DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...

 
CONTINUE READING
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Diabete: è tempo di
           riclassificazione?

            Marco Giorgio Baroni
Dipartimento di Medicina Clinica, Sanità Pubblica,
    Scienze della Vita e dell’Ambiente (MeSVA)
              Università dell’Aquila
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Il Prof Marco Giorgio Baroni dichiara di aver ricevuto negli ultimi due
anni compensi o finanziamenti dalle seguenti Aziende
Farmaceutiche e/o Diagnostiche:

-   Novo Nordisk
-   Sanofi
-   Lilly
-   MSD
-   Boehringer Ingelhaim
-   Astra Zeneca

Dichiara altresì il proprio impegno ad astenersi, nell’ambito dell’evento, dal nominare, in
qualsivoglia modo o forma, aziende farmaceutiche e/o denominazione commerciale e di
non fare pubblicità di qualsiasi tipo relativamente a specifici prodotti di interesse sanitario
(farmaci, strumenti, dispositivi medico-chirurgici, ecc.).
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Precision medicine in diabetes
      • Precision medicine in diabetes refers to an approach to optimise the
        diagnosis, prediction, prevention or treatment of diabetes by integrating
        multidimensional data, accounting for individual differences.

      • Precision diagnostics: refining the characterisation of diabetes to
        optimise therapies and/or prognostication using information about
        a person’s unique biology, environment and/or context

Precision medicine in diabetes: a Consensus Report from ADA and EASD. Diabetologia 2020
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
La parola diabete identifica un gruppo di disordini
cronici che condividono la presenza di iperglicemia

  L’iperglicemia è il prodotto finale di una serie di
                       processi.
La sola iperglicemia è sufficiente per caratterizzare
            adeguatamente la patologia?
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Hypoglycaemia
                                                                   Side effects of
                                                                    medications
                                                                                             PAD
                                             Obesity
                             Age                                   Myocardial
                                                                   ischaemia

                                                                                     High blood
                                                                                      pressure
                                                              Dyslypidemia
                                             Retinopathy

                                                             Neuropathy               Nephropathy
                  Disease                        Stroke
                  duration
                                      Race                                               Gender
                                                                       Life
                                                                    expectancy

Modified from De Fronzo RA. Diabetes 2009
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Iperglicemia   Biomarkers         Clusters                            Terapia
                                  Subtype A
                                                Disease pathways
                                              Risk of complications

                                  Subtype B
                                                Disease pathways
                                              Risk of complications

                                  Subtype C
                                                Disease pathways
                                              Risk of complications

                                  Subtype D     Disease pathways
                                              Risk of complications
                   Autoimmunity
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Type 2 diabetes genetic loci* informed by multi-trait
    associations point to disease mechanisms and subtypes: A
    soft clustering analysis

Udler MS, et al. (2018) PLOS Medicine 15(9): e1002654.   *94 T2D-associated variants
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Associations of cluster genetic risk scores and
    clinical outcomes from GWAS

Udler MS, et al. (2018) PLOS Medicine 15(9): e1002654.
DIABETE: È TEMPO DI RICLASSIFICAZIONE? - DIPARTIMENTO DI MEDICINA CLINICA, SANITÀ PUBBLICA, SCIENZE DELLA VITA E DELL'AMBIENTE (MESVA) UNIVERSITÀ ...
Diabete tipo 2 e fenotipi
                           Età di
                                                 BMI              HbA1c          GADA        HOMA2_B*           HOMA2_IR*
                          esordio

                      CLUSTER 1                                                                9000 pazienti
                                                      Si                                    svedesi con diabete
                  Severe Autoimmune                                     GADA+
                    Diabetes (SAID)                                                          neo-diagnosticato
                                                                           No                  ANDIS cohort

