Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...

Page created by Jordan Dunn
 
CONTINUE READING
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Geochemistry at the nanoscale:

   chemistry of fluid-mineral interfaces,
            phytoremediation,
             nanotoxicology

Roland HELLMANN, Géraldine SARRET & Laurent CHARLET

    Environmental geochemistry group, Geochemistry ‘4D’
           Institute for Earth Sciences. Grenoble
                           ISTerre
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
ISTerre
          Institute for Earth Sciences

          University of Grenoble, CNRS UMR 5275
      Observatory for Earth, Planetary and Space Sciences
                           (OSUG)

              Who we are and what we do:

  ISTerre is dedicated to the study of the Earth using
           Physics, Chemistry, and Geology

Geochemistry                           Mineralogy
       Seismic cycles & deformation            Geo-risks
Waves and structures                   Fault mechanics
Geophysics of volcanoes                Tectonics
                Geodynamo of Earth’s core
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
ISTerre Grenoble: 260 people total, with 95 researchers, 40 scientific staff
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Environmental geochemistry group-
        key nanoscience research areas:

•   Biogeochemistry of metal contaminants (soils, plants)

•   Nanoparticles and health issues

•   Chemical reactivity of minerals, glasses, nanoparticles

•   Geological sequestration mechanisms (radwaste, CO2)
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Chemistry of fluid-mineral interfaces at the
nanoscale, applied to chemical weathering
  roland.hellmann@obs.ujf-grenoble.fr

  Why is chemical weathering important?

  • controls element cycling on Earth’s crust

  • major abiotic sink for CO2 atm- climate control

  • environmental issues (As contamination)

  • geological burial of radwaste, sequestration of CO2
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Chemical weathering:
                                    investigations at which scale?
                   101-   104   m
                                                                      watershed scale

                                                                      outcrop scale

                   10-2- 101 m

                                                                      laboratory scale:
                   10-5- 10-2 m                                       rate laws

                                                                      µm scale:
CEKA, Penn State

                   10-7- 10-5   m                                     etch pits

                                                      mineral         Å-nm scale:
                   10-9- 10-7   m                         interface   chemistry,
                                                                      structure of
                                                                      interfaces
                                                    altered zone
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Understanding the mechanism
of chemical weathering: evolution of fluid-
                                     fluid-solid interface
                        the interface is where all exchange of
                              matter and energy occurs
                                between fluid and solid
(via: dissolution, precipitation, oxidation/reduction, adsorption, absorption, ion exchange, catalysis)

                 energy, matter

                                      fluid               solid

            structural, chemical evolution of interface (near-surface region)
          molecular-level reactions = analytical methods at (sub-) nm resolution
                                 mechanism at this scale
                        influences behavior at macroscopic scale,
                              both in laboratory and in field
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
prevailing concept for chemical weathering

     leached layer is an amorphous relict structure:
     (structurally contiguous with unaltered mineral)
     thickness depends on mineral & fluid (pH, etc.)
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
Chemical weathering investigated using surface sensitive methods:
  evolution of structure + chemistry of fluid-
                                        fluid-mineral interface

            classical methods: (70’s to present)
            ion, X-ray, or electron beam incident to surface
            (SIMS, XPS, Auger, RNRA, RBS, etc.)

                altered layer
                 interface
                                  µm-mm
                                SIMS   ARXPS
                                                   mineral

                                 fluid           altered zone   mineral
                                         conc.

            profile obtained
            by surface
            incident beam
                                                      depth
Chemical weathering investigated using surface sensitive methods:
  evolution of structure + chemistry of fluid-
                                        fluid-mineral interface

classical method: (70’s to present)                         new method: prep in cross section
ion or electron beam incident to surface                    FIB (or ultramicrotome) + TEM

   altered layer
                                                             altered layer
    interface
                    µm-mm
                                     mineral                    mineral
                   SIMS   ARXPS

          µm-mm beam size (poor lateral resolution)                 nm TEM probe
          chemical profiles obtained indirectly- :                  meas. chemical profiles direct
          a) deconvolution of chemical profiles
          b) ion beam-solid interactions
          c) thin layers (
sample preparation in cross section (TEM foil):
(from Wirth, 2004)

                                          a. ultramicrotomy (difficult)
                                          b. focused ion beam (FIB)
                                               + fast, choice of study area
                                               - costly, creation of artefacts

                                          (ultrathin section 15µm x 5 µm x 50-100 nm)

                                           outer interface

                                            inner interface
New methods                new results . . .

laboratory weathering (silicates):
       labradorite feldspar
       wollastonite
       garnet

natural weathering:
      K-feldspar in soil/surface of granite
      lizardite/lichen in serpentinite
l’interface fluide-solide à une échelle nanométrique

chain silicate: wollastonite

                                                            BF image
           physical separation ?

