type, point contact detectors 29.7 kg of 88% enriched 76Ge crystals Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV Low Background: 2 modules within a compact graded shield and active muon veto using ultra-clean materials Operating underground at the 4850’ level of the Sanford Underground Research Facility since 2015 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 5
MAJORANA DEMONSTRATOR 2019 0νββ Result Operating in a low background regime and benefiting from excellent energy resolution Initial Release: 9.95 kg-yr open data PRL 120 132502 (2018) 26 kg-yr Latest Release: First unblinding of data 26 kg-yr exposure PRC 100 025501 (2019) Median T1/2 Sensitivity: 4.8 × 1025 yr Full Exposure Limit: T1/2 > 2.7 × 1025 yr (90% CL) Background Index at 2039 keV in lowest background config: 11.9 ± 2.0 cts/(FWHM t yr) Latest result from 26 kg-yr (data up through April 2018) An upcoming result with improved analysis and new data through Nov 2019 A combined total of ~50 kg-yr, a release later this summer Upcoming new results on background model & beyond the standard model searches A new result on excited state decays of 76Ge 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 6
MAJORANA: Progress and Improvements Progress towards modeling the measured background Low-Background Datasets M. Buuck, UW, PhD Dissertation 2019 Enriched Detectors Investigating source of excess backgrounds near Qββ DCR Cut Only Preliminary findings point to 232Th backgrounds distant from the array A higher fidelity modeling of distant components is underway See Poster 257: An Improved Background Model for the MAJORANA DEMONSTRATOR (A. Reine, C. Haufe) An upcoming result with improved analysis and new data through Nov 2019 A combined total of ~50 kg-yr, a release later this summer Improved analysis Improved energy estimator with a corrected waveform start time Excellent energy resolution (2.5 keV FWHM at Qββ) ± 0.2 keV and improved linearity Enhanced the stability and uniformity of background rejection parameters Improved discrimination power of the multisite (AvsE) and surface alpha (DCR) cuts See Poster 586: Status and Results from the MAJORANA DEMONSTRATOR Status and run plan Experiment (J. M. López-Castaño, N. Ruof, A. Hostiuc) 2020 hardware upgrade Improved the robustness of the signal and HV connections based New connectors on an ultra-clean, low-mass, & high-reliability design Deployment of larger inverted-coax point-contact detectors and measure performance Final running to yield an ultimate integrated exposure of ~60 kg-yr 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 7
MAJORANA: Beyond the Standard Model Searches The low backgrounds, low threshold, high resolution spectra allows additional physics searches Controlled surface exposure of enriched material to minimize cosmogenics Upcoming updates to beyond the standard model searches Excellent energy resolution: 0.4 keV FWHM at 10.4 keV Low-energy physics Progress towards a low-E background model: searches pseudoscalar dark matter vector dark matter, 65Zn PRL 118 161801 (2017) PRELIMINARY Best Fit 14.4-keV solar axion 55Fe 68Ge Updated limits to be C. Wiseman, J. Phys. Conf. 210Pb released after unblinding Ser. 1468, 012040 (2020) 3H Search for tri-nuclean decay A test of baryon number PRD 99 072004 (2019) violation Lightly ionizing particles First limit for charge PRL 120 211804 (2018) as low as e/1000 Low energy spectra from 14.9 kg-yr of low- background open physics running (DS1-6a) 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 8
New Result: Double Beta Decay to Excited States Forthcoming arXiv preprint An inherently multi-site signal topology: A “source” detector will have a broad energy spectrum from ββ The “gamma” detector will measure energy peaked at the γ energies 41.9 kg y of isotopic exposure (20.6 kg y of which was blinded) The most stringent limits to date for ββ to each excited state of 76Se due to: Operating an array in vacuum: high detection efficiency See Poster 254: New results from Majorana Demonstrator’s search for Double-Beta Decay Exquisite energy resolution for identifying peaks of 76Ge to Excited States of 76Se (I. Guinn) Low environmental backgrounds & analysis cuts 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 9
