Circular economy and its role in the ecological transition: materials as key enabling technology

Page created by Martha Marquez
 
CONTINUE READING
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy and its role in the ecological
transition: materials as key enabling technology

                                 Silvia Gross
   1   Dipartimento di Scienze Chimiche – Università degli Studi di Padova
                             INSTM- UdR Padova

                                       and

       2   Institute for Chemical Technology and Polymer Chemistry (ITCP)
                   Karlsruhe Institute of Technology (KIT), Germany
Circular economy and its role in the ecological transition: materials as key enabling technology
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            2
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            3
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy: a science driven approach for
                                            sustainability
     Linear economy model
 ▪   extraction/mining of raw materials
 ▪   transformation into finished consumer products
 ▪   distribution/retail
 ▪   use
 ▪   disposal and elimination of waste and products

 ▪ environmental problems (deforestation, desertification, pollution, greenhouse effect, climate
   changes, accumulation of waste)
 ▪ non-rational and unplanned exploitation of resources
 ▪ critical issues in the supply of energy and raw materials (critical raw materials, CRM)
 → non-sustainability of the linear model
                                                                                                   4
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy: a science driven approach for
                                          sustainability
  Linear economy model
▪ product inefficiency (see eco-audit)

▪ overconsumption (energy, materials, natural resources, soil..)

▪ limited life-span (planned obsolescence, not rational design, lack of modularity etc.)

▪ waste production and accumulation/pollution/litter

▪ landfilling

                                                                                           5
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy: a science driven approach for
                                            sustainability
                                                                  «an economy which is regenerative by design.
                                                                  In a circular economy there are two types of material
                                                                  flow: biological ones, able to be reintegrated in the
                                                                  biosphere, and technical ones, destined to be re-used
                                                                  without ever entering the biosphere»

                                                                  TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN

                                                                  Ellen MacArthur Foundation, 2007

                                                                  ▪ conceptually regenerative industrial economy
                                                                  ▪ effective flows of materials, energy, work and
                                                                  information

                                                                                                                      6
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy: a science driven approach for
                                            sustainability
                                                                  «an economy which is regenerative by design.
                                                                  In a circular economy there are two types of material flow:
                                                                  biological ones, able to be reintegrated in the biosphere,
                                                                  and technical ones, destined to be re-used without ever
                                                                  entering the biosphere»

                                                                  TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN

                                                                  Ellen MacArthur Foundation, 2007

                                                                  ▪ conceptually regenerative industrial economy
                                                                  ▪ effective flows of materials, energy, work and
                                                                  information

                                                                                                                        7
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
The circular economy package: an EU framework

                                                                  https://ec.europa.eu/environment/circular-economy/

   EC Communication Dec. 2015 “Closing the loop – An EU action plan for the Circular Economy”
   The Circular Economy Package – European Commission 4th March 2019 (update)
   Circular Economy Action Plan – European Commission 20th March 2020 (update)
     A transition to a more circular economy, where the value of products, materials and resources is maintained in the
     economy for as long as possible, and the generation of waste is minimized, which is seen as an essential contribution to
     the EU’s efforts to develop a sustainable, low carbon, resource efficient and competitive economy
                                                                                                                         8
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            9
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and its role in the ecological transition: materials as key enabling technology
Circular economy and materials

                                                                                               10
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and materials

                                                                                               11
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Why we need circularity in materials
▪ Each year, 150 million tonnes of steel, plastics, and
  aluminium, with an original value of €130-140 billion, exits
  use in the EU economy, after fulfilling essential roles in
  vehicles, buildings, products, and packaging.
▪ Materials in these three categories are almost all
  technically recyclable (barring a few categories, such as
  plastic thermosets), and if all these materials were
  recycled, they could supply as much as 64% of total EU
  demand in the same categories (2/3 of EU need)
▪ Today, only about 36% of this original material value
  remains after one use cycle. In total, the losses amount to
  € 78 billion per year.

