Circular economy and its role in the ecological transition: materials as key enabling technology
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Circular economy and its role in the ecological
transition: materials as key enabling technology
Silvia Gross
1 Dipartimento di Scienze Chimiche – Università degli Studi di Padova
INSTM- UdR Padova
and
2 Institute for Chemical Technology and Polymer Chemistry (ITCP)
Karlsruhe Institute of Technology (KIT), GermanyOutline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
2
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Outline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
3
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy: a science driven approach for
sustainability
Linear economy model
▪ extraction/mining of raw materials
▪ transformation into finished consumer products
▪ distribution/retail
▪ use
▪ disposal and elimination of waste and products
▪ environmental problems (deforestation, desertification, pollution, greenhouse effect, climate
changes, accumulation of waste)
▪ non-rational and unplanned exploitation of resources
▪ critical issues in the supply of energy and raw materials (critical raw materials, CRM)
→ non-sustainability of the linear model
4
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy: a science driven approach for
sustainability
Linear economy model
▪ product inefficiency (see eco-audit)
▪ overconsumption (energy, materials, natural resources, soil..)
▪ limited life-span (planned obsolescence, not rational design, lack of modularity etc.)
▪ waste production and accumulation/pollution/litter
▪ landfilling
5
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy: a science driven approach for
sustainability
«an economy which is regenerative by design.
In a circular economy there are two types of material
flow: biological ones, able to be reintegrated in the
biosphere, and technical ones, destined to be re-used
without ever entering the biosphere»
TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN
Ellen MacArthur Foundation, 2007
▪ conceptually regenerative industrial economy
▪ effective flows of materials, energy, work and
information
6
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy: a science driven approach for
sustainability
«an economy which is regenerative by design.
In a circular economy there are two types of material flow:
biological ones, able to be reintegrated in the biosphere,
and technical ones, destined to be re-used without ever
entering the biosphere»
TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN
Ellen MacArthur Foundation, 2007
▪ conceptually regenerative industrial economy
▪ effective flows of materials, energy, work and
information
7
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The circular economy package: an EU framework
https://ec.europa.eu/environment/circular-economy/
EC Communication Dec. 2015 “Closing the loop – An EU action plan for the Circular Economy”
The Circular Economy Package – European Commission 4th March 2019 (update)
Circular Economy Action Plan – European Commission 20th March 2020 (update)
A transition to a more circular economy, where the value of products, materials and resources is maintained in the
economy for as long as possible, and the generation of waste is minimized, which is seen as an essential contribution to
the EU’s efforts to develop a sustainable, low carbon, resource efficient and competitive economy
8
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Outline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
9
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy and materials
11
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Why we need circularity in materials
▪ Each year, 150 million tonnes of steel, plastics, and
aluminium, with an original value of €130-140 billion, exits
use in the EU economy, after fulfilling essential roles in
vehicles, buildings, products, and packaging.
▪ Materials in these three categories are almost all
technically recyclable (barring a few categories, such as
plastic thermosets), and if all these materials were
recycled, they could supply as much as 64% of total EU
demand in the same categories (2/3 of EU need)
▪ Today, only about 36% of this original material value
remains after one use cycle. In total, the losses amount to
€ 78 billion per year.
