Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Come sta cambiando la Terra Solida a causa della propria dinamica interna Roberto Sabadini Università degli Studi di Milano 105° Congresso SIF, L’Aquila 2019 Relazione generale Geofisica e fisica dell’ ambiente
SUBDUCTION ocean-continent Modelling of slow tectonics Us=5 cm/yr θs=45° cf=1 TEMPERATURE AND VELOCITY FIELDS • The cold lithosphere sinks into hot mantle and progressively steepens at great depths. • The convective flow characterizes, at the beginning of subduction, the area below the subducting plate, and progressively enlarges below the upper plate. • The hot mantle rises in the wedge area producing a progressive thermal thinning of the overriding plate. TEMPERATURE Courtesy from Prof. Anna Maria Marotta, Department of Earth Sciences, University of Milano
Location of subduction zones Courtesy from Prof. Anna Maria Marotta, Department of Earth Sciences, University of Milano
The Post Glacial Rebound Isostatic Adjustment core core Deglaciation mantle mantle Isostatic Adjustment core The Mantle Viscosity mantle drives the Rebound
Satellite data (GRACE, GOCE, GPS) Two kinds of data: - Perturbations in the gravitational field (GRACE, GOCE) - Surface displacements (GPS)
GRACE GOCE
Gravitational field Some concepts here developed are based on the NGGM (Next Generation Gravity Mission) techonological and geodetic feasibility of measuring, at the Geoid (mean sea- level, no dynamics), a gravitational signal of 1 microGal/yr at 80 km spatial resolution (230 spherical harmonics) In order to have the physical flavor of this accuracy, it is like adding or removing from the surface of the Earth a plate of 1 cm per year of crustal material, or 2.7 cm of water, sitting on it
GRAVITATIONAL SEISMOLOGY (Activity Line 1: Scientific Data Exploitation) ESA ITT AO/1-9101/17/I-NB Final Meeting Meeting, ESRIN, June 11-12, 2019
COURTESY FROM THALES ALENIA SPACE IN ITALY Future evolution: Next Generation Gravity Mission (NGGM) Satellite 2 Satellite 1 Mission scenario: two pairs of satellites flying on near-polar (88°) and medium inclination (66°) orbits with mean altitude between 340 and 370 km and 100 km inter-satellite distance. Target lifetime ∼11 years. Technique: measurement of the inter-satellite distance variation induced by Earth’s gravity (LL-SST, same of GRACE) Payload: laser interferometer for inter-satellite distance variation measurement( ∼10 nm/√Hz) + new generation electrostatic accelerometer for non-gravitational acceleration measurements (∼10-11 m/s2/√Hz between 10-3 - 10-1 Hz). Improvements w.r.t. GRACE, GOCE: temporal & spatial aliasing reduction in gravity field solutions (2 pairs); enhanced sensitivity (adequate for detecting time-variability in Earth gravity field) at higher spatial resolution (laser interferometer, low altitude, drag control). Gravitational Seismology, KO draft agenda, Milano, 2018 April 5
Profiling the Earth, gravitationally
Surface Displacements Accuracy: 1 mm/yr over 1000 km, or 1 nano-strain/yr
EIGEN−6C4 δgSA, 0.1o x 0.1o, 5 km above Ellipsoid −200 −160 −120 −80 −40 0 40 80 120 160 200 wrms about mean / min / max = 34.77 / −350.7 / 664.3 mgal ICGEM, GFZ Potsdam, Wed Feb 27 10:16:20 2019 http://icgem.gfz-potsdam.de
General Scheme Satellite Solid Earth Phenomena: Data Model Predictions Inversion Earthquake parameters Present day mass changes Mantle viscosity
August 2002 From GRACE
April 2007
Periodic Signal Semi-Annual Annual 9-month 7.2-month
The Map of Mass Variation Trend - Filtered
9 GRACE mass variation trend in water equivalent, after removal of PGR contribution, based on the model ... V.R. Barletta, R. Sabadini, A. Bordoni (2008). Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. GEOPHYSICAL JOURNAL INTERNATIONAL, vol. 172, p. 18-30, ISSN: 0956-540X, doi: 10.1111/j.1365-246X. 2007.03630.x
3 PGR final results. Upper and lower bounds for the PGR contribution to mass trends in Antarctica and ... V.R. Barletta, R. Sabadini, A. Bordoni (2008). Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. GEOPHYSICAL JOURNAL INTERNATIONAL, vol. 172, p. 18-30, ISSN: 0956-540X, doi: 10.1111/j.1365-246X. 2007.03630.x