GERDA at Laboratori Nazionali del Gran Sasso in Italy GERDA Collaboration meeting Zurich, Switzerland June 2019 http://www.mpi-hd.mpg.de/gerda/ INR Moscow ITEP Moscow European Commission Kurchatov Joint Research Centre Institute JRC Geel About 100 scientists from Europe 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 10
Background-free experiment design [Eur. Phys. J. C (2018) 78:388] • signal topology Pure water Liquid Ar !! decay signal: single-site event energy deposition HH in a 1 mm3 volume PMT Optical fibers # # 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 11
Background-free experiment design [Eur. Phys. J. C (2018) 78:388] • background mitigation Pure water Liquid Ar !! decay signal: single-site event energy deposition HH in a 1 mm3 volume PMT Muon veto based on Optical fibers Cherenkov light and plastic scintillator \ # # 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 12
Background-free experiment design [Eur. Phys. J. C (2018) 78:388] • background mitigation Pure water Liquid Ar ] !! decay signal: single-site event energy deposition HH LAr veto based on Ar in a 1 mm3 volume PMT scintillation light read by fibers and PMT Muon veto based on Optical fibers Cherenkov light and plastic scintillator \ # # 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 13
Background-free experiment design [Eur. Phys. J. C (2018) 78:388] • background mitigation Pure water Liquid Ar ] Ge detector !! decay signal: anti-coincidence single-site event energy deposition ] HH LAr veto based on Ar in a 1 mm3 volume PMT scintillation light read by fibers and PMT Muon veto based on Optical fibers Cherenkov light and plastic scintillator \ # # 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 14
Background-free experiment design [Eur. Phys. J. C (2018) 78:388] • background mitigation Pulse shape Pure water discrimination (PSD) Liquid Ar for multi-site and ] surface ^, ! events Ge detector !! decay signal: anti-coincidence single-site event energy deposition ] HH LAr veto based on Ar in a 1 mm3 volume PMT scintillation light read H by fibers and PMT ] _ Muon veto based on Optical fibers Cherenkov light and plastic scintillator \ # # 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 15
The phase II Ge detector array LAr veto optical fibers Coaxial detector Low-mass holders Strings assembly Low-mass contacts BEGe detector ~0.7 kg • Up to 41 enriched detectors deployed from Dec. 2015 to Dec. 2019 • Three detectors type (Coaxial, BEGe and IC) • Two data taking periods with an upgrade in May 2018 in between • Total enriched detectors mass: 35.6 kg/44.2 kg Inverted Coaxial det. ~1.8 kg 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 16
Final phase II data collection summary GERDA Phase II runs Exposure Physics data Calibration data Special calibration data Exposure (kg×yr) Exposure gain (kg×yr / d) 0.10 100 0.08 80 0.06 60 0.04 40 GERDA 20-06 0.02 20 0.00 0 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 Date (year-month) • data collection split in pre/post upgrade periods o pre-upgrade: data released at Neutrino2018 [Science 365, 6460 (2019)] o cumulated exposure 58.9 kg e yr Coax BEGe 28.6 31.5 • upgrade: new LAr veto system + new IC detector string TAUP2019 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 17
Final phase II data collection summary GERDA Phase II runs Exposure Physics data Calibration data Special calibration data Exposure (kg×yr) Exposure gain (kg×yr / d) 0.10 100 0.08 80 0.06 60 0.04 40 GERDA 20-06 0.02 20 0.00 0 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 Date (year-month) • data collection split in pre/post upgrade periods o pre-upgrade: data released at Neutrino2018 [Science 365, 6460 (2019)] o cumulated exposure 58.9 kg e yr • upgrade: new LAr veto system + new IC detector string TAUP2019 IC 8.5 • this talk: Coax 41.8 o final exposure: MN hi e Oj (original design: 100 kg e yr) BEGe 53.3 o full data collection analysed 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 18