Source of data and figure The figure shows total end-of-life (EOL)
flows of materials. The estimates include
post-consumer scrap, pre-consumer
fabrication scrap, and scrap that is not
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 collectedWhy we need circularity in materials ▪ Increasing the circularity of steel, plastics, and aluminium can help the EU significantly in meeting its climate targets. ▪ The production of these materials today accounts for 10- 15% of total EU CO2 emissions, and materials recycling is 79-93% less CO2-intense than primary materials production. ▪ Recycling also shifts CO2 emissions away from hard-to- abate sources such as mining, oil and gas extraction, blast furnaces, and steam crackers, towards sources such as electricity and low- or medium-temperature heat production that are easier to decarbonise. Source of data and figure Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
14
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Use of materials in technologies
Achzet et al., Materials critical to the energy
industry, Augsburg, 2011 15
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Critical raw materials (and metals)
Critical Raw Materials for Strategic Technologies and Sectors in the EU
A Foresight Study, 2021, European Commission 16
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023EU dependence on raw materials
39
Zinc 86
Percentage of imported and produced
14
elements in EU (www.worldbank.org)
36
Copper 14 86
48
Tungsten 3 97
59
Cobalt 1 99
8
Tin 100
21
Rare Earth
Oxides
100
20
Antimony 100
0 20 40 60 80 100
(imports+domestic products)/world production (2012)
% domestic production EU-28 (2012) % imports to EU-28 (2012)
17
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Critical raw materials (and metals)
Critical Raw Materials for Strategic Technologies and Sectors in the EU
A Foresight Study, 2021, European Commission
18
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023Critical raw materials (and metals)
Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study, 2021, European Commision
19
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Designing for circularity
Ellen MacArthur Foundation
We need to radically rethink how we design
(ellenmacarthurfoundation.org)
•Eliminate waste and pollution upstream through design
• Consider choosing safe materials designed for repeat circulation, making use of by-products, or engaging
in material and product innovation
•Circulate materials and products by designing them to be kept in use, and at their highest value, for as long as possible
• Consider designing for repairability, upgradability and emotional durability, as well as creating
the reuse, repair, remanufacture, and recycling systems and business models (resale, rental, sharing) that allow
products and materials to be used more times, by more people, and for longer
•Regenerate nature by designing to improve local biodiversity, air, and water quality
• Consider designing for regenerative outcomes, i.e. creating the conditions for nature to thrive
• Consider designing for successive cycles in which bio-based materials are used through different applications and
are safely returned to the earth
20
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The role of chemistry in the Circular Economy:
the new era of circular chemistry
Circular chemistry to enable a circular economy
T. Keijer, V. Bakker, J. C. Slootweg
Nature Chemistry, 11, 2019, 190
“‘Green Chemistry represents 'old thinking' since it optimises a
linear production chain whereas future sustainable processes
should be circular.” […..] “We have to replace today's linear,
take-make-dispose approach with circular chemical processes
and work towards a closed-loop, waste-free chemical
industry.”
(J. C. Slootweg)
21
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The role of chemistry in the Circular Economy:
the new era of circular chemistry
Circular chemistry to enable a circular economy
T. Keijer, V. Bakker, J. C. Slootweg
Nature Chemistry, 11, 2019, 190
22
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The role of chemistry in the Circular Economy:
the new era of circular chemistry
23
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The role of chemistry in the Circular Economy:
the new era of circular chemistry
1. Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis
steps, may have additional undesirable properties, and can be more difficult to recycle).
2. Design products for recycling, including all additives and other components of the product.
3. Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity),
design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling.
4. Avoid complex products (e.g., multiple components, materials).
5. Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals).
6. Design products not suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides,
personal care and cleaning products).
7. Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals).
8. Avoid entropic losses and transfers (e.g., dissipation of metals, energy).
9. Avoid rebound effects (e.g., using less carbon often means higher demand for metals).
10. Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling.
11. Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes).
12. Develop and apply circular metrics (e.g., giving credit to the use of by-products).
13. Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share
business models.
14. Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification).
15. Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity).
24
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The role of chemistry in the Circular Economy:
the new era of circular chemistry
1. Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis
steps, may have additional undesirable properties, and can be more difficult to recycle).
2. Design products for recycling, including all additives and other components of the product.
3. Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity),
design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling.
4. Avoid complex products (e.g., multiple components, materials).
5. Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals).
6. Design products suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides,
personal care and cleaning products).
7. Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals).
8. Avoid entropic losses and transfers (e.g., dissipation of metals, energy).
9. Avoid rebound effects (e.g., using less carbon often means higher demand for metals).
10. Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling.
11. Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes).
12. Develop and apply circular metrics (e.g., giving credit to the use of by-products).
13. Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share
business models.
14. Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification).
15. Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity).
25
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The relevance of eco-informed materials choice
▪ Availability of raw materials
▪ Key materials for industrialized society
▪ Availability of energy
▪ Energy-material correlations
▪ End of life options (recycling, reuse, remanufacturing,
refurbishment, reconditioning, retrofitting…)
Reference book, by Prof. Ashby (University of Cambridge, UK) available @
https://www.sciencedirect.com/book/9780128215210/ materials-and-the-environment
26
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The relevance of eco-informed materials choice Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini, UniPD Master Degree «Sustainable Chemistry and Technologies for Circular Economy». Courtesy Prof. Bernardo 27 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice
Slides from the course «Materials
design and selection for circular
economy», Gross, Bernardo, Orian,
Casalini
Master Degree «Sustainable
Chemistry and Technologies for
Circular Economy»
University of Padua
Courtesy Prof. Enrico Bernardo
28
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The relevance of eco-informed materials choice
Courtesy Prof. Enrico Bernardo
Università di Padova
29LCA-driven eco-design strategies
30
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Designing for circularity
End-of-life recycling input rate measures the proportion
of metal and metal products that are produced from
end-of-life scrap and other metal-bearing low grade
residues in end-of-life scrap worldwide.
n is the number of elements in the alloy chemical composition,
and wt% is the amount of element ‘i’ contained in the alloy and
measured in weight percent. EOL-RIR of non-critical elements is
assumed as equal to 100%.
