Dispositivi di Posizionamento (Geo-referenziazione) a Terra e nello Spazio! Basati su Retroriflettori e Galileo per! l'Osservazione della Terra e ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Dispositivi di Posizionamento (Geo-referenziazione) a Terra e nello Spazio! Basati su Retroriflettori e Galileo per! l’Osservazione della Terra e le Geo-scienze! ! Simone Dell’Agnello (for the SCF_Lab Team) INFN-LNF, Via Enrico Fermi 40, Frascati (Rome), 00044, Italy Membro Collegio dei Docenti di SIACE" (Scienze e Ingegneria dell’Ambiente, delle Costruzioni e dell’Energia)! Coordinatore INFN-LNF/Cosenza della Ricerca Tecnologica e Interdisciplinare per la" Commissione Scientifica Nazionale 5 dell’INFN (INFN-CSN5)! University of Calabria, Arcavacata di Rende (CS), 87036, Italy, November 28, 2013!
Positioning (Geo-referencing) Devices on Ground and in Space Based on Retroreflectors and Galileo for Earth Observation and Earth Sciences! ! Simone Dell’Agnello (for the SCF_Lab Team) INFN-LNF, Via Enrico Fermi 40, Frascati (Rome), 00044, Italy Membro Collegio dei Docenti di SIACE" (Scienze e Ingegneria dell’Ambiente, delle Costruzioni e dell’Energia)! Coordinatore INFN-LNF/Cosenza della Ricerca Tecnologica e Interdisciplinare per la" Commissione Scientifica Nazionale 5 dell’INFN (INFN-CSN5)! University of Calabria, Arcavacata di Rende (CS), 87036, Italy, November 28, 2013!
SCF_Lab Team @INFN-LNF! ! Simone Dell’Agnello, Delle Monache G., Vittori R., Boni A., Cantone C., Ciocci E., Lops C., Martini M., Patrizi G., Tibuzzi M., Maiello M., Currie D., Bianco G., Intaglietta N., Salvatori L., Contessa S., Porcelli, L., Tuscano, P., Mondaini, C.! ! INFN-LNF, Frascati (Rome), Italy! SCF_Lab! Satellite/Lunar/GNSS! laser ranging and altimetry Characterization Facilities’ Laboratory!
Acknowledgments! We acknowledge important support/contracts from/with:! ASI,! ESA & Galileo,! Italian Ministry of Defense/Air Force,! ISRO! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 4!
Outline • Satellite Laser Ranging to laser retroreflectors • Laser Positioning (geo-referencing) in space • SCF_Lab Research infrastructure @INFN-LNF • Galileo and Copernicus/GMES and SCF_Lab Activities • Applications to Geology research at UniCal • Collaboration on SIACE Doctoral project, Earth Sciences • HORIZON 2020, INFN-CSN5 and other opportunities for collaboration S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 5!
Positioning in space with:! Satellite Laser Ranging (SLR)" Lunar Laser Ranging (LLR)! " Time of Flight (ToF) measurements! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 6!
Satellite/Lunar Laser Ranging (SLR/LRR)! • GeoMetroDynamics (GMD) in space! • Unambiguous position/distance measurement (so-called ‘laser range’) to cube corner retroreflectors (CCRs) with Earth! short laser pulses and a time-of-flight technique! • Time-tagging with H-maser clocks! Moon! • Precise positioning (normal points at mm level, orbits at cm level)! • Absolute accuracy (used to define Earth center of mass, geocenter, and scale of length) ! • Passive, maintenance-free Laser Retroreflector Arrays (LRAs)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 7!
Satellite Laser Ranging (SLR)" Lunar Laser Ranging (LLR)" Time of flight measurements! Cube corner retro-reflectors! LAGEOS Sector from NASA-GSFC! (CCRs)! LAser GEOdynanics Time of flight, Satellite: h~6000Km! atmospheric! corrections! Retro-reflection! ∅=60 cm ~400 Kg 426 CCRs! Normal reflection! (Precise). AND. (cost-effective) distance measurement in space! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 8!
Cube Corner laser Retroreflectors (CCRs)! LAS ER! LASER! IN! OUT! Triple total internal reflection around the corner! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 9!
