Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...

Page created by Marion Kramer
 
CONTINUE READING
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Come sta cambiando la Terra Solida
a causa della propria dinamica interna

            Roberto Sabadini
      Università degli Studi di Milano

     105° Congresso SIF, L’Aquila 2019
            Relazione generale
      Geofisica e fisica dell’ ambiente
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Maxwell Rheology
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
SUBDUCTION   ocean-continent           Modelling of slow tectonics        Us=5 cm/yr    θs=45°          cf=1

                                                                       TEMPERATURE AND VELOCITY FIELDS

                                                                     • The cold lithosphere sinks into hot
                                                                       mantle and progressively steepens at
                                                                       great depths.

                                                                     • The convective flow characterizes, at
                                                                       the beginning of subduction, the
                                                                       area below the subducting plate,
                                                                       and progressively enlarges below the
                                                                       upper plate.

                                                                     • The hot mantle rises in the wedge
                                                                       area producing a progressive
                                                                       thermal thinning of the overriding
                                                                       plate.

                                                                                 TEMPERATURE

   Courtesy from Prof. Anna Maria Marotta, Department of Earth Sciences, University of Milano
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Location of subduction zones

Courtesy from Prof. Anna Maria Marotta, Department of Earth Sciences, University of Milano
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Pleistocene Deglaciation Model
            ICE-3G

14 kyr BP
9 kyr BP

            Ice (m/kyr)
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
The Post Glacial Rebound
               Isostatic Adjustment

 core                                       core

                     Deglaciation         mantle
mantle

   Isostatic
 Adjustment
                       core

                                      The Mantle Viscosity
                     mantle           drives the Rebound
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Come sta cambiando la Terra Solida a causa della propria dinamica interna - Roberto Sabadini Università degli Studi di Milano 105 Congresso SIF ...
Satellite data (GRACE, GOCE, GPS)

Two kinds of data:

- Perturbations in the gravitational field
  (GRACE, GOCE)

- Surface displacements (GPS)
GRACE   GOCE
Gravitational field
Some concepts here developed are based on the NGGM
(Next Generation Gravity Mission) techonological and
geodetic feasibility of measuring, at the Geoid (mean sea-
level, no dynamics), a gravitational signal of
                         1 microGal/yr
                  at 80 km spatial resolution
                  (230 spherical harmonics)

In order to have the physical flavor of this accuracy, it is like
adding or removing from the surface of the Earth a plate of
1 cm per year of crustal material, or 2.7 cm of water, sitting
on it
GRAVITATIONAL SEISMOLOGY
     (Activity Line 1: Scientific Data Exploitation)

             ESA ITT AO/1-9101/17/I-NB

Final Meeting Meeting, ESRIN, June 11-12, 2019
COURTESY FROM THALES ALENIA SPACE IN ITALY
Future evolution: Next Generation Gravity Mission (NGGM)

                              Satellite 2

                                            Satellite 1

Mission scenario: two pairs of satellites flying on near-polar (88°) and medium inclination (66°) orbits with mean
altitude between 340 and 370 km and 100 km inter-satellite distance. Target lifetime ∼11 years.
Technique: measurement of the inter-satellite distance variation induced by Earth’s gravity (LL-SST, same of GRACE)
Payload: laser interferometer for inter-satellite distance variation measurement( ∼10 nm/√Hz) + new generation
electrostatic accelerometer for non-gravitational acceleration measurements (∼10-11 m/s2/√Hz between 10-3 - 10-1
Hz).
Improvements w.r.t. GRACE, GOCE: temporal & spatial aliasing reduction in gravity field solutions (2 pairs);
enhanced sensitivity (adequate for detecting time-variability in Earth gravity field) at higher spatial resolution (laser
interferometer, low altitude, drag control).