31
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Outline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
32
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
MATERIALI TRAIETTORIE DI RICERCA
M01 - Metalli Elaborato con D.01 - Materiali
M02 - Polimeri e prodotti D.02 - Valorizzazione
M03 - Ceramici Prof. Loredana Incarnato biodegradabili degli scarti da biomasse
Uni Salerno
M04 - Compositi
D.03 - Riciclo dei D.04 - Recupero di metalli
M05 - Vetri materiali e di elementi critici
M06 - Cementizi D.05 - Separazione e sorting
D.06 - Materiali di sostituzione
M07 - Naturali
D.07 - Biodegradazione e per riduzione della criticità
M08 - Cellulosici
compostaggio D.08 - Eco-design per ridotto impatto
TECNOLOGIE ABILITANTI D.09 - Life Cycle Assessment ambientale e riutilizzo a fine vita
T01 - Calcolo scientifico e tecnologico (LCA), Carbon footprint and D.10 - Quantificazione
T02 – Tecnologie tradizionali Cost-Benefit Analysis (CBA) della circolarità
T03 - Sintemi manufatturieri avanzati
D.11 - Nanotecnologie per lo sviluppo
T04 - Stampa 3D di materiali e prodotti eco-sostenibili
T05 - Nanotecnologie D.12 - Approcci di chimica circolare
T06 - Biotecnologie industriali per molecole e materiali
T07 - Tecnologie chimiche tradizionali
T08 - Tecnologie chimiche innovative 33
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
Traiettorie di ricerca proposte
D.01 - MATERIALI E PRODOTTI BIODEGRADABILI
Sono di pertinenza di questa traiettoria le tematiche relative alla progettazione e allo sviluppo di materiali e prodotti biodegradabili provenienti da
fonti rinnovabili e non, nonchè tematiche relative all’applicazione delle tecnologie di modifica e funzionalizzazione innovative (realizzazione di
biocompositi e bionanocompositi, modifiche strutturali, miscelazione, impiego di riempitivi, trattamenti superficiali/coating etc.) per il
miglioramento delle performance, e la verifica e definizione della biodegradabilità dei materiali.
D.02 - VALORIZZAZIONE DEGLI SCARTI DA BIOMASSE
Riguarda lo sviluppo di materiali e prodotti ottenuti dalla conversione di scarti e sottoprodotti provenienti da diversi settori industriali
(agroalimentare, ittico, forestale, rifiuti organici urbani, …) adottando tecnologie rigenerative e di valorizzazione.
D.03 - RICICLO DEI MATERIALI
Riguarda la progettazione e lo sviluppo di manufatti completamente riciclabili e di processi innovativi e sostenibili (es. basso consumo energetico)
di riciclo; gli aspetti chimico-fisici, gli avanzamenti tecnologici nei processi di riciclo meccanico, chimico, termico; le tecnologie di upgrading dei
materiali riciclati per il miglioramento della processabilità e delle proprietà in relazione all’applicazione prevista. Di questo tema fa parte la ricerca
nel settore dell ’End of Waste dei prodotti riciclati, cruciale per rendere disponibile al mercato i nuovi materiali circolari.
D.04 - RECUPERO DI METALLI E DI ELEMENTI CRITICI
In questa traiettoria, strettamente correlata alla precedente, ma più specifica e limitata a metalli ed elementi critici, si ottimizzeranno processi di
natura chimica e sostenibili che consentano una lisciviazione selettiva di metalli ed elementi critici a partire da rifiuti soliti o acque di scarto. In
particolare, liscivianti di natura inorganica ad elevato impatto ambientale (es. acidi inorganici, ossidanti) verranno parzialmente o totalmente
sostituiti da altri agenti liscivianti (es. deep eutectic solvents, acidi organici) in grado di separare in modo selettivo e possibilmente con alte rese
materiali critici recuperati da attività, ad esempio, di urban mining.