SLR concept: laser, receiving telescope; clock;! time of flight! Slide courtesy of G. Bianco ! Δt = t stop − t start cΔt stop d≈ 2 start LASER S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 10!
LLR/SLR vs ground survey/alignment! An ILRS station is like a gigantic total station theodolite measuring angles & distances of CCRs in ordinary surveys and alignements on Earth. For example to build large physics installations, like particle physics experiments (ATLAS, KLOE, CDF, ..) and particle beam! accelerators (LHC, DAFNE, Tevatron, …)" ! !Leica TC2002. Great instrument:" !ToF theodolite with IR laser! !! ! !0.1-0.2 mm (after interferometer calibration)" few microrad accuracy" " However, surveys for particle physics usually done indoor at approximately isothermal conditions, over short baselines (2 to hundreds of meters). With LLR/SLR things are completely different! ! TO BE PART OF A SIACE DOCTORAL CLASS …..! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 11!
Cube Corner laser Retroreflectors (CCRs)! So-called “prisms” used for ground measurements by “geometers”, for ex mounted inside opened spheres, with the corner coincident with the center of the sphere ! Taylor-Hobson sphere for measurements of angles! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 12!
On ground: theodolite (or laser “tracker”), retroreflector, time-of-flight! Usato for positioning metrology of large physics installations and! Experiments like KLOE particle physics experiment at the LNF! DAΦNE accelerator and ATLAS/CMS @CERN! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 13!
Positioning metrology of large LNF physics installation: KLOE experiment Experiment of 1000 tons,! ~10 m3 volume, made of ~10 sub-systems, with survey/alignment requirements ranging from ¼ mm to cm.! ! External magnetic iron yoke, where each black dot is a retroreflector to be surveyed by TC2002 total statin theodolite! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 14!
KLOE Survey/Alignment Strategy n Instrumentation – total station theodolite (TC2002) – 3D targets (spheres) and retro-reflective (tape) targets – calibration of TC2002/targets once @CERN interferometer, maintained with Invar wires – precision level (NA2), Invar staff n Software: LGC package by CERN (Logiciel General de Compensation) – block adjustment – statistical info, gross error detection – simulation – roto-translations, geometric fitting Simone.DellAgnello@lnf.infn.it!
Interferometer Calibrations of TC2002 Distance-meter Calibration distancemetre TC2002 Base Geodesique CERN 01 octobre 1996 T=22°C P=716 torr 0 2 4 6 8 10 12 14 16 18 20 -0.00020 -0.00030 DTC2002 - DINTERF (m) -0.00040 -0.00050 -0.00060 -0.00070 -0.00080 -0.00090 DTC2002 (m) Leica Certificate of TC2002 calibration with retro-reflective tape target 0 20 40 60 80 100 120 DTC2002 - DINTERF (mm) 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 DTC2002 (m) Simone.DellAgnello@lnf.infn.it!
KLOE Assembly Hall: survey infrastructure n Experiment Rails (Nov. 1996) – 10 m × 30 m – planarity < 1 mm – parallelism 1 mm n Hall permanent survey network (March 1997) – 10 removable brackets at ground – 10 fixed, CERN-style at 2/3 of KLOE height – Taylor-Hobson spheres and retroreflectors Simone.DellAgnello@lnf.infn.it!
KLOE: Iron Return Yoke (Mar 1997) n Highly segmented (34 pieces of ~20 ton), good machining of coupling faces, ~ 20 pins of 1/4 mm tolerance – Barrel (solenoid) – End caps (poles) – Interface semi-rings for 2 mm alignment of end caps – 700 mm semi-disks for 0.2 mm alignment with solenoid geometric axis n Reference targets – 3D targets of 40 mm diameter (total 80) n Acceptance survey at INNSE (Milan) prior to shipping to LNF Simone.DellAgnello@lnf.infn.it!
Positioning metrology of large LNF physics installation: KLOE experiment Experiment of 1000 tons,! ~10 m3 volume, made of ~10 sub-systems, with! survey/alignment requirements ranging from 0.1 mm to cm.! ! External magnetic iron yoke, where each black dot is a retroreflector to be surveyed by TC2002 total statin theodolite! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 19!