                                 Gravitational Seismology, KO draft agenda, Milano, 2018 April
                                                                                            5
Profiling the Earth,
gravitationally
Surface

Displacements

Accuracy: 1 mm/yr
over 1000 km,
or 1 nano-strain/yr
EIGEN−6C4
δgSA, 0.1o x 0.1o, 5 km above Ellipsoid    −200   −160 −120   −80   −40   0   40   80    120    160   200
wrms about mean / min / max = 34.77 / −350.7 / 664.3 mgal
ICGEM, GFZ Potsdam, Wed Feb 27 10:16:20 2019
                                                                              http://icgem.gfz-potsdam.de
General Scheme
Satellite                      Solid Earth Phenomena:
  Data                          Model Predictions

                  Inversion

             Earthquake parameters
            Present day mass changes
                 Mantle viscosity
August 2002

              From GRACE
April 2007
Periodic Signal
                           Semi-Annual

Annual           9-month       7.2-month
The Map of Mass Variation
     Trend - Filtered
9 GRACE mass variation trend in water equivalent, after removal of
  PGR contribution, based on the model ...

V.R. Barletta, R. Sabadini, A. Bordoni (2008). Isolating the PGR signal in the GRACE data:
impact on mass balance estimates in Antarctica and Greenland. GEOPHYSICAL JOURNAL
INTERNATIONAL, vol. 172, p. 18-30, ISSN: 0956-540X, doi: 10.1111/j.1365-246X.
2007.03630.x
3 PGR final results. Upper and lower bounds for the PGR
  contribution to mass trends in Antarctica and ...

V.R. Barletta, R. Sabadini, A. Bordoni (2008). Isolating the PGR signal in the GRACE data:
impact on mass balance estimates in Antarctica and Greenland. GEOPHYSICAL JOURNAL
INTERNATIONAL, vol. 172, p. 18-30, ISSN: 0956-540X, doi: 10.1111/j.1365-246X.
2007.03630.x
SUBDUCTION   ocean-continent             Modelling of slow tectonics      Us=5 cm/yr   θs=45°   cf=0.25

                CASE STUDIES      Sumatra, Marianas

                               From Marotta et al., GJI 2019, submitted
G. Cambiotti, A. Bordoni, R.
Sabadini, L. Colli (2011). GRACE
gravity data help constraining seismic
models of the 2004 Sumatran
earthquake. JOURNAL OF
GEOPHYSICAL RESEARCH. SOLID
EARTH, vol. 116, ISSN: 0148-0227,
doi: 10.1029/2010JB007848
Tohoku-Oki earthquake
   (Mw=9.1), 2011
    Pacific Ocean

National Natural Science Foundation of China (No. 41331066 and
41174063), by the CAS/CAFEA international partnership program for
creative research teams (No.KZZD-EW-TZ-19), and the SKLGED
foundation (SKLGED2014-1-1-E), as well as by the GOCE Italy
Project, the Italian Space Agency and the European Space Agency
10                                                                                                       10
                                                                                       GRACE
                                                                                       fitting
                           5                                                           jump
                                                                                                                                    5

gravity changes (µGal)

                                                                                                         gravity changes (µGal)
                           0

                                                                                                                                    0
                          −5

                         −10
                                                                                                                                   −5
                                     (a) A(138°,39°)                                                                                            (b)    B(144°,35.5°)
                         −15         2004 2006                                                                                                  2006 2008                2010
                                          2008                       2010   2012         2014                                                 2004                                2012        2014
                                                                                                                                                time (year)
                                                       time (year)

                                      coseismic gravity changes                                                                                                   errors
                         50˚                                                                                                      50˚

                         45˚                                                                                                      45˚

                         40˚                                                                                                      40˚
                                                  A

                                                                 B
                         35˚                                                                                                      35˚

                         30˚                                                                                                      30˚

                                     (c)                                                                                                       (d)

                         25˚                                                                                                      25˚
                            130˚           135˚       140˚           145˚       150˚             155˚                                130˚             135˚     140˚       145˚         150˚      155˚

