Design Challenges for a High-Rate TPC with MPGD Readout - CERN Indico
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Design Challenges for a High-Rate TPC Muon Cooling and Future Muon Facilities with MPGD Readout Daniel M. Kaplan D. M. Kaplan P. Colas, J. Derré, I. Giomataris CEA Saclay Accelerator Physics and Technology Seminar Fermilab 13TIPP 20112007 February, Chicago, Illinois 8–14 June 2011
Outline (Varied menu!) • Antiproton sources • New antiproton experiments • Physics goals • TPC options & challenges • Summary D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 2
the Tevatron program (towards the end of 2011 according to the present schedule, although the possibility of a Tevatron run extension is under consideration). The CERN Antiproton Antiproton Sources Decelerator (AD) provides low-energy antiproton beams at a tiny fraction of the intensity now available at Fermilab. Germany’s ∼ > billion-Euro plan for the Facility for Antiproton and Ion Research (FAIR) at Darmstadt includes construction — yet to be started — of 30 • and 90 GeV rapid-cycling Fermilab synchrotrons Antiproton and low-isand Source medium-energy world’s antiproton storag most intense rings [1]. Antiproton operation at FAIR is anticipated on or after 2018. (and highest-energy) Table 1: Antiproton energies and intensities at existing and future facilities. p Stacking: Operation: Facility Kinetic Energy Rate Duty Hours p/Yr (GeV) (1010 /hr) Factor /Yr (1013 ) 0.005 CERN AD – – 3800 0.4 0.047 Fermilab Accumulator: Tevatron Collider 8 > 25 90% 5550 > 150 proposed ≈ 3.5–8 20 15% 5550 17 FAIR (∼ > 2018*) 1–14 3.5 15%* 2780* 1.5 ...even after FAIR@Darmstadt turns on ∗ The lower number of operating hours at FAIR compared with that at other facilities arises from the collection ring being shared between the antiproton and radioactive-beam programs. Due to the modular staging of the FAIR facility, stacking of antiprotons will initially be done in the experiment ring, leading to the small duty factor shown here. FAIR’s stacking ring is planned D. M. Kaplan, IIT for installation several years after initial TPC operation. Challenges TIPP 2011, 11 June 2011 3
TAPAS (The AntiProton Annihilation Specrometer at Fermilab) Flux Return Superconducting solenoid Our proposal: TOF TPC • After Tevatron finishes, SciFi - Reinstall E760 barrel calorimeter TOF } - Add small magnetic spectrometer [existing BESS - Add precision TOF system KEK & magnet from
i PANDA - Strong interaction studies with antiprotons MUO P̅ANDA FAIR-ESAC/Pbar/Technical Progress Report, January 17, 2005 TOF stop iii iv TOF stop hadron calorimeter PANDA - Strong interaction studies with antiprotons MDC INFN-Laboratori Nazionali di Frascati, Italy Kungliga Tekniska Högskolan (KTH), Stockholm, Sweden P. Gianotti, C. Guaraldo, O.N. Hartmann, M. Iliescu, V. Lucherini, E. Pace, C. Petrascu, D. Sirghi, solenoid B. Cederwall, A. Johnson F. Sirghi The PANDA Collaboration Stockholms Universitet, Sweden o INFN, Sezione di Genova, Italy 22 C. Bargholtz, K. Lindberg, P.E. Tegnér, I. Zartova R. Ballantini, M. Macri, R. Parodi, A. Pozzo o Universität Basel, Switzerland DIRC Justus Liebig-Universität Gießen, II. Physikalisches Institut, Germany Università del Piemonte Orientale Alessandria, Torino and INFN, Sezione di Torino, Italy 140 M. Kotulla, B. Krusche, F. Zehr M.G. Destefanis, W. Döring, P. Drexler, M. Düren, I. Fröhlich, D.G. Kirschner, W. Kühn, K. Makonyi, M.L. Colantoni, L. Fava, D. Panzieri coil Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China V. Metag, M. Nanova, R. Novotny, dipole F. Ottone, C. Salz, J. Schneider, B. Seitz, G.