                                                            EFTEM profiles
tectosilicate: labradorite feldspar

                            400 nm-thick alt. layer,
                            pH 1, 25 °C

                         EDX line scans +
                         SIMS H profile

HRTEM         EFTEM Ca                EFTEM Si
tectosilicate:
                                        l’interface labradorite          feldspar
                                                    fluide-solide à une échelle nanométrique
                                      differences in ELNES fine structure
                                          sp2-modif.sansBkgd          (Al)
                    40                                                          unaltered
                    35                                                          } interface
                                        Al K edge                               altered
                    30
CCD counts x 1000

                    25

                    20

                    15

                    10

                    5

                    0
                         1550       1600         1650    1700               1750          1800
                                                Energy Loss (eV)

      EELS: information on atomic environments, e.g. coordination, oxidation state
1.00
                                    -16
                         DH = 10
              0.90

              0.80

              0.70
                                   -15
                         DH = 10
              0.60
[M ] [A.U.]

                                                                               z=1
              0.50                                                             z=2
z+

                                                                               z=3
              0.40
                                                                   -14
                                                         DH = 10
              0.30

              0.20

              0.10

              0.00
                     0                    250      500                   750         1000
                                                Depth [nm]

                          DH (H+ diffusion coefficient), DH / Dcation = 10-3
                          cation valence (z)
                          a = 10-2 Å s-1
Chemical weathering in the field:
          can we identify sharp chemical and structural
              interfaces on minerals altered in field?
                                  Pte. Andey, Hte. Savoie
case 1

                                                                                  EMSI Stanford

                                                                                      zone critique
                  EMSI-Stanford

                                                  glacial erratic granitic boulder,
                                                  10Be age ~ 14 ka,

                                                  multi-mineral
                                                  2 environments of alteration
K-feldspar

             massive overlayer

              surface altered layer

                     crystalline K-feldspar
K-feldspar

Chemical maps: EFTEM
                                              Si map
                       amorphous layer
        K profile

                         K-feldspar

                            amorphous layer
                                              Al map
       HRTEM

                                K-feldspar
coupled interfacial dissolution-
                         dissolution-reprecipitation mechanism
         (a unifying mechanism for chemical weathering)

1.    advance of reaction front into mineral is a chemical hydrolysis reaction, not
      interdiffusion (all bonds are broken, no relict structure present)
2.    intrinsic dissolution process (i.e. at interface of unaltered mineral) is
      stoichiometric at all pH conditions (no pH-dependent preferential release).
3.    precipitation of Si-rich (acid pH) amorphous hydrated phase, permeable
4.    ion exchange can occur, but only at surface (see e.g. Fenter et al., 2000)
Large scale or global implications for surface altered layers
          created by dissolution-reprecipitation

                                      std. carbonation reaction:
                                  MeSiO 3  CO 2  2H 2 O  MeCO 3  H 4SiO 4

  carbonation reaction, metals co-precipitate in silica layer:
   MeSiO 3  (1   )CO 2  xH 2 O  (1   )MeCO 3   SiO 2   MeO  xH 2 O 

net effect: less CO2 sequestered per mole of mineral reactant !
implications for CO2 uptake during weathering, CCS
Transmission Electron Microscopy + SIMS

METSA Platform             CNRS + CEA
R. Wirth                   GFZ Potsdam, Germany
J.--M. Penisson
J.                         CEA Grenoble, France
J.--P. Barnes. B. Florin
J.                         LETI CEA Grenoble, France
T. Epicier                 INSA Lyon, France
R. Hervig                  Arizona State Univ., USA
                                          Belledonne Massif, Grenoble
You can also read