    Source of data and figure                                                   The figure shows total end-of-life (EOL)
                                                                                flows of materials. The estimates include
                                                                                post-consumer      scrap,   pre-consumer
                                                                                fabrication scrap, and scrap that is not
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023                 collected
Why we need circularity in materials
▪ Increasing the circularity of steel, plastics, and aluminium
  can help the EU significantly in meeting its climate
  targets.
▪ The production of these materials today accounts for 10-
  15% of total EU CO2 emissions, and materials recycling is
  79-93% less CO2-intense than primary materials
  production.
▪ Recycling also shifts CO2 emissions away from hard-to-
  abate sources such as mining, oil and gas extraction,
  blast furnaces, and steam crackers, towards sources such
  as electricity and low- or medium-temperature heat
  production that are easier to decarbonise.

Source of data and figure

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            14
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Use of materials in technologies

                                                                         Achzet et al., Materials critical to the energy
                                                                         industry, Augsburg, 2011                      15
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Critical raw materials (and metals)

                                                                  Critical Raw Materials for Strategic Technologies and Sectors in the EU
                                                                  A Foresight Study, 2021, European Commission                     16
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
EU dependence on raw materials

                           39
      Zinc                                              86
                                                                                        Percentage of imported and produced
                      14
                                                                                        elements in EU (www.worldbank.org)
                           36
   Copper             14                                86
                           48
 Tungsten     3                                         97
                           59
   Cobalt    1                                          99
                  8
       Tin                                             100
                           21
Rare Earth
 Oxides
                                                       100
                           20
Antimony                                              100

             0              20            40                 60        80         100

              (imports+domestic products)/world production (2012)
             % domestic production EU-28 (2012)       % imports to EU-28 (2012)

                                                                                                                      17
 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Critical raw materials (and metals)

                                                                  Critical Raw Materials for Strategic Technologies and Sectors in the EU
                                                                  A Foresight Study, 2021, European Commission

                                                                                                                                   18
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
Critical raw materials (and metals)

    Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study, 2021, European Commision
                                                                                                                          19
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Designing for circularity

                                                                            Ellen MacArthur Foundation
                                                                            We need to radically rethink how we design
                                                                            (ellenmacarthurfoundation.org)

  •Eliminate waste and pollution upstream through design
       • Consider choosing safe materials designed for repeat circulation, making use of by-products, or engaging
           in material and product innovation
  •Circulate materials and products by designing them to be kept in use, and at their highest value, for as long as possible
       • Consider designing for repairability, upgradability and emotional durability, as well as creating
           the reuse, repair, remanufacture, and recycling systems and business models (resale, rental, sharing) that allow
           products and materials to be used more times, by more people, and for longer
  •Regenerate nature by designing to improve local biodiversity, air, and water quality
       • Consider designing for regenerative outcomes, i.e. creating the conditions for nature to thrive
       • Consider designing for successive cycles in which bio-based materials are used through different applications and
           are safely returned to the earth
                                                                                                                       20
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy:
                                                            the new era of circular chemistry

  Circular chemistry to enable a circular economy
  T. Keijer, V. Bakker, J. C. Slootweg
  Nature Chemistry, 11, 2019, 190

  “‘Green Chemistry represents 'old thinking' since it optimises a
  linear production chain whereas future sustainable processes
  should be circular.” […..] “We have to replace today's linear,
  take-make-dispose approach with circular chemical processes
  and work towards a closed-loop, waste-free chemical
  industry.”
  (J. C. Slootweg)

                                                                                                      21
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy:
                                                            the new era of circular chemistry
Circular chemistry to enable a circular economy
T. Keijer, V. Bakker, J. C. Slootweg
Nature Chemistry, 11, 2019, 190

                                                                                                      22
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy:
                                                            the new era of circular chemistry