-C. Serbanut, Dipartimento di Fisica Generale ’A. Avogadro’, Università di Torino and INFN, Sezione di Torino, Italy J.J. Xie, B.S. Zou H. Stenzel, U. Thöring M. Thiel M. Alexeev, A. Amoroso, F. Balestra, R. Bertini, M.P. Bussa, O. Denisov, A. Ferrero, L. Ferrero, RICH V. Frolov, R. Garfagnini, A. Grasso, A. Maggiora, M. Maggiora, G. Pontecorvo, G. Piragino, F. Tosello, Universität Bochum, I. Institut für Experimentalphysik, Germany University of Glasgow, United Kingdom EMC G. Zosi EMC A. Golischewski, K. Götzen, T. Held, H. Koch, EMC B. Kopf, B. Lewandowski, H. Nowak, H. Schmücker, J. Annand,10 o A. Borissov, D. Ireland, R. Kaiser, J. Kellie, K. Livingston, C. McGeorge, D. Protopopescu, DIRC M. Steinke, P. Wieczorek, A. Wilms, J. Zhong MDC G. Rosner Dipartimento di Fisica Generale Università di Torino (a ), Dipartimento di Fisica Sperimentale, Università di Torino (b ), INFN, Sezione di Torino (c ), IFSI, Sezione di Torino (d ) and Politecnico di TOF stop Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany Institut für Kernphysik (a ), Zentralinstitut füror Elektronik (b ), Forschungszentrum Jülich, Germany Torino (e ), Italy EMC STT or TPC F. Hinterberger M. Drochnerb , W. Gasta , A. Gillitzera , D. Grzonkaa , V. Hejnya , G. Kemmerlingb , H. Kleinesb , STT M. Agnelloc,e , E. Bottab,c , T. Bressanib,c , L. Bussoa,c , D. Calvob,c , P. De Remigisc , A. Feliciellob,c , beam Università di Brescia, Italy MDC W. Oelert , D. Prasuhn , J. Ritman , S. Schadmand , A. Sibirtsev , A. Sokolov , T. Stockmanns , F. Ferroc,e , A. Filippib,c , F. Iazzic,e , S. Marcellob,c , G. Mazzac , O. Morrac,d , A. Rivettic , R. Wheadonc a a a a a a a MVD H. Ströhera , A. Ucara , P. Vlasova , P. Wintza , P. Wüstnerb A. Zenoni INFN, Sezione di Trieste and Università di Trieste, Italy Uniwersytet Slaski, Katowice, Poland Dipartimento di 0 -1Fisica e Astronomia dell’Università di Catania and1INFN, Sezione di Catania, 2 Italy 3 4 5 6 8 M. Giorgi, A. Martin, R. Birsa, F.7Bradamante, S. Dalla Torre, 9 P. Schiavon, F. Tessarotto 10 J. Holeczek, J. Kisiel, B. K�los, M. De Napoli, G. Raciti, E. Rapisarda Physikalisches Institut, Universität Tübingen, Germany Institute of Modern Physics, the Chinese Academy of Science, Lanzhou, P.R. China Instytut Fizyki, Uniwersytet Jagiellonski, Cracow, Poland H. Clement, E. Doroshkevitch, K. Ehrhardt, P. Gonser R. Chen, L. Duan, Z. Hu W. Li, Z. Sun, G. Xiao, Z. Xiao, H. Xu, H. Xu P. Hawranek, B. Kamys, St. Kistryn, A. Magiera, P. Moskal, B. Piskor-Ignatowicz, The Svedberg Laboratory, Uppsala, Sweden C. Piskor-Ignatowicz, Z. Rudy, P. Salabura, J. Smyrski, M. Wojciechowski Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, Germany H. Calén, C. Ekström, K. Fransson, A. Kupsc, P. Marciniewski P. Achenbach, J. Pochodzalla, A. Sanchez-Lorente Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany Institutionen för Strålningsvetenskap, Uppsala Universitet, Sweden U. Lynen, J. Lühning, H. Orth, K. Peters, T.R. Saitoh, C. Schwarz, C. Sfienti Politecnico di Milano (a ), Physics Department, Università di Milano (b ) and INFN, Sezione di F. Cappellaro, B. Höistad, T. Johansson, I. Lehmann, A. Lundborg, Y.-N. Rao, Ö. Nordhage, Milano (c ), Italy Technische Universität Dresden, Germany J. Nyberg, H. Pettersson, K. Schönning, P. Thörngren Engblom, U. Wiedner, J. Zlomanczuk P. Albertob,c , R. Bassinic , C. Boianoc , I. Iorib,c , S. Riboldia,c K.