76Ge detector calibration • weekly calibrations with 228Th sources • every 20 s test pulse injection for gain stability measurement FWHM (keV) 4 GERDA 18-06 Qb b FWHM resolution @ PHH (keV) 3.5 QØØ period BEGe* Coax** IC 3 pre-upgrade =. k ± N. <
Phase II physics data modeling before cuts counts / 5 keV 104 Enriched detectors - 60.2 kg×yr single-detector events Qbb ± 25 keV GERDA 19-07 40 42 K K 3 10 2nbb 214 102 Bi 208 Tl 210 214 Bi Po 10 1 10-1 10-2 [JHEP 2020, 139 (2020)] counts / 5 keV 103 coincidence events 102 10 1 -1 10 10-2 1000 2000 3000 4000 5000 energy [keV] Published data collection: from Dec. 2015 to April 2018 Blinding strategy: Keep events falling in mnn ± 25 keV blinded Data quality cuts + muon veto applied Energy range above 39Ar spectrum (mn = 565 keV) 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 20
103 cou GERD 40 60 210 2nbb 42 Phase II physics data modeling before cuts K K Co Po 102 10 counts / 5 keV 104 Enriched detectors - 60.2 kg×yr single-detector events 1 Qbb ± 25 keV GERDA 19-07 212 208 214 228 Data Model Bi + Tl Bi + 214Pb Ac 103 2nbb 40 K 42 K 60 Co 210 Po 10-1 102 10-2 counts / 5 keV 10 103 102 1 10 10-11 10-1 [JHEP 2020, 139 (2020)] 10--22 10 counts / 5 keV 1000 2000 3000 4000 5000 103 energy [keV] 102 MaGe 10 (Geant4) modelling K. Von Sturm poster of GERDA 1 Modeling of 10-1 GERDA Phase II data 10-2 1000 2000 3000 4000 5000 Fine modelling of all individual parts: energy [keV] Priors: Constraints from screening measurements Weakness: Fairly high spatial degeneracy of some components (K, 214Bi) Main outcome: no full energy peak or other structures close to mnn 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 21
Phase II pulse shape discrimination Analysis of the charge collection time profile informs about event type (bulk single/multi-site, surface events) BEGe and IC detectors: p/q Coaxial detectors: ANN + risetime 0#!! decay signal efficiency: • ~ÇÉ:; aÄÅ = ([[. > ± )% • ~ÖÜáà aÄÅ = (?[. k ±
Phase II liquid argon veto performances P. Krause poster Counts / 5 keV 5000 All detectors - 103.7 kg×yr GERDA 20-06 Prior liquid argon (LAr) veto The LAr instrumentation After LAr veto of GERDA and LEGEND-200 Monte Carlo 2n bb - T from [EPJC 75 (2015) 416] 4000 1/2 Counts / 1 keV 42 K 40 2000 K - 3000 b EC 1000 40 42 Ar Ca 0 1460 1480 1500 1520 1540 2000 Energy (keV) 1000 600 800 1000 1200 1400 1600 Energy (keV) • Stable operations over 4 years of data taking • 0#!! decay signal efficiency: ~åVj = (k>. k ± N. M)% • Crucial role in background suppression after PSD: ÷ ? in the ROI 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 23
Phase II physics spectra after all analysis cuts • [600 - 1900] keV – Almost pure ?[JJ decays sample • [1450 - 1530] keV – Strong suppression of 40K and 42K gamma lines (LAr veto + MSE) • [1900 - 2620] keV – Strong suppression of 214Bi and 228Th gamma lines + Compton • > 3500 keV – Suppression of almost all a events (p+ contact) • Extremely powerful complementarity between LAr veto and PSD cuts! 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 24
Zoom around the region of interest Dec. 2019 Dec. 2015 • Bkg index (BI) analysis window: [1930-2190] keV with the exclusion of 208Tl SEP and 214Bi FEP lines and mnn ± 25 keV • Prior to analysis cuts, BI = 143ëí %ê × 10 %G cts⁄(keV e kg e yr) ÷
Phase II energy spectrum after unblinding! Dec. 2019 Dec. 2015 • Two new counts entering the mnn ± 25 keV blinding window since the last data release • But still no count within PHH ± =ö … 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 26