                                                                                                      23
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy:
                                                                  the new era of circular chemistry
1.    Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis
      steps, may have additional undesirable properties, and can be more difficult to recycle).
2.    Design products for recycling, including all additives and other components of the product.
3.    Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity),
      design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling.
4.    Avoid complex products (e.g., multiple components, materials).
5.    Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals).
6.    Design products not suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides,
      personal care and cleaning products).
7.    Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals).
8.    Avoid entropic losses and transfers (e.g., dissipation of metals, energy).
9.    Avoid rebound effects (e.g., using less carbon often means higher demand for metals).
10.   Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling.
11.   Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes).
12.   Develop and apply circular metrics (e.g., giving credit to the use of by-products).
13.   Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share
      business models.
14.   Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification).
15.   Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity).

                                                                                                                                                   24
 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy:
                                                                 the new era of circular chemistry
1.    Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis
      steps, may have additional undesirable properties, and can be more difficult to recycle).
2.    Design products for recycling, including all additives and other components of the product.
3.    Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity),
      design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling.
4.    Avoid complex products (e.g., multiple components, materials).
5.    Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals).
6.    Design products suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides,
      personal care and cleaning products).
7.    Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals).
8.    Avoid entropic losses and transfers (e.g., dissipation of metals, energy).
9.    Avoid rebound effects (e.g., using less carbon often means higher demand for metals).
10.   Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling.
11.   Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes).
12.   Develop and apply circular metrics (e.g., giving credit to the use of by-products).
13.   Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share
      business models.
14.   Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification).
15.   Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity).

                                                                                                                                                  25
 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice

                                                       ▪   Availability of raw materials
                                                       ▪   Key materials for industrialized society
                                                       ▪   Availability of energy
                                                       ▪   Energy-material correlations
                                                       ▪   End of life options (recycling, reuse, remanufacturing,
                                                           refurbishment, reconditioning, retrofitting…)

      Reference book, by Prof. Ashby (University of Cambridge, UK) available @
      https://www.sciencedirect.com/book/9780128215210/ materials-and-the-environment
                                                                                                                26
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice

 Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini, UniPD
 Master Degree «Sustainable Chemistry and Technologies for Circular Economy». Courtesy Prof. Bernardo                    27
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice

                                                                   Slides from the course «Materials
                                                                   design and selection for circular
                                                                   economy», Gross, Bernardo, Orian,
                                                                   Casalini
                                                                   Master      Degree   «Sustainable
                                                                   Chemistry and Technologies for
                                                                   Circular Economy»
                                                                   University of Padua

                                                                   Courtesy Prof. Enrico Bernardo

                                                                                                       28
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice

                             Courtesy Prof. Enrico Bernardo
                             Università di Padova

                                                          29
LCA-driven eco-design strategies

                                                                                                 30
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Designing for circularity
                                                                  End-of-life recycling input rate measures the proportion
                                                                  of metal and metal products that are produced from
                                                                  end-of-life scrap and other metal-bearing low grade
                                                                  residues in end-of-life scrap worldwide.

                                                                   n is the number of elements in the alloy chemical composition,
                                                                   and wt% is the amount of element ‘i’ contained in the alloy and
                                                                   measured in weight percent. EOL-RIR of non-critical elements is
                                                                   assumed as equal to 100%.