Back to space: SLR concept" ILRS stations: Matera, Herstmonceux, Graz, OCR! Slide courtesy of G. Bianco ! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 20!
Laser Geodynamics Satellites (LAGEOS)! LAGEOS I (1976; NASA), LAGEOS II (1992; NASA/ASI)! LAGEOS Sector , an engineering prototype proporty of NASA-GSFC, SCF-Tested at INFN-LNF! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 21!
Space geodesy, GNSS, Gravitation! International Terrestrial! SLR CONSTELLATION:! Reference Frame (ITRF):! LEO, GNSS, GEO, Moon ! Geocenter from SLR! Scale from SLR & VLBI! Orientation from VLBI! Distribution w/GNSS! DORIS …! LAGEOS! UniCal, 28/11/2013! S. Dell’Agnello (INFN-LNF) et al! 22!
Int. Terrestrial Reference Frame (ITRF)! Space geodesy long-term goal: ! SLR CONSTELLATION! Define and maintain an ITRF with an! accuracy of 1 mm and a stability of! 0.1 mm/year over a 10-year period! Now ITRF is about a factor (few to) 10! less accurate/stable! LAGEOS! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 23!
LAGEOS (h ~ 6000 km): ToF ~ 0.05 sec! S L R S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 24!
SLR/LLR examples! LAGEOS! (h ~ 6000 km):! S ToF ~ 0.05 sec! ! L Apollo LRA! ! ! R Moon! (d ~ 380000 km):! ToF ~ 2.5 sec! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 25!
SLR geodetic “cannonball” satellites! Etalon-I & -II Starlette LAGEOS-II LAGEOS-I Stella GFZ-1 Ajisai Slide courtesy of G. Bianco ! Inclination 64.8° 109.8° 52.6° 50° 50° 98.6° 51.6° Altitude (km)19,120 5,860 5,620 1,490 810 800 396 diameter (cm) 129.4 60 60 215 24 24 20 mass (kg) 1415 411 405.4 685 47.3 47.3 20.6 S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 26!
Current LLR arrays! Re-discovered! Lunokhod 1! Apollo 11! (Luna 17 lander)! Apollo 15! Apollo 14! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 27!
Apollo Missions – Apollo: CCR arrays of fused silica with circular aperture of 3.8 cm diameter each – Apollo 11 e 14: used 100 CCRs, Apollo 15: 300 CCRs S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 28!
“Centro di Geodesia Spaziale (CGS) Giuseppe Colombo”" Matera, Italy" Tri-colocated within ITRF by SLR, VLBI, GNSS! Slide courtesy of G. Bianco ! MLRO,! Matera Laser Ranging Observatory! LLR since March 2010! Led by G. Bianco, also! Chairman of ILRS Governing Board! Giuseppe Colombo, 1920-1984 S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 29!
Slide courtesy of G. Bianco !
3-station colocation, OCA-CERGA, Obs. du Calern, France (courtesy of)
SCF_Lab! Two unique OGSE (Optical Ground Support Equipment) facilities, in clean room to characterize the thermal and optical behavior of laser retroreflectors in lab-simulated space environment (532, 633, 1064 nm)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 32!
Two AM0/space Solar Simulators! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 33!
SCF: thermal testing and sw modeling! With SCF can measure/model subtle thermal effects, and optimize thermal conductance of retroreflector mounting! SCF-Test! IR Heat Flow Due to Tab Supports! Thermal modeling (noon on Moon)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 34!
The GNSS Retroreflector Array (GRA)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 35!
Setting CCR standards @SCF_Lab! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 36!
The SCF-Test (background IP of INFN)! J. Adv. Space Res. 47 (2011) 822–842! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 37!
SCF-Test/Revision-ETRUSCO-2 (ASI-INFN)! • Laboratory-simulated space conditions. Concurrent/integrated:! – Dark/cold/vacuum! – Sun/Albedo AM0 simulators (2) and Earth IR simulator! – Non-invasive IR and contact thermometry! – Laser interrogation and sun perturbation at varying angles! – Payload thermal control, roto-translations! – Critical orbit configurations (worst-case thermal-optical behavior) ! • Deliverables / Retroreflector Key Performance Indicators (KPIs)! – Thermal behavior (τCCR, thermal relaxation time)! – Optical response: Far Field Diffraction Patter, (near-field) Wavefront Fizeau Interferogram! • Integrated thermal-optical simulations (upon request)! Note: reduced, partial, incomplete tests (compared to the realistic space environment) are randomly misleading (either optimistic or pessimistic)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 38!