Statistical analysis and interpretation Frequentist analysis*: Bayesian analysis with uniform prior*: • Median sensitivity for limit setting: • Median sensitivity for limit setting: O. ] × OP?A Qj (kP% Ö. å. ) 1.4 × 10,F yr (90% C. I. ) • Best fit → no signal -. • )*/, > 1.4 × 10,F yr 90% C. I. • 90% C. L. lower limit: ZP[ O/? > O. ] × OP ?A Qj L. Shtembari poster Statistical methods for the new *Statistical treatment found in [Nature 544, 47–52 (2017)] data release of GERDA + includes 23.5 kgeyr phase I exposure 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 27
Moving forward 76 Ge (88% enr.) 1030 long-term LEGEND 1029 M ton 1000 XNY M/= > MN =[ yr 1028 T1/2 3s DS [years] LEGEND mid-term 27 200 10 =NN kg XNY M/= > MN => yr 1026 IO mmin bb range GERDA Background free MAJORANA 0.1 counts/FWHM-t-y running/ended 1025 1.0 count/FWHM-t-y MN =? yr 1024 -3 10-2 10-1 3 10 1 10 102 10 Exposure [ton-years] 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 28
LEGEND: A worldwide joint effort LEGEND Collaboration meeting, Seattle, Washington, US December 2019 LEGEND mission: “The collaboration aims to develop a phased, 76Ge based double-beta decay experimental program with discovery potential at a half-life beyond 1028 years, using existing resources as appropriate to expedite physics results.” Large Enriched Germanium Experiment for Neutrinoless JJ Decay Univ. New Mexico University of South Carolina University Tennessee Oak Ridge National Laboratory L'Aquila University and INFN Tennessee Tech University Lancaster University Padova University Lab. Naz. Gran Sasso Jagiellonian University University Liverpool Padova INFN University Texas, Austin University of Dortmund University College London Czech Technical University Prague Tsinghua University Technical University Dresden Los Alamos National Lab. North Carolina State University Lawrence Berkeley Natl. Lab. Joint Inst. Nucl. Res. INFN Milano Bicocca South Dakota School Mines Tech. University California, Berkeley Duke University Milano University and Milano INFN University Washington Leibniz Inst. Crystal Growth Triangle Univ. Nuclear. Lab. Institute Nuclear Research Russ. Acad. Sci. Academia Sinica Comenius University Joint Research Centre, Geel National Research Center Kurchatov Inst. University Tübingen University of North Carolina Max Planck Institute for Lab. Exper. Nucl. Phy. MEPhI University South Dakota University of Warwick Nuclear Physics, Heidelberg Max Planck Institute for Physics, Munich University of Zurich Sichuan University Queens University Technical University Munich Roma Tre University and INFN 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 29
LEGEND-200 ongoing LNGS program String preparation at LNGS First calibration spectra in March 2020 l Ongoing since Feb 2020 using GERDA infrastructure l GERDA detectors + 4 L200 ICPC + 5 MJD PPC detectors operating in liquid argon l First tests of new DAQ, calibration system under real conditions l First spectra taken using new head electronics l Data taking still ongoing while LNGS activities are impacted by COVID LEGEND-200 background Goal Ge Internal U, Th Chains Detector Mounts Front Ends & Mounts Atmospheric Ar Ge Cosmogenics • Background contributions near Qββ after all cuts Cables Surface a Cosmic Rays (NB: design exposure = 1 t e yr) Nylon Shrouds Total Optical Fibers • Monte Carlo + data-driven projections of Ge U/Th, 42K, α based on GERDA, MJD data Preamplifiers GERDA 42 K b-decays 68 Ge 60 Co • All others: Monte Carlo + assay-based projections a-emitters µ-induced (3400 mwe) • Grey bands indicate uncertainties in assays and ALL BACKGROUNDS 10 -8 10-7 -6 10 -5 10 10-4 10 -3 background rejection [counts/(keV kg y)] 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 30