                                                                  K-means clustering

           CLUSTER 2                               CLUSTER 3                          CLUSTER 4                      CLUSTER 5
      Severe Insulin-Deficient               Severe Insulin-Resistant            Mild Obesity-Related              Mild Age-Related
         Diabetes (SIDD)                         Diabetes (SIRD)                   Diabetes (MOD)                  Diabetes (MARD)
  •    ↓ Età di esordio                  •     ↑ HOMA2_IR                    •   Lieve HOMA2_IR             •     Esordio in età avanzata
  •    ↓ BMI                             •     ↑ BMI                         •   ↑ BMI                      •     Modeste alterazioni
  •    ↑ HbA1c                           •     ↑ Età di esordio                                                   metaboliche
  •    ↓ HOMA2_B

                                                                                                           (*c-peptide)
Ahlqvist E et al., Lancet Diabetes Endocrinol ,2018
Clusters e rischio di complicanze
               Time to chronic kidney                Time to diabetic retinopathy
                                                                                    Time to coronary events
                 disease (≥stage 3B)                   (mild-non-proliferative &
                                                             proliferative)
                                           SIRD

                                                                                     No differences in age and sex-
                                                                   SIDD
                                                                                     adjusted model
                                                                                                                 MARD

                                                                                                         SIRD

                                             MARD

                                    SIDD

                             SAID
                                    MOD

Ahlqvist E et al., Lancet Diabetes Endocrinol 2018
Diabetes cluster: comments
• This approach cannot be easily implemented in the clinical setting
  due to the need for elaborate cluster analyses of markers that are
  not easy to obtain (i.e fasting insulin or C-peptide), especially in
  healthcare systems with limited resources.
• The key question for any subgroup analysis is the clinical utility of
  the subgroups, and in particular whether the proposed subgroups
  differ in response to therapy, which could help to inform treatment
  strategies
• The clinical relevance of these approaches to dissect type 2 diabetes
  heterogeneity, in terms of guiding personalization of diagnosis and of
  therapeutic decisions, remainsd to be determined, although it seems
  so far rather limited
C-peptide blood sample handling

        • C-peptide in whole blood collected in EDTA and measured
          using modern immunoassay analysers is stable at room
          temperature for at least 24h

        • C-peptide in blood collected into serum gel or plain sample
          tubes is stable for 6h, but shows marked degradation by
          24h at room temperature
                                                                                    Centrifuged Whole blood
                                                                        serum gel
                                                                        K+-EDTA

McDonald TJ et al., PlosOne 2012
In conclusion, our data confirms that blood
 glucose levels modulate the pancreatic
 insulin secretion;
 glycemic normalization significantly
 reduced both basal and post-glucagon C-
 peptide release

J. Endocrinol. Invest. 15: 143-146,1992
Unità di misura, indicazioni e cut off nella
        pratica clinica

      1 ng/ml = 1 μg/l = 0.333 nmol/l
      1 nmol/l = 1000 pmol/l = 3 ng/ml

Jones AG & Hattersley AT, Diab Med 2013
Fasting, random or post-stimulation?
          • While formal stimulation tests are most accurate and reproducible for
                 research purposes, a fasting or non-fasting (‘random’) sample is
              usually suitable in clinical practice if the sampling conditions (timing
                 relative to food and concurrent glucose over 8 mmol/l ) are known.

                                                •

Jones AG & Hattersley AT, Diabet Med 2013
Inquadramento ambulatoriale: nel primo approccio al
    paziente di quali elementi disponiamo?