D.05 - SEPARAZIONE E SORTING
Obiettivo di questa traiettoria, correlata alle traiettorie precedenti 3. e 4., riguarda lo sviluppo di metodologie avanzate di caratterizzazione, analisi
e sorting per il riconoscimento selettivo di materie prime da scarti e rifiuti da trasformare in materie prime seconde. Tali attività sperimentali
andranno integrate con approcci computazionali/statistici e/o basati su machine learning per l’analisi rapida di grandi quantità di dati.
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
Traiettorie di ricerca proposte
D.11 - NANOTECNOLOGIE PER LO SVILUPPO DI MATERIALI E PRODOTTI ECO-SOSTENIBILI
Sono di pertinenza di questa traiettoria le tematiche relative all’implementazione di processi basati sulle nanotecnologie per lo sviluppo di
materiali e prodotti ecosostenibili multifunzionali, con proprietà termiche, elettroniche, ottiche, meccaniche, barriera, catalitiche e magnetiche
superiori.
D.12 - APPROCCI DI CHIMICA CIRCOLARE PER MOLECOLE E MATERIALI
In questa traiettoria, a partire dai 12 principi della Circular Chemistry codificati nel 2019*, e che rappresentano un’evoluzione della green
chemistry con una dimensione circolare, si svilupperanno ed ottimizzeranno procedure di sintesi e di produzione di molecole e materiali per
consentirne una completa circolarità.
* Circular chemistry to enable a circular economy
T. Keijer, V. Bakker, J. C. Slootweg
Nature Chemistry, 11, 2019, 190
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Outline
Circular economy: a short overview
The role of materials design and selection for circular economy
Raw materials criticality: how to cope with it
Circular chemistry and eco-audit approaches to materials design
Critical raw materials substitution: a possible option?
Circular Economy & Materials: the INSTM perspective (a proposal)
38
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies: a possible option?
Substitution is as an important mitigation strategy to overcome the potential disruption in the supply of critical raw
materials: it covers the partial substitution (minimization of CRM) to the complete substitution (full replacement).
Four types of substitution aspects are depicted below:
Source of the figure: SCRREEN Coordination and Support Action (CSA)
39
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies: the framework
40
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies
1. Technical performance advantage, properties comparison
2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing,
better recycleability and lower cost of disposal, lower running cost of the product
3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g.
sound or heat insulation)
4. Environmental and legislative considerations
41
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies
1. Technical performance advantage, properties comparison
2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing,
better recycleability and lower cost of disposal, lower running cost of the product
3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g.
sound or heat insulation)
4. Environmental and legislative considerations
42
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Chemical knowledge for substitution strategies
Substitutability
scale (from “Poor”
to “Good”)
Source of the
figure: SCRREEN
Coordination and
Support Action
(CSA)
The periodic table of substitute performance. The results are scaled from 0 to 100, with 0 indicating that exemplary substitutes
exist for all major uses and 100 indicating that no substitute with even adequate performance exists for any of the major uses.
Souce: Graedel, T & Harper, E & Nassar, Nedal & Reck, Barbara. (2013). On the materials basis of modern society. PNAS
43
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Chemical knowledge for substitution strategies
substitution often based on chemical affinity/similarities
in chemical properties and reactivity
44
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Avoid rebound effect in substitution
Replacements of any critical material should indeed start
from the balance among the required functionality and the
actual availability of materials, in order to avoid replacing
one CRM with another: this is the “rebound effect“
Price development for precious metals 1988-2009
Figure provided by Dr. C. Hagelücken, Umicore AG, Hanau, Germany
45
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Chemical and engineering knowledge for substitution strategies
Property Currently used material Alternative material (1) Alternative material (2) Alternative material (3)
(value)
Property 1 C1 0 - +
Property 2 C2 + + +
Property 3 C3 + + +
Property 4 C4 + + +
Property 5 C5 - 0 -
Property 6 C6 0 - 0
Total (+) 3 3 4
Total (-) 1 2 1
Total (0) 2 1 1
Pugh decision matrix: properties as compared with respect to the currently used
material as (+) if more favorable, (-) if less favorable (0) if is the same.
46
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Chemical and engineering knowledge for substitution strategies
Property Neodymium Alternative material (1) Alternative material (2) Alternative material (3)
Ce Pr
Availability C1 + + +
Cost C2 + + +
Magnetic properties C3 - 0 +
Thermal stability C4 + + +
Recycling rate C5 + 0 -
Alloying ability C6 0 - 0
Mechanical properties C7
Total (+) 4 3 4
Total (-) 1 1 1
Total (0) 1 2 1
Pugh decision matrix: properties as compared with respect to the currently used
material as (+) if more favorable, (-) if less favorable (0) if is the same.