Making optical SCF movies" (of laser return)! SCF-Test of ! GPS,! GLONASS, ! GIOVE! TOUTER CCR FACE(K)! vs. time (sec)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 39!
SCF-Test of LAGEOS Sector of NASA-GSFC! LAGEOS is the ILRS reference payload standard. ! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 40!
Making thermal (IR) SCF movies! SCF-Test of LAGEOS Sector:! IR movie of Sector moving from AM0 (sun simulator) window to laser window at 90o. IR camera is in between! For ESA s test of Galileo reflectors, rotation accomplished in ~1-2 sec! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 41!
Experiment of CSN5: ETRUSCO-GMES" LNF Infrastructure: SCF_Lab" " R&D on positioning metrology (geo-referencing)" applied to Galileo and Earth Observing Satellites! SCF_Lab! Satellite/Lunar/GNSS! laser ranging and altimetry Characterization Facilities Laboratory!
Galileo and Copernicus/GMES! • Galileo! – EU Flagship Space Program n. 1! • ETRUSCO-1/-2 R&D by ASI-INFN! • Copernicus/GMES (Global Monitoring for Environment & Security)! – EU Flagship Space Program n. 2! • ETRUSCO-GMES R&D by INFN! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 43!
ETRUSCO-2: ASI-INFN R&D for GNSS (2010-13)! Optimized for Galileo and GPS-3! PI:" S. Dell’Agnello" " Co-PIs:" R. Vittori, ESA" G. Bianco, ASI! UniCal, 28/11/2013! S. Dell’Agnello (INFN-LNF) et al! 44!
Global Navigation Satellite System (GNSS)" ~100 satellites with laser retroreflectors (CCRs)! Indian IRNSS: 7+4 European Galileo:! Japanese QZSS: 3 regional satellites! regional satellites! 30 satellites! SCF-Test of! IRNSS, Galileo! (GPS/Glonass done) ! US GPS: 24 global satellites! Chinese COMPASS: 20 global, plus regional satellites! Russian GLONASS: 24 global satellites! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 45!
Why Europe needs Galileo?! Galileo is a strategic program:! • The European Commission (EC) estimates that 6-7% of European GDP, around 800 billion by value, is dependent on satellite navigation.! • The EC and European Space Agency (ESA) joined forces to build Galileo: Europe s independence is the chief reason.! • By being inter-operable with GPS and GLONASS, Galileo will allow positions to be determined accurately for most places on Earth, even in high rise cities where buildings obscure signals from satellites low on the horizon.! • Galileo will achieve better coverage at high latitudes. ! • Europe will be able to exploit the opportunities provided by satellite navigation to the full extent.! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 46!
Galileo Services! • Open Service: the Galileo navigational! signal will be accessible by the general! public free of charge, providing improved! global positioning. It s the only open GNSS ! ! • Public Regulated Service: two encrypted! signals with controlled access for specific! users such as governmental bodies.! ! • Search and Rescue Service: Galileo! will contribute to the international! Cospas–Sarsat system for search and rescue.! A distress signal will be relayed to the Rescue Coordination Centre and Galileo will inform the user that their situation has been detected.! ! • Safety-of-Life Service: standard already available for aviation (ICAO standard) thanks! to EGNOS, Galileo will further improve! the service performance.! ! • Commercial Service: Galileo will provide a signal for high data throughput and highly! accurate authenticated data (time synchronization), particularly interesting for professional users.! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 47!
Towards a Galileo Terrestrial Reference System (GTRF)! A Terrestrial Reference System (TRS) is a spatial reference system co-rotating with the Earth in its diurnal motion in space. In such a system, positions of points anchored on the Earth's solid surface have coordinates which undergo only small variations with time, due to geophysical effects (tectonic or tidal deformations). A Terrestrial Reference Frame (TRF) is a set of physical points with precisely determined coordinates in a specific coordinate system (Cartesian, geographic, mapping ...) attached to a TRS. Such a TRF is said to be a realisation of the TRS. In the future: the GTRF realisation and long-term maintenance will follow the state of the art of TRF implementation. For the determination of the Galileo Sensor Station (GSS) positions a global free network adjustment is applied, avoiding any tensions by fixing of station positions, and providing this way the highest internal network quality S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 48!