LEGEND-1000: Toward a ton-scale experiment 2018 2019 2020 2021 2022 2023 GERDA (100 kg yr) Possible locations: MAJORANA (75 kg yr) • SNOLab (Canada) LEGEND-200 Purchase Isotope • CJPL (China) Fabricate Detectors • SURF (USA) Develop/Install New Lock, • LNGS (Italy) Experimental Apparatus Integration/Commissioning LEGEND-200 Data Runs, Goal: 1 t yr (~5-7 years) Ton-Scale Down-Select Process LEGEND-1000 Design/Build, ~6yrs, 2021-2027 Earliest, and optimistic, LEGEND-1000 Data Start 2025/6 LEGEND-1000 background Goal Ge Internal U, Th Chains Underground Ar Reductions for LEGEND-1000: • U/Th: optimized array spacing, minimize opaque Detector Mounts Ge Cosmogenics Front-Ends & Mounts Surface a Cables Cosmic Rays materials, larger detectors, better light collection, cleaner materials Total Optical Fibers Preamplifiers • 42Ar: strong suppression by using udg. sourced Ar GERDA 42 K b-decays 68 Ge 60 Co • μ-induced: improved shielding, SNOLab depth a-emitters assumed µ-induced (6000 mwe) ALL BACKGROUNDS -8 -6 -5 -3 • Surface α's: assumes achieved UL for BEGes and 10-7 10-4 ICPCs in GERDA 10 10 10 10 [counts/(keV kg y)] 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 31
Summary • MAJORANA: doubled exposure (50 kg e yr) to be released this year most stringent limits on !! decay to 76Se excited states at this conference • GERDA data taking completed in Dec. 2019 – 104 kg e yr collected no signal observed @ mnn – new lower limit on 76Ge 0#!! decay half-life: XNY M/= > M. [ × MN=? Oj @ 90% C. L. 76 Ge (88% enr.) 1030 • LEGEND-200 already using GERDA infrastructure at LNGS o Test of prototype electronics and 1029 DAQ started in existing cryostat, o to be followed by 1028 infrastructure upgrade. T1/2 3s DS [years] o Data-taking will begin in 2021 1027 • LEGEND-1000: ton-scale experiment achievable with 1026 IO mmin bb range modest evolution of Background free LEGEND-200 design 0.1 counts/FWHM-t-y 25 10 1.0 count/FWHM-t-y o goal to reach the 10,ê yr 10 counts/FWHM-t-y discovery potential sensitivity 1024 -3 10-2 10-1 3 10 1 10 102 10 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decayExposure [ton-years] 32
List of MAJORANA DEMONSTRATOR related posters Go to: https://nusoft.fnal.gov/nova/nu2020postersession/ Search for: “Majorana Demonstrator” in “All Sessions” You’ll find up to 3 posters! https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-254.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-257.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-586.pdf 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 33
List of GERDA related posters Go to: https://nusoft.fnal.gov/nova/nu2020postersession/ Search for: “GERDA” & ”in Ge” in “All Sessions” You’ll find up to 5 posters! https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-342.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-365pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-464.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-506.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-329.pdf 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 34
List of LEGEND related posters Go to: https://nusoft.fnal.gov/nova/nu2020postersession/ Search for: “LEGEND” in “All Sessions” You’ll find up to 8 posters! https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-80.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-113.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-365.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-284.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-392.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-311.pdf https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-483.pdf 01 July https://nusoft.fnal.gov/nova/nu2020postersession/pdf/posterPDF-341.pdf 2020 Neutrino2020 conference - 76Ge 0vbb decay 35
The end
Upper limit on ünn within 3# flavor model = NY = †HH M/XNY ñ NY M/= = £p ß ® †=© • Lower 90% C. L. limit: XNY M/= > M. [ × MN =? Oj • Converted into upper limit on: †HH < [N − M[= ¢;S • Other inputs: o £p = M. => o 76Ge NME ∈ [=. ?? − ?. Nñ] min NME from Coraggio et al. 2020 max NME from Song et al. 2017 m b b (eV) m b b (eV) m b b (eV) GERDA 20-06 normal ordering 1 1 1 inverted ordering GERDA 2020 10-1 10-1 10-1 b decay kinematics Cosmology (extd.) Cosmology (min.) 10-2 10-2 10-2 10-3 10-3 10-3 -3 10 10-2 10-1 1 10-1 1 10-2 10-1 1 m light (eV) S (eV) m b (eV) 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 37