                                                                                                                            31
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            32
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
     MATERIALI                                                                                                  TRAIETTORIE DI RICERCA
     M01 - Metalli     Elaborato con                                  D.01 - Materiali
     M02 - Polimeri                                                      e prodotti    D.02 - Valorizzazione
     M03 - Ceramici Prof. Loredana Incarnato                          biodegradabili degli scarti da biomasse
                       Uni Salerno
     M04 - Compositi
                                                                D.03 - Riciclo dei D.04 - Recupero di metalli
     M05 - Vetri                                                    materiali          e di elementi critici
     M06 - Cementizi                                         D.05 - Separazione e sorting
                                                                                             D.06 - Materiali di sostituzione
     M07 - Naturali
                                                            D.07 - Biodegradazione e           per riduzione della criticità
     M08 - Cellulosici
                                                                 compostaggio            D.08 - Eco-design per ridotto impatto
     TECNOLOGIE ABILITANTI                                  D.09 - Life Cycle Assessment ambientale e riutilizzo a fine vita
     T01 - Calcolo scientifico e tecnologico                (LCA), Carbon footprint and           D.10 - Quantificazione
     T02 – Tecnologie tradizionali                           Cost-Benefit Analysis (CBA)              della circolarità
     T03 - Sintemi manufatturieri avanzati
                                                                     D.11 - Nanotecnologie per lo sviluppo
     T04 - Stampa 3D                                                 di materiali e prodotti eco-sostenibili
     T05 - Nanotecnologie                                                          D.12 - Approcci di chimica circolare
     T06 - Biotecnologie industriali                                                    per molecole e materiali
     T07 - Tecnologie chimiche tradizionali
     T08 - Tecnologie chimiche innovative                                                                                        33
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
                                                                 Traiettorie di ricerca proposte
D.01 - MATERIALI E PRODOTTI BIODEGRADABILI
   Sono di pertinenza di questa traiettoria le tematiche relative alla progettazione e allo sviluppo di materiali e prodotti biodegradabili provenienti da
   fonti rinnovabili e non, nonchè tematiche relative all’applicazione delle tecnologie di modifica e funzionalizzazione innovative (realizzazione di
   biocompositi e bionanocompositi, modifiche strutturali, miscelazione, impiego di riempitivi, trattamenti superficiali/coating etc.) per il
   miglioramento delle performance, e la verifica e definizione della biodegradabilità dei materiali.
D.02 - VALORIZZAZIONE DEGLI SCARTI DA BIOMASSE
   Riguarda lo sviluppo di materiali e prodotti ottenuti dalla conversione di scarti e sottoprodotti provenienti da diversi settori industriali
   (agroalimentare, ittico, forestale, rifiuti organici urbani, …) adottando tecnologie rigenerative e di valorizzazione.
D.03 - RICICLO DEI MATERIALI
   Riguarda la progettazione e lo sviluppo di manufatti completamente riciclabili e di processi innovativi e sostenibili (es. basso consumo energetico)
   di riciclo; gli aspetti chimico-fisici, gli avanzamenti tecnologici nei processi di riciclo meccanico, chimico, termico; le tecnologie di upgrading dei
   materiali riciclati per il miglioramento della processabilità e delle proprietà in relazione all’applicazione prevista. Di questo tema fa parte la ricerca
   nel settore dell ’End of Waste dei prodotti riciclati, cruciale per rendere disponibile al mercato i nuovi materiali circolari.
D.04 - RECUPERO DI METALLI E DI ELEMENTI CRITICI
  In questa traiettoria, strettamente correlata alla precedente, ma più specifica e limitata a metalli ed elementi critici, si ottimizzeranno processi di
  natura chimica e sostenibili che consentano una lisciviazione selettiva di metalli ed elementi critici a partire da rifiuti soliti o acque di scarto. In
  particolare, liscivianti di natura inorganica ad elevato impatto ambientale (es. acidi inorganici, ossidanti) verranno parzialmente o totalmente
  sostituiti da altri agenti liscivianti (es. deep eutectic solvents, acidi organici) in grado di separare in modo selettivo e possibilmente con alte rese
  materiali critici recuperati da attività, ad esempio, di urban mining.
D.05 - SEPARAZIONE E SORTING
   Obiettivo di questa traiettoria, correlata alle traiettorie precedenti 3. e 4., riguarda lo sviluppo di metodologie avanzate di caratterizzazione, analisi
   e sorting per il riconoscimento selettivo di materie prime da scarti e rifiuti da trasformare in materie prime seconde. Tali attività sperimentali
   andranno integrate con approcci computazionali/statistici e/o basati su machine learning per l’analisi rapida di grandi quantità di dati.
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
                                                                Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
   In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
   cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
   materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
   l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
  Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
  all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
  intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
   Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
   ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
   pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
   l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
   È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
   progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
   consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
   Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
   tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
   semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
                                                              Traiettorie di ricerca proposte
D.11 - NANOTECNOLOGIE PER LO SVILUPPO DI MATERIALI E PRODOTTI ECO-SOSTENIBILI
   Sono di pertinenza di questa traiettoria le tematiche relative all’implementazione di processi basati sulle nanotecnologie per lo sviluppo di
   materiali e prodotti ecosostenibili multifunzionali, con proprietà termiche, elettroniche, ottiche, meccaniche, barriera, catalitiche e magnetiche
   superiori.
D.12 - APPROCCI DI CHIMICA CIRCOLARE PER MOLECOLE E MATERIALI
  In questa traiettoria, a partire dai 12 principi della Circular Chemistry codificati nel 2019*, e che rappresentano un’evoluzione della green
  chemistry con una dimensione circolare, si svilupperanno ed ottimizzeranno procedure di sintesi e di produzione di molecole e materiali per
  consentirne una completa circolarità.

