CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...

Page created by Samuel Miranda
 
CONTINUE READING
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
CuIn1-xGaxSe2 solar cells

        Master in Ingegneria del Fotovoltaico
   Corso di Tecnologie Fotovoltaiche Convenzionali

                 Francesco Biccari
                 biccari@gmail.com

                    2012-04-25
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
Chalcopyrite semiconductors
     The term chalcopyrite refers to the crystal structure of several
     chalcogenides (chalcogen (element of group 16) + electropositive
     elements).
     In common language chalcopyrite is
     identified with CuFeS2, the first discovered
     compound with this structure.
     In photovoltaic community chalcopyrite
     indicates in particular 4 compounds:

   Chalcopyrite                  a (Å)       c (Å)      Eg (eV)        ηth (%)        ηexp (%)

   CuInSe2 (CISe)                5.78       11.62         1.04            31            15.4

   CuInS2 (CIS)                  5.52       11.08         1.57            31            12.3

   CuGaSe2 (CGSe)                5.61       11.01         1.68            28             9.5

   CuGaS2 (CGS)                  5.35       10.48         2.43            12              –
                                                                                                           d(Se-Cu) ≠ d(Se-In)
                                                                                                               Source: Wikipedia
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                           2/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
Electronic and optical properties
   • All these compounds are naturally p type because of the
     presence of copper vacancies VCu which behave as
     acceptors

   •    CISe: Χ = 4.6 eV, me = 0.09 m0, εr = 13.6
   •    CGSe: Χ = 4.0 eV, me = 0.14 m0, εr = 11.0
   •    CIS: ?
   •    CGS: ?
   •    Good electron effective mass!

   • Direct gap and one of the highest absorbtion coefficient!
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   3/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
The n-type doping problem in CGSe
     CISe can be grown both n and p type!
     CGSe can be obtained p type only. Explanation (ab-initio calculations):

    Critical EF value at which the VCu formation energy becomes zero. VCu are acceptors!
                                                                 Zhao Y., Persson C., Lany S., Zunger A. Appl. Phys. Lett., 85, 5860,
                                                                 (2004)
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                            4/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
CISe: stoichiometry variations
  Ternary Cu-In-S
  phase diagram at
  500°C.

  The most relevant
  phases lie on the
  quasi-binary                                    In2Se3
  intersection:
  Cu2Se-In2Se3.

                                                                                                           Cu2Se

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali           5/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
CISe: stoichiometry variations

                          [Cu]/[In]=0.66                                 The cell efficiency change only slightly if:
  CIGS has a good tolerance to                                                   0.8< [Cu]/([In]+[Ga])0.95
  0.95 to 0.82
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali           6/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
Chalcopyrites solar cells. Brief history
   1953. Hahn. Synthesis and characterization of CISe
   1974. First single crystal CISe/CdS solar cell at Bell Labs
   1975. CISe/CdS 11% at Bell Labs
   1976. Univ. of Maine. First polycrystal CISe/CdS and CIS/CdS solar cells
   1977. Univ. of Maine. First p-n CISe homojunction. 3%
   1981. Boeing company obtains polycrystalline CISe/CdS 11.4% (coev.)
   1980’s. Single crystals are abandoned in favor of thin films.
                Boeing (coevaporation) vs ARCO (selenization)
   1986. Thick CdS abandoned. Thin CdS + thick doped ZnO
   1987. Gallium alloying. Born of CIGSe
   1993. The positive effect of sodium is discovered (soda lime glass) and the Ga
             gradient is introduced.
   1998. NREL CIGSe/CdS 19% on glass. 2008. EMPA 17.4% on polyimide
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   7/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
CIGSe and CIGS alloys
   • CISe pn homojunction have poor efficiency! (Why?)

   • The lattice parameters of chalcopyrites are similar. I can make
     alloys in order to increase Voc.              Why the Voc increases
                                                                                                           with the band gap?