-T. Brinkmann, H. Freiesleben, R. Jäkel Universitat de Valencia, Dpto. de Fı́sica Atómica, Molecular y Nuclear, Spain Research Institute for Nuclear Problems, Belarus State University, Minsk, Belarus Veksler-Baldin Laboratory of High Energies (VBLHE), Joint Institute for Nuclear Research (a ), J. Diaz V.I. Dormenev, G.Y. Drobychev, A.A. Fedorov, A.E. Korneev M.V. Korzhik, A.R. Lopatik, Laboratory of Particle Physics (LPP) (b ), Laboratory of Information Technologies (LIT) (c ), Stefan Meyer Institut für Subatomare Physik, Österreichische Akademie der Wissenschaften, Vienna, O.V. Missevitch Laboratory of Nuclear Problems (LNP) (d ), Dubna, Kabardian-Balkarian State University (e ) and Austria Institute of Applied Mathematics and Automation (f ), Nal’chik, Russia Technische Universität München, Germany M. Cargnelli, H. Fuhrmann, P. Kienle, J. Marton, E. Widmann, J. Zmeskal V.M. Abazovd , G. Alexeevd , A. Arefieva , M.Yu. Barabanova , B.V. Batyunyaa , D. Bogoslovskia , B. Ketzer, I. Konorov, A. Mann, S. Neubert, S. Paul, L. Schmitt, Q. Weitzel T.Yu. Bokovaa , V.V. Borisova , V.A. Budilova Yu.V. Bugaenkoa , V.Kh. Dodokhova , A.A. Efremova , Soltan Institute for Nuclear Studies, Warsaw, Poland Westfälische Wilhelms-Universität Münster, Germany O.I. Fedorova , A.A. Feshchenkob , A.S. Galoyanb , G. Ivanova , E. Jafarova , V.I. Kaplina , A. Karmokove , Z. Guzik, M. Kisielinski, T. Kozlowski, D. Melnychuk, J. Wojtkowska, B. Zwieglinski D. Frekers, A. Khoukaz, A. Täschner, J. Wessels E.K. Koshurnikova , V.Ch. Kudaevf , V.I. Lobanova , A.F. Makarova , L.V. Malininaa , V.L. Malyshevd , Warsaw University of Technology, Institute of Atomic Energy, Otwock-Swierk, Poland K.V. Mikhailova , B. Morosova , G.A. Mustafaeve , A.M. Nakhushevf , P.V. Nomokonova , I.A. Oleksa , Budker Institute of Nuclear Physics (BINP), Novosibirsk, Russia B. Slowinski V. Pismennayaa , T.A. Pocheptsova , A. Polanskic , G. Pontecorvod , A. Povtoreykoa , Yu.N. Rogovb , E. Baldin, V. Malyshev, A. Maslennikov, S. Peleganchyk, G. Pospelov, A. Sukharev, Yu. Tikhonov a b target spectrometer I.A. Rufanov , S. Ryabtsun , Z.Ya. Sadygov , R.A. Salmin , A.G. Samartsev , M.G. Sapozhnikov , a b d b T. Seredaa , G.S. Shabratovaa , A.A. Shishkind , A.N. Skachkovad , N.B. Skachkovd , E.A. Strokovskyb , Institut de Physique Nucléaire, Orsay, France forward spectrometer M. Guidal, T. Hennino, M. Mac Cormick, S. Ong, B. Ramstein, J. Van de Wiele, J. Pouthas, P. Rosier, R.Sh. Tesheve , V. Tikhomirova , V.V. Tokmenind , E.P. Ustenkoa , V.V. Uzhinskyc , N.V. Vlasovb , T. Zerguerras A.S. Vodopianova , S.A. Zaporozhetsa , N.I. Zhuravlevd A.I. Zinchenkoa Dipartimento di Fisica Nucleare e Teorica, Università di Pavia (a ), INFN, Sezione di Pavia (b ), Italy University of Edinburgh, United Kingdom G. Bendisciolia,b , G. Bocaa,b , A. Fontanaa,b , P. Genovaa,b , L. Lavezzia,b , P. Montagnaa,b , M. Aliotta, D. Branford, K. Föhl, D. Watts, P. Woods A. Panzarasaa,b , A. Rotondia,b , P. Salvinib MUO Friedrich Alexander Universität Erlangen-Nürnberg, Germany Institute for High Energy Physics (IHEP)( ), Protvino; a W. Eyrich, A. Lehmann Tomsk State University (TSU)(b ), Tomsk, Russia; Spokesperson: Ulrich Wiedner Email: ulrich.wiedner@tsl.uu.se TOF Deputy: Paola Gianotti Email: paola.gianotti@lnf.infn.it TPC Northwestern University, Evanston, U.S.A. and National Center of Particle and High Energy Physics (NCPHEP)(c ), Minsk, Belorussia K. Seth E. Ardasheva , Yu. Arestova , G. Ayzenshtatb , G. Britvicha , B. Chuikoa , S. Golovnyaa , S. Gorokhova , A. Kholodenkoa , V. Lishina , V. Parakhina V. Pikalova , V. Shelikhova , N. Shumeikoc , A. Solinc , SciFi Università di Ferrara and INFN, Sezione di Ferrara, Italy O. Tolbanovb , A. Tyazhevb , A. Vorobieva D. Bettoni, R. Calabrese, P. Dalpiaz, E. Luppi, M. Savriè Petersburg Nuclear Physics Institute of Academy of Science (PNPI), Gatchina, St. Petersburg, Russia R. Dörner, R. Grisenti, M. Kaesz SciFi Johann Wolfgang Goethe-Universität Frankfurt, Germany S. Belostotski, G. Gavrilov, Y. Naryshkin, O. Miklukho, A. Sarantsev, V. Vikhrov TOF Figure 1.3: Setup of the PANDA detector. TAPAS D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 5