SUBDUCTION ocean-continent Modelling of slow tectonics Us=5 cm/yr θs=45° cf=0.25 CASE STUDIES Sumatra, Marianas From Marotta et al., GJI 2019, submitted
G. Cambiotti, A. Bordoni, R. Sabadini, L. Colli (2011). GRACE gravity data help constraining seismic models of the 2004 Sumatran earthquake. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH, vol. 116, ISSN: 0148-0227, doi: 10.1029/2010JB007848
Tohoku-Oki earthquake (Mw=9.1), 2011 Pacific Ocean National Natural Science Foundation of China (No. 41331066 and 41174063), by the CAS/CAFEA international partnership program for creative research teams (No.KZZD-EW-TZ-19), and the SKLGED foundation (SKLGED2014-1-1-E), as well as by the GOCE Italy Project, the Italian Space Agency and the European Space Agency
10 10 GRACE fitting 5 jump 5 gravity changes (µGal) gravity changes (µGal) 0 0 −5 −10 −5 (a) A(138°,39°) (b) B(144°,35.5°) −15 2004 2006 2006 2008 2010 2008 2010 2012 2014 2004 2012 2014 time (year) time (year) coseismic gravity changes errors 50˚ 50˚ 45˚ 45˚ 40˚ 40˚ A B 35˚ 35˚ 30˚ 30˚ (c) (d) 25˚ 25˚ 130˚ 135˚ 140˚ 145˚ 150˚ 155˚ 130˚ 135˚ 140˚ 145˚ 150˚ 155˚ µGal µGal −10 −5 0 5 10 0.0 0.5 1.0 1.5 2.0
G. Cambiotti, R. Sabadini (2013). Gravitational seismology retrieving Centroid-Moment- Tensor solution of the 2011 Tohoku earthquake. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH, vol. 118, p. 183-194, ISSN: 2169-9356, doi: 10.1029/2012JB009555
Gravitational Centroid Moment Tensor Solution G. Cambiotti, R. Sabadini (2013). Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku earthquake. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH, vol. 118, p. 183-194, ISSN: 2169-9356, doi: 10.1029/2012JB009555
Co‐seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space‐borne gravimetric data Earth and Planetary Physics, Volume: 2, Issue: 2, Pages: 120-138, First published: 02 May 2018, DOI: (10.26464/epp2018013)
IVONE JIMENEZ-MUNT, SABADINI R, ANNALISA GARDI, GIUSEPPE BIANCO (2003). Active deformation in the Mediterranean from Gibraltar to Anatolia inferred from numerical modeling and geodetic and seismological data. JOURNAL OF GEOPHYSICAL RESEARCH, vol. 108 no. B1, p. ETG 2-1, 2, ISSN: 0148-0227
Figure 2. (a) GPS velocities and 95 per cent confidence ellipses in a fixed Eurasian reference frame (Altamimi ... On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of Italy , Mimmo Palano, Geophysical Journal International, Volume 200, Issue 2, February, 2015, Pages 969–985, https://doi.org/10.1093/gji/ggu451
G. Cambiotti, X. Zhou, F. Sparracino, R. Sabadini, W. Sun (2017). Joint estimate of the rupture area and slip distribution of the 2009 L’Aquila earthquake by a Bayesian inversion of GPS data. GEOPHYSICAL JOURNAL INTERNATIONAL, vol. 209, p. 992-1003, ISSN: 0956-540X, doi: 10.1093/gji/ggx060
Antonella Amoruso, Luca Crescentini and Andrea Morelli, Slow rupture of an aseismic fault in a seismogenic region of Central Italy, Geophysical Research Letters, 2002, Vol. 29, Issue 24, Pages 72-1-72-4
Livellazione da parte dell’Istituto Geografico Militare dopo il terremoto dell’Irpinia 1980-1985
G. Dalla Via, R. Sabadini, G. De Natale, F. Pingue (2005). Lithospheric rheology in southern Italy inferred from postseismic viscoelastic relaxation following the 1980 Irpinia earthquake. JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH, ISSN: 0148-0227, doi: 10.1029/2004JB003539
Segnale gravitazionale di un terremoto di magnitudo Mw=7.0, come il terremoto del’Irpinia del 1980 Cosismico più postsismico, circa 3 microGal durante gli 11 anni di durata della missione NGGM
EARTHQUAKE MEASUREMENT NGGM SCENARIOS ERRORS SIMULATION • Self-gravitating Compressible • Accelerometers and Interferometer • Orbit simulation Viscoelastic Earth model • Coloured noise • Noise simulation based on PREM • Drag force • 28 dat (mean) gravity field retrival DETECTION of the earthquake signature and discrimination from the AOHIS (Atmosphere, Ocean, Hydrology, continental Ice, Solid Earth) signals Courtesy from Dr. Gabriele Cambiotti, Department of Earth Sciences, University of Milano
Grazie L’Aquila di ospitare il 105° Congresso Nazionale della Società Italiana di Fisica 2019
You can also read