                                                                                                  µGal                                                                                               µGal
                               −10           −5              0              5               10                                          0.0             0.5        1.0           1.5           2.0
G. Cambiotti, R. Sabadini (2013). Gravitational seismology retrieving Centroid-Moment-
Tensor solution of the 2011 Tohoku earthquake. JOURNAL OF GEOPHYSICAL
RESEARCH. SOLID EARTH, vol. 118, p. 183-194, ISSN: 2169-9356, doi:
10.1029/2012JB009555
Gravitational
Centroid Moment Tensor
Solution

G. Cambiotti, R. Sabadini
(2013). Gravitational
seismology retrieving
Centroid-Moment-Tensor
solution of the 2011 Tohoku
earthquake. JOURNAL OF
GEOPHYSICAL RESEARCH.
SOLID EARTH, vol. 118, p.
183-194, ISSN: 2169-9356,
doi: 10.1029/2012JB009555
Co‐seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space‐borne
                  gravimetric data

Earth and Planetary Physics, Volume: 2, Issue: 2, Pages: 120-138, First published: 02 May 2018, DOI: (10.26464/epp2018013)
IVONE JIMENEZ-MUNT,
SABADINI R, ANNALISA
GARDI, GIUSEPPE BIANCO
(2003). Active deformation in
the Mediterranean from
Gibraltar to Anatolia inferred
from numerical modeling and
geodetic and seismological
data. JOURNAL OF
GEOPHYSICAL RESEARCH, vol.
108 no. B1, p. ETG 2-1, 2, ISSN:
0148-0227
Figure 2. (a) GPS velocities and 95 per cent confidence ellipses in a
fixed Eurasian reference frame (Altamimi ...

On the present-day crustal stress, strain-rate fields and mantle anisotropy pattern of
Italy , Mimmo Palano, Geophysical Journal International, Volume 200, Issue 2,
February, 2015, Pages 969–985, https://doi.org/10.1093/gji/ggu451
G. Cambiotti, X. Zhou,
F. Sparracino, R.
Sabadini, W. Sun
(2017). Joint estimate
of the rupture area
and slip distribution of
the 2009 L’Aquila
earthquake by a
Bayesian inversion of
GPS data.
GEOPHYSICAL
JOURNAL
INTERNATIONAL,
vol. 209, p. 992-1003,
ISSN: 0956-540X, doi:
10.1093/gji/ggx060
Antonella Amoruso, Luca Crescentini and Andrea Morelli, Slow rupture of an
aseismic fault in a seismogenic region of Central Italy, Geophysical Research
Letters, 2002, Vol. 29, Issue 24, Pages 72-1-72-4
Livellazione da parte dell’Istituto Geografico Militare dopo il terremoto dell’Irpinia
                                        1980-1985
G. Dalla Via, R. Sabadini, G. De Natale, F.
Pingue (2005). Lithospheric rheology in
southern Italy inferred from postseismic
viscoelastic relaxation following the 1980
Irpinia earthquake. JOURNAL OF
GEOPHYSICAL RESEARCH: SOLID EARTH,
ISSN: 0148-0227, doi:
10.1029/2004JB003539
Segnale gravitazionale di un terremoto di magnitudo
  Mw=7.0, come il terremoto del’Irpinia del 1980
    Cosismico più postsismico, circa 3 microGal
 durante gli 11 anni di durata della missione NGGM
EARTHQUAKE                           MEASUREMENT                                    NGGM
       SCENARIOS                            ERRORS                                  SIMULATION
•   Self-gravitating Compressible   •   Accelerometers and Interferometer            • Orbit simulation
    Viscoelastic Earth model
                                              • Coloured noise                       • Noise simulation
    based on PREM                               • Drag force                •   28 dat (mean) gravity field retrival

         DETECTION of the earthquake signature and discrimination from the
       AOHIS (Atmosphere, Ocean, Hydrology, continental Ice, Solid Earth) signals

    Courtesy from Dr. Gabriele Cambiotti, Department of Earth Sciences, University of Milano
Grazie L’Aquila di
  ospitare il 105°
Congresso Nazionale
della Società Italiana
    di Fisica 2019
You can also read