Galileo implementation plan! 2 IOV satellites launched Oct. 2011! 2 to be launched Oct. 2012! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 49!
GLONASS, GPS e GIOVE-A/B CCRs! GIOVE-A @ Estec! MW antennas, LRA! GNSS:! Global Navigation Satellite System! Benefits of LRAs on GNSS! • Only independent validation/calibration of GNSS orbits, with 2-4x better precision! • Absolute positioning, ie, wrt ITRF! • Long term stability & geodetic memory! • Therefore: combining SLR+GNSS data will improve orbit reconstruction! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 50!
SCF-Test of Galileo IOV retroreflector [RD-10] ! UniCal, 28/11/2013! S. Dell’Agnello (INFN-LNF) et al! 51!
First 4 Galileo IOV satellites! 1: L-band antenna Transmits the navigation signals in the L-band.! 2: Search & rescue antenna! 3: C-band antenna! 4: Two S-band antennas! 5: Infrared Earth sensors! 6: visible light Sun sensors! 7: Laser retroreflector! 8: Space radiators! 9: Passive hydrogen maser clock! ! Mass: about 700 kg! Size with solar wings stowed: 3.02 x 1.58 x 1.59 m! Size with solar wings deployed: 2.74 x 14.5 x 1.59 m! Design life: more than 12 years! Available power: 1420 W (sunlight) / 1355 W (eclipse)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 52!
Internal anatomy of the Galileo IOV satellite! • Rubidium clock: an atomic clock based on a different technology, ensuring redundancy to the masers. It is accurate to within 1.8 nanoseconds over 12 hours.! • Clock monitoring and control unit: provides the interface between the four clocks and the navigation signal generator unit. It also ensures that the frequencies produced by the master clock and active spare are in phase, so that the spare can take over instantly should the master clock fail.! • Navigation signal generator unit: generates the navigation signals using input from the clock monitoring and control unit and the uplinked navigation and integrity data from the C-band antenna. The navigation signals are converted to L-band for broadcast to users.! • Gyroscopes: measure the rotation of the satellite.! • Reaction wheels: control the rotation of the satellite. When they spin, so does the satellite, in the opposite direction. The satellite rotates twice per orbit to allow the solar wings to face the Sun s rays.! • Magneto-torquer: modifies the speed of rotation of the reaction wheels by introducing a magnetism-based torque (turning force) in the opposite direction.! • Power conditioning and distribution unit: regulates and controls power from the solar array and batteries for distribution to all the satellite s subsystems and payload.! • Onboard computer: controls the satellite platform and payload.! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 53!
SCF-Test of Galileo Critical half-Orbit (GCO)! GCO: GNSS orbit whose angular momentum is orthogonal to the Sun-Earth direction shadow! Earth! Sunrise-Eclipse-Sunset probes critical features of the thermal and optical behavior of the CCR, including optical breakthrough. Galileo orbit: • Altitude = 23222 km • Period ~ 14 hr, shadow ~ 1hr GCO conceptual drawing not to scale! UniCal, 28/11/2013! S. Dell’Agnello (INFN-LNF) et al! 54!
SCF-Test: Galileo reflector temperature along orbit! Measured temperatures vs. time (& sun inclination): - 2 probes on CCR housing - 2 probes on Al housing - 1 probe on the back-plate - IR camera thermograms of the outer CCR face Note the very large Bottom CCR housing temperature excursion, Top CCR housing >100 K ! Bottom Al housing Top Al housing Back plate +++!CCR face S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 55!
SCF-Test: Galileo optical response along critical orbit! ~ -13o ~13o Earth! Sunrise & thermal BT! Sunset & optical BT! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 56!
European Space Technology Master Plan" (ESTMP)! - With co-funding researchers can keep Intellectual Property Right! Galileo! IOV! - Ultimate goal: publish SCF_Lab in ESTMP ! ! - SCF_Lab VQR product! CCRs! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 57!