   • Using alloys CuIn1-xGaxSe2 (CIGSe) with Ga content between
     25% and 30% they reached 20.3% efficiency
   • Using alloys CuIn1-xGaxS2 (CIGS) with Ga content of 10% they
     reached good efficiency

   • For larger Ga fractions the photovoltage saturates leading to a
     decrease of conversion efficiencies.

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                        8/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
CIGSe alloy
                                                                Ga/(Ga+In)
                                                        0.3         0.6            0.9

                                      18
                     Efficiency (%)

                                      16

                                      14                                                       The Voc does not increase
                                      12
                                                                                               linearly with Eg!
                                      10

                                            1.0   1.1     1.2   1.3    1.4   1.5   1.6
                                                                                               Usually CIGSe refers to the
                                                                                               composition
  Open Circuit voltage (V)

                                      0.9
                                                                                               CuIn1-xGaxSe2 with x = 0.3
                                      0.8

                                      0.7                                                      CuIn0.7Ga0.3Se2
                                      0.6                                                      Eg = 1.15 eV
                                      0.5
                                            1.0   1.1     1.2   1.3    1.4   1.5   1.6   1.7
                                                        Absorber band gap (eV)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                     9/47
CUIN1-XGAXSE2 SOLAR CELLS - MASTER IN INGEGNERIA DEL FOTOVOLTAICO CORSO DI TECNOLOGIE FOTOVOLTAICHE CONVENZIONALI FRANCESCO BICCARI ...
Explanation of the Voc saturation

  If the CIGSe, like pure CGSe, is able to equilibrate at the temperatures used during
  the junction formation it will react to the EF upward shift creating a large amount of
  VCu (acceptor defects). This effect will reduce the band bending in the absorber, it will
  introduce a large interface recombination and therefore it will give a lower Voc.

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   10/47
CIGSe solar cell structure

                    Substrate configuration                                   Superstrate configuration
                  Need an encapsulating glass                         No transparent encapsulation on the back!
                  Max eff 20%. Currently used                         Max eff 12.8% (Cd diffusion). Abandoned
                                                                                       Source: Poortmans (2006)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali          11/47
CIGSe solar cell structure

           Substrate
           configuration

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   12/47
Back contact
   • The work function of CIGSe is 4.6 eV. A metal with an high work function is
     needed. Mo has a work function of 4.6 eV, insufficient, in principle.

                                                                                                           ?

   • However Mo back contact seems to be ohmic (with strange I-V)!
   • Explanation: MoSe2? This layer is formed during CIGSe deposition.
     Tunnelling? Variable Mo work function?
   • Back contact is usually made of molybdenum and deposited by DC
     sputtering
   • Important role of MoSe2 (adhesion)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali       13/47
Features of CIGSe growth
   • Copper. We need a deficiency of
     copper (p type). But Cu excess: grain
     growth, less defect concentration,
     CuxSe segregation.
     In Cu deficiency the best cell has 14%
     of efficiency.
     Several process were developed to
     use the good impact of Cu excess.

                                                                                    SIMS Profile for Na
   • Sodium. Diffuse from (soda lime) glass
     trough the Mo grain boundaries. Better
     morphology, p-type doping (Voc, FF). It
     can be put in definite quantities with a
     blocking layer and NaF deposition.
     Or by a soda lime thin film on flexible
     substrates

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   14/47
Features of CIGSe growth
   • Gallium. In the highest-efficiency cells, the gallium content
     increases from 5–8% near the front junction to about 10–15%
     at the back contact, while the indium content correspondingly
     decreases toward the back.

        This composition gradient yields an increasing conduction
        band energy that produces a driving force to aid collection of
        electrons (minority carriers in the p-CIGS) by the n-CdS.
        These composition gradients act similarly to the “back surface
        field” in the silicon structure.