                                 * Circular chemistry to enable a circular economy
                                 T. Keijer, V. Bakker, J. C. Slootweg
                                 Nature Chemistry, 11, 2019, 190

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
                                                              Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
   In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
   cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
   materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
   l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
  Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
  all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
  intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
   Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
   ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
   pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
   l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
   È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
   progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
   consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
   Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
   tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
   semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline

                Circular economy: a short overview

                The role of materials design and selection for circular economy
                Raw materials criticality: how to cope with it
                Circular chemistry and eco-audit approaches to materials design

                Critical raw materials substitution: a possible option?

                 Circular Economy & Materials: the INSTM perspective (a proposal)
                                                                                            38
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies: a possible option?

Substitution is as an important mitigation strategy to overcome the potential disruption in the supply of critical raw
materials: it covers the partial substitution (minimization of CRM) to the complete substitution (full replacement).
Four types of substitution aspects are depicted below:

 Source of the figure: SCRREEN Coordination and Support Action (CSA)
                                                                                                                  39
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies: the framework

                                                                                                   40
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies

    1. Technical performance advantage, properties comparison

    2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing,
       better recycleability and lower cost of disposal, lower running cost of the product

    3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g.
       sound or heat insulation)

    4. Environmental and legislative considerations

                                                                                                            41
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies

    1. Technical performance advantage, properties comparison

    2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing,
       better recycleability and lower cost of disposal, lower running cost of the product

    3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g.
       sound or heat insulation)

    4. Environmental and legislative considerations

                                                                                                            42
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical knowledge for substitution strategies

                                                                                   Substitutability
                                                                                   scale (from “Poor”
                                                                                   to “Good”)
                                                                                   Source of the
                                                                                   figure: SCRREEN
                                                                                   Coordination and
                                                                                   Support Action
                                                                                   (CSA)

The periodic table of substitute performance. The results are scaled from 0 to 100, with 0 indicating that exemplary substitutes
exist for all major uses and 100 indicating that no substitute with even adequate performance exists for any of the major uses.
Souce: Graedel, T & Harper, E & Nassar, Nedal & Reck, Barbara. (2013). On the materials basis of modern society. PNAS
                                                                                                                         43
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical knowledge for substitution strategies

  substitution often based on chemical affinity/similarities
  in chemical properties and reactivity

                                                                                                      44
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Avoid rebound effect in substitution

                                                                  Replacements of any critical material should indeed start
                                                                  from the balance among the required functionality and the
                                                                  actual availability of materials, in order to avoid replacing
                                                                  one CRM with another: this is the “rebound effect“

                                                                      Price development for precious metals 1988-2009
                                                             Figure provided by Dr. C. Hagelücken, Umicore AG, Hanau, Germany

