Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology - Roland HELLMANN, Géraldine SARRET & ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Geochemistry at the nanoscale: chemistry of fluid-mineral interfaces, phytoremediation, nanotoxicology Roland HELLMANN, Géraldine SARRET & Laurent CHARLET Environmental geochemistry group, Geochemistry ‘4D’ Institute for Earth Sciences. Grenoble ISTerre
ISTerre Institute for Earth Sciences University of Grenoble, CNRS UMR 5275 Observatory for Earth, Planetary and Space Sciences (OSUG) Who we are and what we do: ISTerre is dedicated to the study of the Earth using Physics, Chemistry, and Geology Geochemistry Mineralogy Seismic cycles & deformation Geo-risks Waves and structures Fault mechanics Geophysics of volcanoes Tectonics Geodynamo of Earth’s core
Environmental geochemistry group- key nanoscience research areas: • Biogeochemistry of metal contaminants (soils, plants) • Nanoparticles and health issues • Chemical reactivity of minerals, glasses, nanoparticles • Geological sequestration mechanisms (radwaste, CO2)
Chemistry of fluid-mineral interfaces at the nanoscale, applied to chemical weathering roland.hellmann@obs.ujf-grenoble.fr Why is chemical weathering important? • controls element cycling on Earth’s crust • major abiotic sink for CO2 atm- climate control • environmental issues (As contamination) • geological burial of radwaste, sequestration of CO2
Chemical weathering: investigations at which scale? 101- 104 m watershed scale outcrop scale 10-2- 101 m laboratory scale: 10-5- 10-2 m rate laws µm scale: CEKA, Penn State 10-7- 10-5 m etch pits mineral Å-nm scale: 10-9- 10-7 m interface chemistry, structure of interfaces altered zone
Understanding the mechanism of chemical weathering: evolution of fluid- fluid-solid interface the interface is where all exchange of matter and energy occurs between fluid and solid (via: dissolution, precipitation, oxidation/reduction, adsorption, absorption, ion exchange, catalysis) energy, matter fluid solid structural, chemical evolution of interface (near-surface region) molecular-level reactions = analytical methods at (sub-) nm resolution mechanism at this scale influences behavior at macroscopic scale, both in laboratory and in field
prevailing concept for chemical weathering leached layer is an amorphous relict structure: (structurally contiguous with unaltered mineral) thickness depends on mineral & fluid (pH, etc.)
Chemical weathering investigated using surface sensitive methods: evolution of structure + chemistry of fluid- fluid-mineral interface classical methods: (70’s to present) ion, X-ray, or electron beam incident to surface (SIMS, XPS, Auger, RNRA, RBS, etc.) altered layer interface µm-mm SIMS ARXPS mineral fluid altered zone mineral conc. profile obtained by surface incident beam depth
Chemical weathering investigated using surface sensitive methods: evolution of structure + chemistry of fluid- fluid-mineral interface classical method: (70’s to present) new method: prep in cross section ion or electron beam incident to surface FIB (or ultramicrotome) + TEM altered layer altered layer interface µm-mm mineral mineral SIMS ARXPS µm-mm beam size (poor lateral resolution) nm TEM probe chemical profiles obtained indirectly- : meas. chemical profiles direct a) deconvolution of chemical profiles b) ion beam-solid interactions c) thin layers (
sample preparation in cross section (TEM foil): (from Wirth, 2004) a. ultramicrotomy (difficult) b. focused ion beam (FIB) + fast, choice of study area - costly, creation of artefacts (ultrathin section 15µm x 5 µm x 50-100 nm) outer interface inner interface
New methods new results . . . laboratory weathering (silicates): labradorite feldspar wollastonite garnet natural weathering: K-feldspar in soil/surface of granite lizardite/lichen in serpentinite
l’interface fluide-solide à une échelle nanométrique chain silicate: wollastonite BF image physical separation ? EFTEM profiles
tectosilicate: labradorite feldspar 400 nm-thick alt. layer, pH 1, 25 °C EDX line scans + SIMS H profile HRTEM EFTEM Ca EFTEM Si
tectosilicate: l’interface labradorite feldspar fluide-solide à une échelle nanométrique differences in ELNES fine structure sp2-modif.sansBkgd (Al) 40 unaltered 35 } interface Al K edge altered 30 CCD counts x 1000 25 20 15 10 5 0 1550 1600 1650 1700 1750 1800 Energy Loss (eV) EELS: information on atomic environments, e.g. coordination, oxidation state
1.00 -16 DH = 10 0.90 0.80 0.70 -15 DH = 10 0.60 [M ] [A.U.] z=1 0.50 z=2 z+ z=3 0.40 -14 DH = 10 0.30 0.20 0.10 0.00 0 250 500 750 1000 Depth [nm] DH (H+ diffusion coefficient), DH / Dcation = 10-3 cation valence (z) a = 10-2 Å s-1
Chemical weathering in the field: can we identify sharp chemical and structural interfaces on minerals altered in field? Pte. Andey, Hte. Savoie case 1 EMSI Stanford zone critique EMSI-Stanford glacial erratic granitic boulder, 10Be age ~ 14 ka, multi-mineral 2 environments of alteration
K-feldspar massive overlayer surface altered layer crystalline K-feldspar
K-feldspar Chemical maps: EFTEM Si map amorphous layer K profile K-feldspar amorphous layer Al map HRTEM K-feldspar
coupled interfacial dissolution- dissolution-reprecipitation mechanism (a unifying mechanism for chemical weathering) 1. advance of reaction front into mineral is a chemical hydrolysis reaction, not interdiffusion (all bonds are broken, no relict structure present) 2. intrinsic dissolution process (i.e. at interface of unaltered mineral) is stoichiometric at all pH conditions (no pH-dependent preferential release). 3. precipitation of Si-rich (acid pH) amorphous hydrated phase, permeable 4. ion exchange can occur, but only at surface (see e.g. Fenter et al., 2000)
Large scale or global implications for surface altered layers created by dissolution-reprecipitation std. carbonation reaction: MeSiO 3 CO 2 2H 2 O MeCO 3 H 4SiO 4 carbonation reaction, metals co-precipitate in silica layer: MeSiO 3 (1 )CO 2 xH 2 O (1 )MeCO 3 SiO 2 MeO xH 2 O net effect: less CO2 sequestered per mole of mineral reactant ! implications for CO2 uptake during weathering, CCS
Transmission Electron Microscopy + SIMS METSA Platform CNRS + CEA R. Wirth GFZ Potsdam, Germany J.--M. Penisson J. CEA Grenoble, France J.--P. Barnes. B. Florin J. LETI CEA Grenoble, France T. Epicier INSA Lyon, France R. Hervig Arizona State Univ., USA Belledonne Massif, Grenoble
You can also read