Copernicus/GMES: from ESA Bulletin Feb. 2012 S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 58!
Copernicus/GMES: from ESA Bulletin Feb. 2012 SAR map (à la Cosmo-SkyMed)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 59!
Goal of ETRUSCO-GMES Unify observations of Galileo & Cosmo constellations, through absolute laser inter-calibrations in Earth & Space! From ESA Bulletin Feb. 2012! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 60!
EU flagship program: Copernicus/GMES Observing our planet for a safer world COPERNICUS (formerly Global Monitoring for Environment and Security, GMES) will provide data to help deal with a range of disparate issues including climate change and border surveillance. Land, sea and atmosphere - each will be observed through GMES, helping to make our lives safer. ! The purpose of GMES is to deliver information on environment and security which correspond to identified user needs S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 61!
Galileo and Copernicus/GMES! • Galileo, ETRUSCO R&D started in CSN5 in 2006! – EU Flagship Space Program n. 1 ! • GMES, Global Monitoring for Environment & Security! – EU Flagship Space Program n. 2! • ETRUSCO-GMES! – G-CALIMES: Unification of Galileo and Italian constellations for radar mapping (SAR) of Earth surface! • Cosmo-SkyMed (CSK) & Cosmo Second Generation (CSG)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 62!
G-CALIMES (Ministero Difesa – INFN)! Galileo-Cosmo-skymed Absolute Laser Intercalibration with Measurements on Earth and in Space.! Also applies to other Earth Observation Satellites.! 1) Development of innovative devices for absolute positioning (georeferencing) in Earth and Space for:! Space segment (satellites)! Ground segment (geodetic station & geological/urban sites)! 2) Deployment & Test! 3) Earth-Space performance study! 4) Patenting activity! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 63!
Geo-referencing Device for Space" (developed by INFN for Min. Defence – IPR of INFN)" Unification of LAGEOS, Vertices of EO satellite maps, Galileo" CONFIDENZIALE – Non divulgare! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 64!
SAR/laser/Galileo Geo-referencing Ground Device" (proto under R&D by INFN for Min. Defence – IPR of INFN)" Designed for Geodetic stations / Space Geodesy Centers" (like ASI-CGS/MLRO in Matera)" CONFIDENZIALE – Non divulgare! Above completely passive: laser CCR & radar CCR! Also with integrated GPS/Galileo receiver (not shown)! Complementary functionalities a d hierarchy of accuracies of the above geodesy techniques! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 65!
SAR/laser/Galileo Geo-referencing Ground Device! • This, or a dedicated/customized device, can be installed in collaboration with Geology group of UniCal in geological sites of their interest! • Study/request of space Earth Observation survey maps (NASA A-Train, ESA Sentinels, ASI/Defence Cosmo) with our device in it! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 66!
SAR/laser/Galileo Geo-referencing Ground Device! • Study/request of space Earth Observation survey maps (NASA A-Train [ Landsat! Etc.], ESA Sentinels, ASI/Defence Cosmo- Skymed) with our device inside the maps, deployed in several sites of Calabria (and/or other sites of geological interest)! • Analysis/modeling of EO maps with our device inside the maps, to be integrated with “Cellular Automata (CA)” modeling/analysis by the UniCal Geology group! • Hierarchy of our geo-referencing unification accuracies (mm- cm for laser, cm-dm for Galileo, ≥ meter for SAR) is ideal to calibrate (and improve!) geo-referencing of! cells of CA models in papers provided by! V. Lupiano (cell size of 5-10 meter apothem)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 67!
SAR/laser/Galileo Geo-referencing Ground Device! • Important role of Geodetic station of ASI-CGS/MLRO in Matera! • There are other applications ….! • The above of another dedicated/customized lightweight/compact device can be installed in urban areas, again of interest of UniCal Geology group, of much smaller areas compared to the typical surface areas of geological sites relevant for Earth Observation from space! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 68!
