General Linear Model The GLM Multivariate procedure allows you to model the values of multiple dependent scale variables, based on their ...

Page created by Isaac Nunez
 
CONTINUE READING
General Linear Model
The GLM Multivariate procedure allows you
to model the values of multiple dependent
scale variables, based on their relationships
to categorical and scale predictors.
                                 SPSS tutorial
Definitions
The GLM Univariate procedure is based on the General
Linear Model procedure, in which factors and covariates
are assumed to have a linear relationship to the dependent
variable.
Factors. Categorical predictors should be selected as
factors in the model. Each level of a factor can have a
different linear effect on the value of the dependent
variable.
Fixed-effects factors are generally thought of as variables
whose values of interest are all represented in the data file.
Random-effects factors are variables whose values in the
data file can be considered a random sample from a larger
population of values. They are useful for explaining excess
variability in the dependent variable.
Definitions
Covariates. Scale predictors should be selected as
covariates in the model. Within combinations of factor
levels (or cells), values of covariates are assumed to be
linearly correlated with values of the dependent variables.
Interactions. By default, the GLM Univariate procedure
produces a model with all factorial interactions, which
means that each combination of factor levels can have a
different linear effect on the dependent variable.
Additionally, you may specify factor-covariate interactions,
if you believe that the linear relationship between a
covariate and the dependent variable changes for
different levels of a factor.
Caso más simple:
                One-Way ANOVA

• You can use the One-Way ANOVA procedure to test the
  hypothesis that the means of two or more groups are not
  significantly different.
• One-Way ANOVA also offers:
   – Group-level statistics for the dependent variable
   – A test of variance equality
   – A plot of group means
   – Range tests, pairwise multiple comparisons, and
     contrasts, to describe the nature of the group
     differences
Assumptions

     ANOVA procedure assumes:
1.   The variances of the groups are equivalent.
2.   The values of errors are independent of each
     other across observations and the independent
     variables in the model. Good study design
     generally avoids violation of this assumption.
Caso Práctico 1
Endoscopic versus transaxillary thoracic sympathectomy for primary axillary and palmar
hyperhidrosis and/or facial blushing: 5-year-experience.
Yilmaz EN, Dur AH, Cuesta MA, Rauwerda JA.
Department     of   Vascular    Surgery,    Free    University   Hospital,   Amsterdam,      The    Netherlands.

Thoracic sympathectomy is effective in the permanent cure of primary axillary and palmar hyperhidrosis and
facial blushing, which can be so troublesome for patients that their social and professional relations can be
affected. Between October 1988 and April 1994, a total of 50 thoracic sympathectomies (10 surgical and 40
endoscopic) were performed on 5 and 23 patients, respectively. The operations were performed unilaterally,
followed by the contralateral intervention after a period of 6-8 weeks. The thoracic ganglia T2-T5 were
resected for hyperhidrosis. If the patient suffered from blushing, the lower 1/3 of the stellate ganglion was also
resected. Postoperatively, all the operated limbs were warm and dry. In the group of patients who were
operated bilaterally, only one had persistent facial blushing. The efficacy for blushing in this series was
therefore 93.3%. The late relapse rate of sympathetic activity was 14.3%. Compensatory sweating was seen
in 67%, gustatory sweating in 37.5% and phantom sweating in 29% of the patients. None of them considered
these side effects to be troublesome. Although there is no difference between transaxillary thoracic
sympathectomy and the endoscopic intervention in terms of efficacy, the latter is associated with less
postoperative pain, shorter hospital stay and a rapid recovery. The thoracic sympathectomy is the treatment
of choice for primary hyperhidrosis and excessive facial blushing.                              PMID: 8664016
Caso Práctico 1

A partir del anteriores resultados hemos generado un estudio donde además se
compara una tercera técnica, la acupuntura. La base de datos, con valores
simulados está en el archivo: Ejercicio ANOVA 1.sav
GRUPO (tratamiento)
    0,00   Sim. tor. Transaxilar
    1,00   Sim. tor. Endoscopica
    2,00   acupuntura
PROBLEMA
    0,00   hiperhidrosis
    1,00   rubor facial (blushing)
AC_SI_1 Actividad simpática inicial
AC_SI_2 Actividad simpática final
EA1_SC Sudoración compensatoria (efecto adverso)
    0,00   No
    1,00   Si
EA2_DP      Dolor postoperatorio (efecto adverso)
   0,00    No
    1,00   Si
EST_POST Estancia postoperatoria (días)
1 Cumplimiento requisitos:
             Homogeneidad de varianzas
En un primer estudio, solo queremos analizar si existen diferencias entre los
tres Grupos de tratamiento y la actividad simpática inicial. Para averiguar si la
asignación a los grupos es aleatoria.

 Haz un gráfico como el ejemplo
que se presenta al lado. Donde
además de ver como se modifica la
media, vemos como disminuye la
Des. Est. al avanzar el estudio. En
este caso no se cumple el requisito
de igualdad de varianzas.

¿Que ocurre en nuestro caso en
función    del    gráfico creado?
¿Comprueba          tu     opinión
comparándola con la prueba
estadística de Levene?
1 Cumplimiento requisitos:
           Homogeneidad de varianzas
Como pedir la Prueba de Levene
2 Ejecución del análisis

               Seleccionamos las variables
              adecuadas y ejecutamos el
              análisis.
               El problema es que la
              conclusión en caso de ser
              significativa, será incompleta, ya
              que de los grupos comparados
              solo sabemos que dos son
              distintos entre si pero no
              sabemos cual.
3 Comparación de grupos
           Evidentemente, solo en el caso de un
           resultado significativo tenemos que
           realizar comparaciones parciales:
           Existen 2 tipos:
           Contrastes      (donde     nosotros
           especificamos la combinación exacta
           para comparar aquellos grupos que
           deseamos).
           Post-Hoc (donde escogemos           los
           contrastes de una lista).
           Ejercicio:
           Cuales serían los contrastes para
           comparar acupuntura con el promedio
           de los otros dos tratamientos? ¿y para
           comparar     los    dos    tratamientos
           quirúrgicos?
3 Comparación de grupos
                                         Post hoc results are valid to the
                                         extent that the standard F statistic is
                                         robust to violations of assumptions.
                                         As mentioned before, the F statistic
                                         is robust to unequal variances when
                                         sample sizes are equal or nearly
                                         equal. However, when both the
                                         variances and the sample sizes
                                         differ, the standard F statistic lacks
                                         power and is prone to give incorrect
                                         results.

En el ejemplo de la imagen, Es correcto seleccionar el test de
Tamhane’s T2, en el hipotético caso de que el test de Levene hubiese
sido significativo?
4 Violación de las asunciones

          En el caso de que los tamaños de
          los grupos sean distintos y las
          varianzas distintas existe la
          posibilidad de usar la prueba de
          Welch ya que es mucho más
          potente que la prueba F o la de
          Brown-Forsythe.
Univariate ANOVA

• Seleccionamos la opción
  Univariate y ahora se trata
  simplemente de situar las
  variables en las casillas
  correspondientes.
OPCIONES
Plots
Options:   Interactions
           Display
Post Hoc Comparisons
You can also read