        Gallium enhances the MoSe2 formation on the back contact

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   15/47
Deposition of CIGSe
   •    Co-evaporation or co-sputtering of elements on heated substrate. Se in excess. (best
        composition control, graded composition, CuxSe aid)
         – Bilayer process (Boeing)
         – Inverted bilayer process
         – Three stage process (the best process! Eff. record)

   •    Evaporation or sputtering of Cu, Ga, In and subsequent reaction in H2Se atmosphere
        or Se atmosphere (selenization) in tube furnace or RTP.

   •    Nanoparticle “inks” (or “paints”) that are applied using non-vacuum coating
        techniques and then reacted into semiconductor films

   •    Electrodeposition and subsequent selenization/sulfurization

   •    From liquid phase, η = 10.3%
        (D. B. Mitzi. Solution processing of inorganic materials. Wiley-Interscience (2009))

   •    CVD

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   16/47
Deposition of CIGSe. Co-evaporation
      Bi-layer process (Boeing)
      It starts with the deposition of Cu-rich Cu(In,Ga)Se2 (grain growth) and ends with an
      excess In rate (no extra phases).

      Inverted process
      Deposition without copper of (In,Ga)2Se3 (likewise In,Ga, and Se from elemental
      sources to form that compound) at low temperatures (typically around 300°C).
      Then, Cu and Se are evaporated at an elevated temperature (550°C) until an overall
      composition close to stoichiometry is reached. This process leads to a smoother film
      morphology when compared to the bi-layer process. Some CuxSe remains.

      Three-stage process
      Deposition of In, Ga, and Se at the end of an inverted process to ensure the overall In-
      rich composition of the film even if the material had been Cu-rich during the second
      stage (grain growth, no extra phases).
      This process allows also to introduce Ga gradients into the absorber and thus enables
      us to design a graded band-gap structure (Ga gradient).
      During the third stage it is possible to detect Cu-rich and Cu-poor condition from a
      change in the thermal properties or optical properties

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   17/47
Deposition of CIGSe. Co-evaporation

                                                                              A. Romeo et al. Progress in photovoltaics, 12, 93 (2004)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                           18/47
Deposition of CIGSe. Co-evaporation
 Example of bilayer industrial process (Boeing)

                                                                                       Source: Poortmans (2006)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali          19/47
Deposition of CIGSe. Co-evaporation
   Example of three-stage industrial process: Würth Solar.
   Other companies: Global Solar, Ascent Solar, Solibro.

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   20/47
Deposition of CIGSe. Selenization
   • More industrial troughput. Difficult optimization due to the
     importance of kinetics of several reactions

   • Solar Frontier (ex Showa Shell) does not use CdS!
     Annealing in H2S. η = 11%
   • Shell Solar (Avancis) use CdS by CVD. η = 9%
   • Miasolé. Unknown process. η = 9%
   • Energy Photovoltaics (EPV). Hybrid process (coevaporation for In
     and Ga in Se atmopshere, sputtering of Cu, selenization). Low
     defect concentration!
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   21/47
CdS
   CdS is a semiconductor with
                                                                                      CdS
   Eg = 2.42 eV. It is yellow!                                                                             ZnO

   It should be a window layer but it should                                                               CIGSe
   be as thin as possible (we will see why)
   and it is called buffer layer.
                                                                                                            Mo

   Deposition methods:                                                                               Glass, Metal foil,
                                                                                                         plastics
      Evaporation
      Sputtering
      Close Spaced Sublimation (CSS)
      Vapour Transient Deposition (VTD)
      Chemical Vapour Deposition (CVD)
      Chemical Bath Deposition (CBD)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                  22/47
CdS
   •   Compact to reduce shunts
   •   It can suffer from the subsequent processes (usually in superstrate configuration)
   •   Lattice mismatch with the absorber: defects
   •   Ordered Vacancy Compound
       (OVC) near the interface!
       CuIn3xGa3(1-x)Se5
   •   Cd donor dopant?                                                               Poortmans