Raccolta
anamnestica                      Misure            Dati di
• Familiarità                    antropometriche   laboratorio:
• Età e modalità                 • Body Mass       • HbA1c
  di esordio                       Index (BMI)     • glicemia
• Complicanze                    • Circonferenza   • esame urine
• Terapia                          vita            • funzione
  farmacologica                                      renale etc
Approccio basato sui clusters o su semplici caratteristiche
     cliniche?
  • Riproducibilità dei clusters nella
    popolazione del trial ADOPT e
    RECORD
      • ADOPT trial of glycaemic
        durability, randomly assigned to
        metformin, sulfonylurea
        (glibenclamide), or
        thiazolidinedione (rosiglitazone)
        monotherapy for up to 5 years
        (n=4351).
      • RECORD study (n=4447), a
        cardiovascular outcomes trial in
        individuals with established type 2
        diabetes, initiating the same drug
        classes as in ADOPT
        (Sulfonylurea and rosiglitazone)
        but as dual second-line therapy,
        for up to 6 years.
Dennis J.M et al, Lancet Diabetes Endocrinol, 2019             ANDIS cohort
Approccio basato sui clusters o su semplici caratteristiche
     cliniche?
      L’utilizzo di un modello basato su semplici caratteristiche cliniche,ottiene risultati sovrapponibili rispetto ai clusters
      nella predizione delle complicanze (età all’esordio per la progressione del diabete)

Dennis J.M et al, Lancet Diabetes Endocrinol, 2019
Renal progression by cluster in ADOPT over 5 years

  In ADOPT and RECORD, baseline eGFR explained a greater proportion of variation than did the clusters
  Estimated glomerular filtration rate at baseline was a better predictor of time to chronic kidney disease

Dennis J.M et al, Lancet Diabetes Endocrinol, 2019
Approccio basato sui clusters o su semplici caratteristiche
     cliniche*?
      Change in HbA1c over 3 years
      in concordant and discordant
      treatment selection groups
      • (A) ADOPT development
         cohort (n=3785), clusters
         strategy (left panel) and clinical
         features strategy (right panel).
      • (B) RECORD validation
         cohort(n=4057), clusters
         strategy (left panel) and clinical
         features strategy (right panel).

      * [four simple clinical measures
      (age, sex, baseline HbA1c,and
      BMI)]

Dennis J.M et al, Lancet Diabetes Endocrinol, 2019
Approccio basato sui clusters o su semplici caratteristiche
     cliniche?

     • We found differences in incidence of chronic kidney disease between
       clusters; however, estimated glomerular filtration rate at baseline was a
       better predictor of time to chronic kidney disease.
     • Clusters differed in glycaemic response, with a particular benefit for
       thiazolidinediones in patients in the severe insulin-resistant diabetes cluster
       and for sulfonylureas in patients in the mild age-related diabetes cluster.
     • However, simple clinical features outperformed clusters to select therapy for
       individual patients.

     • The proposed data-driven clusters differ in diabetes progression and
       treatment response, but models that are based on simple continuous clinical
       features are more useful to stratify patients

Dennis J.M et al, Lancet Diabetes Endocrinol, 2019
Polemiche!!
• The study by Ahlqvist and colleagues and other attempts to characterise the
  heterogeneity in type 2 diabetes have identified clusters with poor clinical utility
  because the clusters are non-aetiological, overlapping, highly dependent on the
  variables used to classify them, and cannot be robustly defined at an individual
  level (Denis et al. 2019)
• Our study provided a wealth of information beyond that of Dennis and colleagues’
  study, primarily insights into the pathogenesis of type 2 diabetes and information
  on disease progression and outcomes. (Ahltqvist et al 2018)
• The potential insights into the pathophysiology of complications in type 2 diabetes
  are exciting and we look forward to hearing more about this in future publications.
  We accept that the models we propose are constructed to accurately predict
  clinical outcomes and do not readily lead to pathophysiological insights. (Denis et
  al. 2019)
Validazioni e conferme
• We assigned participants from recent global outcomes trials (DEVOTE [n =
           7637], LEADER [n = 9340] and SUSTAIN-6 [n = 3297]) to the previously
           defined clusters according to age at diabetes diagnosis, baseline glycated
           haemoglobin (HbA1c) and body mass index (BMI).
         • No GADA, HOMA-B and HOMA-IR
         • Cluster A, severe insulin-deficient diabetes (ANDIS cluster 2); Cluster B,
           severe insulin-resistant diabetes (cluster 3); Cluster C, mild obesity-related
           diabetes (cluster 4); and Cluster D, mild age-related diabetes (cluster 5).