TAPAS Physics Case in a nutshell: } • Hyperon CPV & rare decays • Charmonium-like mystery states (XYZ...) World’s best • Charmonium spectrum exp’t! • Charm mixing, CPV, & rare decays + (P̅ANDA) nuclear-physics topics: charmed hybrids & glueballs, nuclear effects, hypernuclei, p!p Drell-Yan... D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 6
High-Rate Experiments! • TAPAS: ≈20 to 50 MHz of charged particles @ 10 MHz interaction rate @ KE p! = 3.5–8 GeV • P̅ANDA: ≈20 to 50 MHz of charged particles @ (ultimately) 10 MHz interaction rate @ KE p! = 1–14 GeV • Based on NA-48/2 KABES (tested to 70 MHz), TPC can handle this with MPGD readout (Micromegas or multi-GEM) D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 7
KAon BEam Spectrometer NA48/KABES Tdrift2 ! "#$%&$'()*+*,"-*.*/$�/)123 Micromegas ! 4(56*7689:;&/;&/
Results from Micromegas TPC R@D != 40 µm M. Dixit et al., Spatial resolution Pad size = 2 mm P. Colas et al., NIM-A 535 (2004) 226 With 1.5 x 4 mm2 pads, we expect we can have 32 pad rows with a resolution of about 50 µm D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 9
TPC Option 1? TAPAS Superconducting solenoid TOF Cylindrical SciFi TPC TOF • Expected interaction rate ≈10 MHz @ 8 GeV p! K.E. Figure 6: E835 apparatus layout (from [67]). • Expected track rate up to 50 MHz ≈ 1 kB per event with SciFi tracking • TPC, L ≈ 1 m ≈8 µs memory ≈80 events pile-up! data per event ≈ 3 MB?! D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 10
TPC Option 2? TAPAS Superconducting solenoid TOF TPC SciFi TOF • Expected interaction rate ≈10 MHz @ 8 GeV p! K.E. Figure 6: E835 apparatus layout (from [67]). • Expected track rate up to 50 MHz ≈ 1 kB per event with SciFi tracking • TPC, L ≈ 0.15 m ≈1.2 µs memory ≈12 events pile-up data per event ≈ 30 kB? D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 11
Data Rate • Expect Level 1 Trigger Accept rate ≈100 kHz • Pass tracker data to Level 2 Trigger • SciFi option: needed bandwidth ≈100 MB/s • TPC option 1: needed B/W ≈30 TB/s! • TPC option 2: needed B/W ≈ 3 GB/s – OK D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 12
TPC Specs • Must minimize pile-up & space-charge effects want high drift speed • CH4 @ 900 V/cm suitable vdrift ≈12.5 cm/µs • Say rin = 2 cm, rout = 15 cm, L = 15 cm D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 13
Space Charge • At high particle rate, drifting ions will perturb drift field due to space charge • Rough (over?)estimate: - treat as cylinder of charge with inner radius a, r = 15 cm outer radius b: ! ! ( ) ( ) r = 2 cm TPC E= r #a 2 2 E= b #a 2 2 p! beam 2" 0 r 2" 0 r 21 • Plausible parameter values: L = 15 cm ρ = 800 nC/m3, r = b = 0.03 m, a = 0.02 m < KABES E(r = 3 cm) ≈ 800 V/m = 8 V/cm D. M. Kaplan, IIT - small w.r.t. 900 V/cm drift field TPC Challenges TIPP 2011, 11 June 2011 14
Summary • Best experiment ever on hyperons, charm, and charmonia may soon be feasible at Fermilab - including world’s most sensitive charm CPV study? • World’s best p̅ source → simple way to broad physics program in (pre-)Project X era • Can small high-rate TPC cost-effectively improve experiment performance? (For more info see http://capp.iit.edu/hep/pbar/.) D. M. Kaplan, IIT TPC Challenges TIPP 2011, 11 June 2011 15
You can also read