                                                                                                                           45
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical and engineering knowledge for substitution strategies

          Property           Currently used material Alternative material (1) Alternative material (2) Alternative material (3)
                                     (value)
         Property 1                     C1                        0                       -                       +
         Property 2                     C2                        +                      +                        +
         Property 3                     C3                        +                      +                        +
         Property 4                     C4                        +                      +                        +
         Property 5                     C5                        -                      0                         -
         Property 6                     C6                        0                       -                       0

           Total (+)                                              3                      3                        4
           Total (-)                                              1                      2                        1
           Total (0)                                              2                      1                        1

                   Pugh decision matrix: properties as compared with respect to the currently used
                        material as (+) if more favorable, (-) if less favorable (0) if is the same.
                                                                                                                                  46
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical and engineering knowledge for substitution strategies

          Property                 Neodymium            Alternative material (1) Alternative material (2) Alternative material (3)
                                                                  Ce                        Pr

         Availability                   C1                         +                        +                        +
             Cost                       C2                         +                        +                        +
    Magnetic properties                 C3                         -                        0                        +
      Thermal stability                 C4                         +                        +                        +
        Recycling rate                  C5                         +                        0                         -
       Alloying ability                 C6                         0                        -                        0
   Mechanical properties                 C7

           Total (+)                                               4                        3                        4
           Total (-)                                               1                        1                        1
           Total (0)                                               1                        2                        1

                    Pugh decision matrix: properties as compared with respect to the currently used
                         material as (+) if more favorable, (-) if less favorable (0) if is the same.
                                                                                                                                     47
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies

                                                                         Nd2Fe14B hard magnetic alloys
                                                                         ▪ electric veihcles
                                                                         ▪ wind turbines

                                                                         (e.g. the electric motor of Toyota Prius
                                                                         require 1 kg Nd)

    Considering the growing rate of global wind power
    and overall benefits of the permanent magnet
    synchronous generator (PMSG) wind turbines, the
    future demand for high-performing NdFeB magnet
    and its constituent elements is likely to increase.

                                                                                                           48
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies

  Aiming for cost-efficiency through balanced utilization of rare-earth resources, the use of Ce, the cheapest and most
  abundant of all rare-earth elements, as potential candidate to substitute the expensive and resource-critical Nd in
  Nd2Fe14B hard magnetic alloys was tested. Emphasis is put on the effects of substitution on the alloys structural
  properties and the related response to hydrogen treatment, one of the main processing routes in the production of
  Nd2Fe14B-based permanent magnets. Significant texture and very reasonable magnetic properties were obtained at x =
  0.3, attributed to a favorable phase composition with Ce mainly concentrated in the intergranular material.

                                                                                                                     49
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Grazie per l’attenzione - Ringraziamenti

        Christian Hagenlücken,
        Umicore AG, Hanau, Germany                           Wet chemistry and colloids group, University of Padova

Enrico Bernardo, Franco Bonollo, Maria
Cristina Lavagnolo, Manuele Dabalà and all
the colleagues of the Master „Sustainable
Chemistry and Technologies for Circular
Economy“ of the University of Padova

Andrea Caneschi and Consiglio Scientifico,
INSTM

                                                        SFB Track Act, KIT Karlsruhe (PI: Jan Dierk Grunwaldt)
                                                        DFG Mercator Fellowship 2021-2024                             50
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy, twin transitions and Industry 4.0

                                                                                                           Intersections:

                                                                                                           Artificial intelligence
                                                                                                           Robotics
                                                                                                           Automation
                                                                                                           Big data
                                                                                                           Blockchain
                                                                                                           Digitalization
                                                                                                           Logistics, supply chain
                                                                                                           Machine learning
                                                                                                           Additive manufacturing
                                                                                                           Smart factory
                                                                                                           Industrial symbiosis
                                                                                                           ……