47
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies
Nd2Fe14B hard magnetic alloys
▪ electric veihcles
▪ wind turbines
(e.g. the electric motor of Toyota Prius
require 1 kg Nd)
Considering the growing rate of global wind power
and overall benefits of the permanent magnet
synchronous generator (PMSG) wind turbines, the
future demand for high-performing NdFeB magnet
and its constituent elements is likely to increase.
48
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Substitution strategies
Aiming for cost-efficiency through balanced utilization of rare-earth resources, the use of Ce, the cheapest and most
abundant of all rare-earth elements, as potential candidate to substitute the expensive and resource-critical Nd in
Nd2Fe14B hard magnetic alloys was tested. Emphasis is put on the effects of substitution on the alloys structural
properties and the related response to hydrogen treatment, one of the main processing routes in the production of
Nd2Fe14B-based permanent magnets. Significant texture and very reasonable magnetic properties were obtained at x =
0.3, attributed to a favorable phase composition with Ce mainly concentrated in the intergranular material.
49
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Grazie per l’attenzione - Ringraziamenti
Christian Hagenlücken,
Umicore AG, Hanau, Germany Wet chemistry and colloids group, University of Padova
Enrico Bernardo, Franco Bonollo, Maria
Cristina Lavagnolo, Manuele Dabalà and all
the colleagues of the Master „Sustainable
Chemistry and Technologies for Circular
Economy“ of the University of Padova
Andrea Caneschi and Consiglio Scientifico,
INSTM
SFB Track Act, KIT Karlsruhe (PI: Jan Dierk Grunwaldt)
DFG Mercator Fellowship 2021-2024 50
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Circular economy, twin transitions and Industry 4.0
Intersections:
Artificial intelligence
Robotics
Automation
Big data
Blockchain
Digitalization
Logistics, supply chain
Machine learning
Additive manufacturing
Smart factory
Industrial symbiosis
……
https://www.rinnovabili.it/economia-circolare/economia-circolare-soluzioni-industria-4-0/
51
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023D1: Economia verde ed economia circolare
Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity
▪ evaluation of circularity (e.g. how to quantify the circularity/reduction in GHG emission
of a process)
54
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity: timeline Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity
Conceptual scheme of the components of a circular economy
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 Source of the picture: https://www.materialflows.net/circular-economy/Quantifying the circularity: indicators an example Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The specific role of inorganic chemistry in the Circular
Economy: waste as resources through sustainable recovery
Case study 1
Gold: the starting point
▪ concentration of gold in mobile-phone
waste is estimated to be up to ∼70
times that of primary mining ores
▪ gold is also an important target in terms
of environmental impact.
▪ distributed, small-scale gold mining
typically relies upon cyanide salts and
mercury amalgamation to process ores.
▪ gold mining waste accumulated in
tailings ponds, resulting in mercury
contamination of the water and soil, a
significant health hazard for nearby
communities.
▪ other notable metals in mobile-phone
waste include copper, silver, palladium, recycling rate of elements in mobile phones
iron, and rare earths
60
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The specific role of inorganic chemistry in the Circular
Economy: waste as resources through sustainable recovery
Case study 2
Lithium: the starting point
▪ Lithium is critical for commercial interest
because of its importance in modern
battery technology.
▪ Projections estimate the need for a
minimum of doubling production in the
coming decades to meet growing
demand
▪ single car lithium-ion battery pack (of a
type known as NMC532) could contain
around 8 kg of lithium, 35 kg of nickel,
20 kg of manganese and 14 kg of cobalt
▪ the lack of supplier diversity has led to
price spikes.
▪ Lithium is found globally in brines and in
pegmatite or spodumene ores and Nature, 596 (2021) 336
requires purification for commercial use.
61
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The specific role of inorganic chemistry in the Circular
Economy: waste as resources through catalysis
▪ an attractive approach to tackle the challenge of chemical waste
reduction is to utilize these waste products as feedstocks for the
production of useful chemicals.
▪ catalytic (de) hydrogenation is an atom-economic, green and
sustainable approach in organic synthesis, and several new
environmentally benign transformations
62
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The specific role of inorganic chemistry in the Circular
Economy
Invited Essay
Chem. Eur. J., 2021, 27, 6676
63
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The specific role of inorganic chemistry in the Circular
Economy: waste as resources through sustainable recovery
The starting point: urban mining instead of ores mining
▪ In 2020, 10.3 kg of electrical and electronic equipment waste were collected per inhabitant in the EU (EuroStat, 2021).