   •   Partecipation to carrier
       collection?
   •   High absorption in blue:
       usage of ZnO as window layer.
       CdS very thin!
   •   High resistance: usage of AZO
       as window layer. CdS very thin!
   •   Protection of the absorber against
       sputter damage during AZO
       window deposition

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   23/47
CdS deposited by CBD
   • Best results are obtained by
     Chemical Bath deposition (CBD)

   • Solution:

         Cd2+ source (CdSO4, CdI2) + NH3 + S2- source (thiourea)
         + H 2O

         T = 70°C

   • Reaction of Cd2+ with S2- to form CdS

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   24/47
R&D automated setup for CBD

                                                   Intermediary
                                                   transport unit
                                                                              Final
                           Pre Rinse
                                                                              Rinse
  Side channel
  blower

                                                                               Dosage
                                                                               Unit

                                                                                 Temp. Control

                                                                                 Stand alone
                                                                                 modules

                                                                      Robot
                                                                      Handling
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   25/47
CdS alternatives

  CdS is usually thicker than necessary in industrial process: high absorption
  in blue region.
  The buffer could be changed from CdS (Eg = 2.42 eV) to ZnS (Eg = 3.7 eV)
  or In2S3:Na (Eg = 2.2 ÷ 2.95 eV) to improve carrier collection in the blue.

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   26/47
CIGSe solar cells. TCO
   • The cell is completed with two layers of ZnO:
      – A first thin layer 100 nm of intrinsic ZnO useful for reducing pin holes
      – A thick 400 nm layer of AZO (aluminium doped ZnO)

   • ZnO and AZO are
     deposited by RF sputtering
     at relatively low temperature
     (150°C or less) to avoid Cd
     diffusion in CIGSe

   • The best resistivity of AZO
     is 5 x 10-4 Ω cm (higher
     doping reduces the mobility                                                                           Poortmans
     and increases the free
     carrier absorption).

   • Alternatives: BZO
     (high mobility)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali          27/47
CIGSe modules
   • Laser or mechanical scribing to create stripes connected
     in series
   • Encapsulation with EVA

                                                                                                           Poortmans

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali          28/47
CIGSe commercial modules
   Manufacturing capacity:
   Solar Frontier (Showa Shell company) (Japan): 900 MW in 2012!

   Global Solar (USA)
   140 MW (roll to roll)
   10% efficiency

   Avancis (Germany)
   (15.5% on 30 cm x 30 cm module!)

   Würth Solar (Germany) 30 MW

   Ascent Solar (USA): 1.5 MW
   (8% on plastic)                                                                                         12% efficiency

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                    29/47
CIGSe commercial modules
   Manufacturing capacity:
   Solibro (Q-Cells company) (Germany): 13% efficiency!

   Solyndra (USA)

   Heliovolt (USA)
   12 % efficiency

   Solarion (Germany)
   13% (?) roll to roll on plastic
   and rigid modules

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   30/47
Avancis process
  • SiNx barrier before Mo layer

  • Sodium dopant by DC
  sputtering

  • Alternate layers Cu (85%) +
  Ga (15%) and In

  • Thermally evaporated Se
  layer

  • Selenization in RTP (IR
  lamps) 10°C/s! The chamber
  has a minimized volume to
  ensure high pressure of Se
  and S. S is introduced by an
  additional gas feed.
                                                                          Time resolved photoluminesce
  The process has probably a                                              and other advanced techniques
  duration of about 10 minutes.                                           for quality control!