76Ge 0#!! decay search history 0⌫ lower limit 103 T1/2 Heidelberg G ERDA background index 1026 Moscow background index (cts/(keV·kg·yr)) 102 ITEP/ KKDC IePY Claim 1025 M AJORANA 0⌫ lower limit (yr) 101 UCSB/LBL IGEX 1024 100 St. Gotthard 1023 10 1 T1/2 Milano 2 1022 10 10 3 1021 10 4 1020 1965 1970 1975 1981 1986 1992 1997 2003 2008 2014 2019 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 38
Underground laboratories worldwide see J. Heise talk GERDA LEGEND-200 MAJORANA [arXiv:1801.00587] • Underground = passive background suppression for « free » • Isotopic activation suppression (neutron capture – e.g. CDGe + ¨ → CC|Ge → CCAs + 2.7 MeV) • Large experimental infrastructure required (shielding, cryostat, instrumentation) • Size/depth/access compromise taken into account by the collaborations 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 39
Phase II: From concept to design plastic scintillator panels LAr veto low-mass, low- instrumentation activity electronics muon veto clean room wavelength shifting fibers with SiPM read-out Ge detector array 64 m3 LAr cryostat coolant, shielding low mass detector holder 590 m3 ultra-pure water BEGe detector 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 40
Phase II physics data modeling before cuts counts / 5 keV 104 Enriched detectors - 60.2 kg×yr single detector events Qbb ± 25 keV GERDA 19-07 212 208 214 228 Data Model Bi + Tl Bi + 214Pb Ac 3 10 2nbb 40 K 42 K 60 Co 210 Po 102 10 1 10-1 10-2 [JHEP 2020, 139 (2020)] counts / 5 keV 103 102 10 10 counts / 2 keV counts / 2 keV GERDA 19-09 GERDA 19-09 M1-enrBEGe - 32.1 kg yr M1-enrCoax - 28.1 kg yr 10 1 -1 10 1 1 10-2 1000 2000 3000 4000 5000 energy [keV] 10-1 10-1 10-2 10-2 1950 2000 2050 2100 2150 1950 2000 2050 2100 2150 energy [keV] energy [keV] Main outcome: no full energy peak or other structures close to mnn 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 41
GERDA overall exposure summary 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 42
Calibration stability • small contact detectors: May 2018 upgrade Shift at 2.6 MeV Peak (keV) Shift at 2.6 MeV Peak (keV) GERDA 20-06 GERDA 20-06 BEGe detectors IC detectors 2 2 1 1 0 0 -1 -1 -2 -2 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 Date (year-month) Date (year-month) • coaxial detectors: Shift at 2.6 MeV Peak (keV) GERDA 20-06 Coaxial detectors 2 Check for the 2.6 MeV gamma line 1 shift from 228Th calibration source in 0 each consecutive valid period of time -1 -2 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 Date (year-month) 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 43
Liquid argon veto stability • NYHH decay signal acceptance: Acceptance (%) May 2018 upgrade GERDA 20-06 98.5 98.0 97.5 97.0 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 Date (year-month)
PSD efficiencies stability • small contact detectors: May 2018 upgrade Survival fraction Survival fraction 1.2 1.2 BEGe detectors - PSD cut stability IC detectors - PSD cut stability GERDA 20-06 GERDA 20-06 208 208 Tl DEP 1593 keV Compton Q ± 35 keV 212 Bi FEP 1621 keV Tl DEP 1593 keV Compton Q ± 35 keV 212 Bi FEP 1621 keV bb bb 1 1 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 2020-01 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 2020-01 Date (year-month) Date (year-month) • coaxial detectors: Survival fraction 1.2 Coaxial detectors - PSD cut stability GERDA 20-06 208 Tl DEP 1593 keV Compton Q ± 35 keV 212 Bi FEP 1621 keV bb 1 0.8 PSD time stability checked by looking at gamma lines survival fraction from 0.6 0.4 individual calibration runs 0.2 2016-01 2016-07 2016-12 2017-07 2017-12 2018-07 2018-12 2019-07 2020-01 Date (year-month) 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 45