Kahkoksa AR et al Diabetes Obes Metab. 2020;22:1537–1547
Cumulative risk of a major adverse cardiovascular event (MACE),
          cardiovascular (CV) death and all-cause death by cluster

             Conclusions: Previously identified clusters can be replicated in
             three geographically diverse cohorts of long-standing T2D and are
             associated with cluster-specific risk profiles for additional clinical
             and survival outcomes, providing further validation of the
             clustering methodology.
             The external validity and stability of clusters across cohorts
             provides a premise for future work to optimize the clustering
             approach to yield T2D subgroups with maximum predictive validity
             who may benefit from subtype-specific treatment paradigms

Kahkoksa AR et al Diabetes Obes Metab. 2020
Cluster redistribution at 5-year follow-up

   Cluster reproducibility at
   follow-up (ie, the proportion of
   patients allocated to the same
   cluster at baseline and follow
   up) was 20% SIDD, 82%
   SAID, 51% SIRD, 79% MOD,
   and 82% MARD

   (1105 patients with newly diagnosed
   type 1 or type 2 diabetes)

Zaharia OP et al. Lancet Diabetes Endocrinol 2019
DCS                        GoDARTS              ANDIS
                                                                         MARD Mild age-related diabetes
                                                                              • MD Mild diabetes
                                                                              • MDH Mild diabetes with high
                                                                                HDL-cholesterol
                                                                         MOD Mild obesity-related diabetes
                                                                         SIDD Severe insulin-deficient diabetes
                                                                         SIRD Severe insulin-resistant diabetes

                                                     total 15,940 individuals from 3 cohorts, DCS (Netherlands),
Slieker RC et al. Diabetologia (2021) 64 september
                                                     GoDARTS (Scotland) and ANDIS (Sweden)
Characteristics of the five clusters across the three cohorts; DCS
(a–e), GoDARTS (g–k) and ANDIS (m–q)

Slieker RC et al. Diabetologia (2021) 64 september
Meta-analysis results for time to insulin requirement

Slieker RC et al. Diabetologia (2021) 64 september
Lugner M et al. Diabetologia (2021) 64 september
Diabete: è tempo di riclassificazione?

         Clustering or individual prediction?

 The aim of precision medicine in type 2 diabetes is to
identify people who are likely to have a greater relative
        benefit from one drug class over another.
• Recent demonstration of robust, clinically relevant differences in
  glycemic response suggest that a precision medicine approach to
  selecting optimal type 2 diabetes treatment will soon be possible.
• The most practical way to implement this in the near future will be to
  focus on routine clinical markers, and the most accurate approach
  will be integration of continuous features into individualized,
  probabilistic prediction models that can be deployed at the point a
  decision to escalate treatment is made, rather than subtyping.
• Estimates of differences in treatment response can augment the
  limited existing stratification of people with type 2 diabetes based on
  cardiovascular and renal comorbidity
Subgrouping patients diagnosed with type 2
        diabetes in the routine clinical setting
        Easy-to-use clinical data, such as age at diabetes onset, familial history, and
        BMI

                                                           (65y)

Trischitta V et al. Current Opinion in Pharmacology 2020
Subgrouping patients diagnosed with type
2 diabetes in the routine clinical setting
• Hba1c at diagnosis
• Creatinine and GFR
• Lipid profile
Conclusioni
• Il diabete è un disordine complesso con numerose manifestazioni cliniche
  ed una grande varietà di opzioni terapeutiche.

• Le evidenze suggeriscono che la fenotipizzazione dei pazienti aiuta a
  predire le complicanze, comprendere ulteriori aspetti patogenetici e
  personalizzare la terapia

• La migliore fenotipizzazione sembre essere quella basato sui parametri
  clinici, ma necessitiamo di ulteriori markers e modelli per i vari outcomes.

• Sono necessari studi sulla risposta terapeutica alla fenotipizzazione dei
  pazienti.
You can also read