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   31/47
Centrotherm turnkey line
     Process: precursor/selenization
     Cost: 60 M€ for a capacity of 50 MW/y
     First module produced in January
     2010 in a line installed in Taiwan

     Module eff. 12%, 170 Wp

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   32/47
Flexible CIGS Modules: Nanosolar
                                                                               • Aluminium foil + Mo
                                                                               • CIGSe printed with ink
                                                                               containing nanoparticles + RTP
    Founded in 2002
    Production capacity = 430 MW
    Production 2009 = 4 MW

    Eff.: 11.6% module, 15.3% cell

                                                                               • Wrap-Through back contact
                                                                               on a second aluminium foil

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali        33/47
CIGSe solar cells stability
                            Adverse effect of humidity on unprotected ZnO: degradation was
                            shown to come from a resistivity increase but this drawback was
                            overcome with proper encapsulation.

    No formation of Cu2S at the interface between CdS and In-
    rich CIS.
    Cd in-diffusion is kinetically limited and poses no threat to
    the interface stability (D(Cd in CIS) = 10-19 cm2/s at room                                                  ZnO
    temperature).
                                                                                                                CIGSe
    Mo/CIGS interface: very stable with no evidence of Mo
    diffusion into the CIGS film. An interfacial MoSe2 layer of a                                                 Mo
    10 nm thickness can be formed. This layer is possibly
    beneficial in producing an ohmic back contact at room                                                  Glass, Metal foil,
    temperature.                                                                                               plastics

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                    34/47
CIGSe solar cells stability
    Why Cu outdiffusion is very likely in Cu2S/CdS cells but highly unlikely in
    CIGSe/CdS cells?

               1. µCu(Cu2S) > µCu(CdS)                                      1. µCu(CIS) < µCu(CdS)

               2. The electric potential drop                               2. The electric potential drop
               across the Cu2S/CdS interface is                             across the CIS/CdS interface is
               small, so that under forward bias                            high, so that even under forward
               an overpotential results in a                                bias Cu outdiffusion is very unlikely
               driving force for Cu outdiffusion

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali            35/47
CIGSe solar cells stability
     Test solar frontier

                                                                                                           Test Global Solar

                             S. Wiedeman, TFPP 2006

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                  36/47
CIS solar cells
   • Sulfurcell in Germany has developed a manufacturing
     process for this cell technology

   • Using Cu-rich CIS thin films efficiencies of over 12%
     have been achieved. No sodium needed! However the
     CuxS phase has to be removed in a further step which
     can easily be done by KCN treatment. A solution is the
     usage of Cu-poor film with Na doping.

   • Eg greater than in CIGSe: smaller temperature
     coefficient

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   37/47
CIS solar cells. Development
   • Voc improvement
      – Ga alloying of CIS (larger
        concentration in the back of the
        cell)
      – Lower electron affinity buffer
        layer. n-CdS is considerably
        less appropriate for CIS
        because the electron affinities
        between the materials differ by
        about 0.4 eV, thus limiting the
        contact potential difference and
        thus the achievable Voc

   • jsc improvement
      – Larger Eg window layer
         (i.e. Zn(S,O))

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   38/47
CIS solar cells. Sulfurcell process
   Sulfurization of precursors
   in RTP furnace. Only 5
   minutes in RTP!!!

   Max eff. 8.6%

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   39/47
CIGSe and others. Production
                        CIGS                                               2009 MW/yr                         2010 MW/yr
                                                                       Capacity Production                 Capacity Production
  Solar Frontier (Showa Shell)                       JPN                       80                45             80         80
  Solibro (Q-cells)                                  DEU                       30                20            135         95
  Solindra                                           USA                     110                 30              -           -
  Wurth Solar                                        DEU                       30                30             40         40
  Global Solar                                   USA+DEU                       75                20             75         55
  Avancis (Shell+Saint Gobain)                       DEU                       20                 5             20         20
  Sulfurcell                                         DEU                         3                2             35         18
  Nanosolar                                          USA                     430                  4            430           -

  2009 total production:                           210 MWp
  2010 total production:                           435 MWp
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                     40/47
Materials availability: a future problem?