Other collaboration opportunities! • In addition to proposed SIACE Doctorate project:! • ‘HORIZON 2020 Space’ event yesterday 27/11/2013 in Rome http://www.b2match.eu/h2020spacetour/pages/rome)! – LEIT (Leadership in Enabling Industrial Innovation)! – Societal Challenges ! • Participation in INFN-CSN5 experiment “ETRUSCO-GMES”! • Regional funding calls! • MIUR funding calls! • ….! • INFN-LNF School! – LTL-2014 Cosenza-Rome Doctoral School @LNF: Laboratory Test facilities at INFN-LNF (includes SCF_Lab; and particle accelerators)! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 69!
Acronyms and definitions! 1. AM0: Air Mass Zero! 2. ASI: Agenzia Spaziale Italiana! 13. GTRF: Galileo Terrestrial Reference Frame! 3. BT: Break Through! 14. ILRS: International Laser Ranging Service! 4. CCR: Cube Corner Retroreflector ! 15. IOV: In Orbit Validation! 5. EO = Earth Observation! 16. IPR: Intellectual Property Rights! 6. ESA: European Space Agency! 17. ITRF: International Terrestrial Reference Frame! 7. ETRUSCO: Extra Terrestrial 18. ITRS: International Terrestrial Reference Ranging to Unified Satellite Constellation! System! 8. DEM = Digital Elevation Model! 19. KPI: Key Performance Indicator! 9. FFDP: Far Field Diffraction Pattern! 20. OCS: Optical Cross Section! 10. FOC: Full Orbit Capability! 21. LAGEOS: LAser GEOdynamics Satellite! 11. GCO: GNSS Critical half Orbit! 22. SCF: Satellite/lunar/GNSS laser ranging and altimetry Characterization Facility! 12. GMES = Global Monitoring for Environment and Security! 23. SCF-G: Satellite laser ranging Characterization Facility optimized for GNSS! 13. GNSS : Global Navigation Satellite System! 24. SLR: Satellite Laser Ranging! 14. GPS: Global Positioning System! 25. TIR: Total Internal Reflection! 15. GRA: GNSS Retroreflector Arrays! 26. WI: Wavefront Interferogram! S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 70!
Main Reference Documents! • [RD-1] Dell’Agnello, S., et al, Creation of the new industry-standard space test of laser retroreflectors for the GNSS and LAGEOS, J. Adv. Space Res. 47 (2011) 822–842. • [RD-2] P. Willis, Preface, Scientific applications of Galileo and other Global Navigation Satellite Systems (II), J. Adv. Space Res., 47 (2011) 769. • [RD-3] D. Currie, S. Dell’Agnello, G. Delle Monache, A Lunar Laser Ranging Array for the 21st Century, Acta Astron. 68 (2011) 667-680. • [RD-4] Dell’Agnello, S., et al, Fundamental physics and absolute positioning metrology with the MAGIA lunar orbiter, Exp Astron, October 2011, Volume 32, Issue 1, pp 19-35 ASI Phase A study. • [RD-5] Dell’Agnello, S. et al, A Lunar Laser Ranging Retro-Reflector Array for NASA's Manned Landings, the International Lunar Network and the Proposed ASI Lunar Mission MAGIA, Proceedings of the 16th International Workshop on Laser Ranging, Space Research Centre, Polish Academy of Sciences Warsaw, Poland, 2008. • [RD-6] International Lunar Network (http://iln.arc.nasa.gov/), Core Instrument and Communications Working Group Final Reports. • [RD-7] Yi Mao, Max Tegmark, Alan H. Guth, and Serkan Cabi, Constraining torsion with Gravity Probe B, Physical Review D 76, 104029 (2007). • [RD-8] March, R., Bellettini, G., Tauraso, R., Dell’Agnello, S., Constraining spacetime torsion with the Moon and Mercury, Physical Review D 83, 104008 (2011). • [RD-9] March, R., Bellettini, G., Tauraso, R., Dell’Agnello, S., Constraining spacetime torsion with LAGEOS, Gen Relativ Gravit (2011) 43:3099–3126. • [RD-10] ETRUSCO-2: An ASI-INFN project of technological development and “SCF-Test” of GNSS LASER Retroreflector Arrays, S, Dell’Agnello, 3rd International Colloquium on on Scientific and Fundamental Aspects of the Galileo Programme, Copenhagen, Denmark, August 2011 S. Dell’Agnello (INFN-LNF) et al! UniCal, 28/11/2013! 71!
You can also read