▪ separation and purification of raw materials are estimated to consume ∼15% of global energy use
▪ materials containing essential metals that are expensive or otherwise energy-intensive to purify from their primary ores,
such as gold, lithium, palladium, germanium, and rare earths
▪ need of pursuit of selectivity for the purification of one metal over others from complex mixtures.
Typical composition of WEEE
(data from Yang et al. 2013; Kaya 2018)
Source of the figure: Charitopoulou, M. et al.
(2021). Environmental Science and Pollution
Research. 24. 64
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The specific role of inorganic chemistry in the Circular
Economy: waste as resources through sustainable recovery
▪ there is a clear need for transformative, fundamentally new approaches in inorganic chemistry that address this grand
challenge of metals recycling
▪ inorganic chemists are ideally positioned to develop new chemistry and greener processes that are more efficient and
use less hazardous reagents to separate high-value metals from waste electronics.
▪ fundamental inorganic and coordination chemistry that can contribute to new recycling technologies for gold, lithium,
palladium, germanium, and rare earths, especially using simple approaches in solid−liquid extraction
▪ inorganic chemistry, motivated by goals in sustainability, provides a platform for the development of fundamental
chemistry that addresses emerging problems and potentially creates new opportunities for industry
▪ fundamental studies are expected to help close metal supply chain loops and create circular economies
65
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023The actual eco-sustainability of reuse of materials
66The relevance of eco-informed materials choice
Slides from the course «Materials
design and selection for circular
economy», Gross, Bernardo, Orian,
Casalini, UniPD
Master Degree «Sustainable
Chemistry and Technologies for
Circular Economy».
Courtesy Prof. Enrico Bernardo 67The materials challenges: an example
Multi-metal recycling requires optimised chains
² Losses due Not collected Exports Process-performance
to:
Wrong fractions Residues
EoL products Collection Recycled
Pre-processing* End-processing**
metals
* manual-mechanical
Products Components/fractions ** chemical-metallurgical
Chain efficiency: 50% X 70% X 95% = 33%
e.g.. Au from WEEE
Collection rate Recycling rate Physical circularity rate
Separation selectivity
of pre-processing is
crucial for overall
metal yields
68
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023The relevance of eco-informed materials choice
Slides from the course «Materials design and selection for
circular economy», Gross, Bernardo, Orian, Casalini
Master Degree «Sustainable Chemistry and Technologies 69 for
Circular Economy»., University of Padua Courtesy Prof. BernardoCircular Economy – leveraging supply & demand
Industrial CE approaches Increasing raw materials supply & security
• Diversified, robust & efficient primary production chains
(mining – metallurgy, feedstocks for polymer-based materials)
• Comprehensive & high quality recycling of production scrap & EoL
products within EU
(collection – metallurgy, chemical mechanical approches to polymer
recycling)
Decreasing raw materials demand & dependency:
• Flexible & resource-efficient product development & fabrication
• Extend product lifetime (incl. repair/reuse)
General: Figure by Dr. C. Hagelücken,
Umicore AG, Hanau, Germany
• Smart design of products & services
lifetime, ease of circularity & recycling
Source: L.Tercero et al.: Criticality and the circular economy, • New business models for systemic optimisation
Resources, conservation & Recycling (2020) • Responsible sourcing & recycling
70
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 Mitigation of reputational risksThe 9R of the Circular Economy ▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically different (e.g. digital) product or service ▪ R2 Rethink Make product use more intensive (e.g. through product-as-a service, reuse and sharing models or by putting multi-functional products on the market) ▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and materials ▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste) for the same purpose for which it was conceived ▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function ▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level) ▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new- condition) ▪ R8 Repurpose Use a redundant product or its parts in a new product with different function ▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances whether for the original or other purposes. It includes the reprocessing of organic material but does not include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling operations 71 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The 9R of the Circular Economy and the role of
chemistry and materials science
▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically
different (e.g. digital) product or service
▪ R2 Rethink Design to make product use more intensive
▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and
materials
▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste)
for the same purpose for which it was conceived
▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function
▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level)
▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new-
condition)
▪ R8 Repurpose Use a redundant product or its parts in a new product with different function
▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances
whether for the original or other purposes. It includes the reprocessing of organic material but does not
include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling
operations
72
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023You can also read