      Indium requirement: 0.03 g/Wp: the
      price is still acceptable
      The entire In production would give a
      maximum of 10 GWp/yr PV production.
                                                                              J.J. Scragg et al, Phys. stat. sol. (b) 245, 1772 (2008)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                                 41/47
Materials availability: a future problem?
                                                                    Source: B. A. Andersson , Prog. Photovolt. Res. Appl. 8, 61 (2000)

                                    Metal            Reserves        Production            Limit            1999 limit  2020 limit
       Modules
                                   Required            1998             1999              power            annual prod annual prod
      (Eff≈10%)
                                    (g/m2)             (Gg)           (Gg/yr)             (TWp)             (GWp/yr)    (GWp/yr)

     CdTe (2 µm)           Cd          6.3               600               20
                           Te          6.5               20               0.29              0.3                5             20
     CIGS (2 µm)           Se          4.8               70                2.2
                           Ga          0.53              110             0.054
                            In         2.9               2.6              0.29             0.09                7             70
   aSiGe (0.2 µm)          Ge          0.44               2              0.063              0.5                14           200
          Dye              Ru          0.1                6              0.011               6                 11            20

  Total PV 2010 production ≈ 27 GWp (2 GWp due to CdTe and CIGS)
  No availability problems in the next 5-10 years

  On the long term availability problems for In and Te could arise.
  (105 TWh 2006 world consumption: 10 TWp of PV)
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                          42/47
Grain boundaries role in CIGSe
                                                                          “Why are polycrystalline thin-film PV
                                                                          devices more efficient than their
                                                                          single crystal counterparts?”

                                                                          Maybe the grain boundaries in the
                                                                          columnar grains act as preferential
                                                                          minority carrier paths (barrier for
                                                                          holes and well for electrons)

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali        43/47
Minority carrier lifetimes in CIGSe
   Time resolved photoluminescence

  2 ns < τn < 200 ns.
  If µn = 100 cm2/(Vs) and τn = 10 ns then Ln=1.6 µm
                         kT
  Ln = Dτ n = µ n           τn
                          q
  This is partly confirmed by direct EBIC
  measurements
  Fast τn decrease in air!                                                           B. Ohnesorge et al. Appl. Phys. Lett., 73, 1224
                                                                                     (1998)
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali                           44/47
CIGS solar cells. Conclusions (1)
   •    High efficiency
          – The polycrystalline nature of the thin film is not detrimental and poly thin film
            solar cells give higher efficiency compared to their single crystal counterparts

   •    Stability
         – The large stoichiometry variations (a few percents) and defect density are not
           detrimental
         – Impurities in large concentrations (i.e. Fe at 1017 cm-3) do not cause any
           performance degradation or stability problem and in the case of Na (at 1020
           cm-3) a performance improvement is observed.

   •    Low cost
         – Effective use of raw materials
         – Small energy pay-back time (less than two years)
         – No doping: the p-type conductivity due to intrinsic defects is used

   •    Adaptable to various applications

   •    Large supporting research and development community
Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   45/47
CIGS solar cells. Conclusions (2)
   • CIGSe modules have reached 431 MWp of production in 2010

   • CIGSe has the highest efficiencies and potentialities, but also the highest
     cost with respect to CdTe and a-Si.

   • At the moment the main product type is a glass monolithic module but
     probably a large production increase will derive from the introduction of
     flexible modules.

   • A few companies are starting to deliver turnkey production lines.

   • Materials availability is not going to be a big problem in the next years and it
     will improve in response to demand and price increase.

   • Environmental and safety problems are manageable in the production phase
     and almost irrelevant for the user.

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   46/47
Acknowledgments
   • Thanks to Dr. Alberto Mittiga for providing several
     figures, numbers and slides of this presentation

   • Thanks to Dr. Rosa Chierchia for useful discussions

Francesco Biccari – Master Ingegneria del Fotovoltaico – Corso di Tecnologie Fotovoltaiche Convenzionali   47/47
You can also read