Time evolution of Alpha background • Coax detectors _ background (energy > 3500 keV) before cuts: May 2018 upgrade corr. rate (cts/day/det) GERDA 2020-06 enrCoax - PhaseII enrCoax - PhaseII+ -ln(2) t -ln(2) t 1 f(t) = C + N exp f(t) = C + N exp T1/2 T1/2 C = (131 ± 11)E-3 cts/day/det C = (95 ± 17)E-3 cts/day/det N = (1033 ± 52)E-3 cts/day/det N = (362 ± 47)E-3 cts/day/det T1/2 = (138.4 ± 0.2) days T1/2 = (138.4 ± 0.2) days 0.5 0 Jul 16 Dec 16 Jul 17 Dec 17 Jul 18 Dec 18 Jul 19 date (month year) • BEGe detectors _ background (energy > 3500 keV) before cuts: corr. rate (cts/day/det) GERDA 2020-06 enrBEGe - PhaseII enrBEGe - PhaseII+ -ln(2) t -ln(2) t f(t) = C + N exp f(t) = C + N exp T 1/2 T 1/2 0.1 C = (39.8 ± 2.2)E-3 cts/day/det C = (36.7 ± 3.6)E-3 cts/day/det N = (53.3 ± 7.5)E-3 cts/day/det N = (23.3 ± 8.3)E-3 cts/day/det T 1/2 = (138.4 ± 0.2) days T 1/2 = (138.4 ± 0.2) days 0.05 0 Jul 16 Dec 16 Jul 17 Dec 17 Jul 18 Dec 18 Jul 19 date (month year) Main outcome: No critical recontamination of BEGe small-contact detector during the upgrade Detector handling procedure OK for LEGEND-200 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 46
Pulse Shape Discrimination #1 BEGe detector: Ø (511 keV) ] (208Tl DEP) Ø MSE SSE rss≠ rÆs≠ Ø (511 keV) ] _ H • MSE cut: Low A/E cut set to accept 90% of 208Tl DEP from cal. • Alpha cut: High A/E cut set to +3∞ of SSE A/E band No high energy alpha (E>3.5 MeV) survive SSE • ~ÇÉ:; Alpha aÄÅ = ([[. > ± )% MSE PSD uncertainties are systematics dominated T. Comellato poster Modelling the collective motion of charge carrier in Ge detectors 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 47
Pulse Shape Discrimination #2 MSE • MSE cut: Artificial Neural Network fed with SSE and MSE proxies from cal. (208Tl DEP and 212Bi FEP) cut set @ 90% acc. of 208Tl DEP events ±≤≥≥ = (82.3 ± 3.1)% • Alpha cut: Charge collection risetime [10%-90%]. Cut optimized from =YHH and _ samples: cut set @ max[±,.nn e 1 − ±¥ ] ±µ∂ = (85.5 ± 1.0)% Alpha • ~ÖÜáà aÄÅ = (?[. k ±
The Best of MAJORANA & GERDA MAJORANA GERDA • Radiopurity of nearby parts • LAr veto (FETs, cables, Cu mounts, etc.) Both • Low-A shield, no Pb • Low noise electronics • Clean fabrication techniques improves PSD • Control of surface GERDA achieved the lowest • Low energy threshold (helps exposure background index: reject cosmogenic • Development of large 5 × 10%G cts⁄(keV e kg e yr) background) point-contact detectors • Lowest background and LEGEND-200 needs only x3-5 best resolution 0nbb better. MAJORANA achieved best energy experiments resolution: 2.5 keV FWHM at Qbb 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 49
Ge Detectors for LEGEND-200 GERDA BEGes and MAJORANA PPCs BEGe ü Excellent energy resolution ü Superb pulse-shape sensitivity to reject multi-site and surface background events PPC • But relatively small: = 0.66 and 0.85 kg, respectively New Inverted-Coaxial Point Contact detectors ü First design proposed in 2011 [R. Cooper et al., NIM A665, 25 (2011)] ü Large active mass up to 3 kg ü Excellent resolution and pulse shape discrimination ICPC performance [A. Domula et al., NIM A891, 106 (2018)] ü Lower surface to volume ratio ü Reduced background due to lower number of channels per mass of 76Ge ü Production started early 2019 About 60 detectors expected by fall 2021 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 50
PEN — self-vetoing structural material • PEN — Poly(ethylene 2,6-naphthalate) - Scintillates, providing veto to potential backgrounds - Light yield ~1/3 of conventional plastic scintillators BEGe - Particle identification using pulse shape discrimination (PSD) possible - Functions as a wavelength shifter of LAr scintillation photons (128 nm) PPC - Transparent in the visible range - Mechanically stronger than silicon, stronger than Cu at cryogenic temps. • Production of LEGEND-200 low-background detector holder plates - Possible replacement of Si detector holder plates - Plates produced via CNC machining using clean procedures ICPC - PEN holders deployed in LEGEND “post GERDA test” at LNGS • R&D Activities - Enhanced cleanliness, - Dedicated test stands and simulations to further study optical properties: - WLS, Light yield, attenuation, surface effects - Injection molded components (encapsulation of objects) Design 01 July 2020 Neutrino2020 conference - 76Ge 0vbb decay 51
You can also read