                                                                  https://www.rinnovabili.it/economia-circolare/economia-circolare-soluzioni-industria-4-0/
                                                                                                                                                 51
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare
                                                          Traiettorie di ricerca proposte
D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ
   In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si
   cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei
   materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili),
   l’aerospazio e la catalisi.
D.07 - BIODEGRADAZIONE E COMPOSTAGGIO
  Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e
  all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà
  intrinseche durante il tempo di vita utile.
D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA
   Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero
   ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di
   pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per
   l’approvvigionamento dei materiali da fonti sostenibili.
D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA)
   È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di
   progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il
   consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti.
D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ
   Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di
   tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori
   semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi.

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity

 ▪ evaluation of circularity (e.g. how to quantify the circularity/reduction in GHG emission
   of a process)

                                                                                            54
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity: timeline

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity

                                                                Conceptual scheme of the components of a circular economy
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 Source of the picture: https://www.materialflows.net/circular-economy/
Quantifying the circularity: indicators

  an example

Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                         Economy: waste as resources through sustainable recovery
Case study 1
Gold: the starting point

▪ concentration of gold in mobile-phone
  waste is estimated to be up to ∼70
  times that of primary mining ores
▪ gold is also an important target in terms
  of environmental impact.
▪ distributed, small-scale gold mining
  typically relies upon cyanide salts and
  mercury amalgamation to process ores.
▪ gold mining waste accumulated in
  tailings ponds, resulting in mercury
  contamination of the water and soil, a
  significant health hazard for nearby
  communities.
▪ other notable metals in mobile-phone
  waste include copper, silver, palladium,                                                  recycling rate of elements in mobile phones
  iron, and rare earths
                                                                                                                                    60
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                         Economy: waste as resources through sustainable recovery
Case study 2
Lithium: the starting point

▪ Lithium is critical for commercial interest
  because of its importance in modern
  battery technology.
▪ Projections estimate the need for a
  minimum of doubling production in the
  coming decades to meet growing
  demand
▪ single car lithium-ion battery pack (of a
  type known as NMC532) could contain
  around 8 kg of lithium, 35 kg of nickel,
  20 kg of manganese and 14 kg of cobalt
▪ the lack of supplier diversity has led to
  price spikes.
▪ Lithium is found globally in brines and in
  pegmatite or spodumene ores and                                  Nature, 596 (2021) 336
  requires purification for commercial use.
                                                                                            61
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                          Economy: waste as resources through catalysis

▪ an attractive approach to tackle the challenge of chemical waste
  reduction is to utilize these waste products as feedstocks for the
  production of useful chemicals.

▪ catalytic (de) hydrogenation is an atom-economic, green and
  sustainable approach in organic synthesis, and several new
  environmentally benign transformations

                                                                                                 62
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                          Economy

                                                                    Invited Essay
                                                                    Chem. Eur. J., 2021, 27, 6676
                                                                                                    63
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                         Economy: waste as resources through sustainable recovery
The starting point: urban mining instead of ores mining
▪ In 2020, 10.3 kg of electrical and electronic equipment waste were collected per inhabitant in the EU (EuroStat, 2021).
▪ separation and purification of raw materials are estimated to consume ∼15% of global energy use
▪ materials containing essential metals that are expensive or otherwise energy-intensive to purify from their primary ores,
  such as gold, lithium, palladium, germanium, and rare earths
▪ need of pursuit of selectivity for the purification of one metal over others from complex mixtures.

                                                                                            Typical composition of WEEE
                                                                                            (data from Yang et al. 2013; Kaya 2018)
                                                                                            Source of the figure: Charitopoulou, M. et al.
                                                                                            (2021). Environmental Science and Pollution
                                                                                            Research. 24.                           64
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular
                                         Economy: waste as resources through sustainable recovery
▪ there is a clear need for transformative, fundamentally new approaches in inorganic chemistry that address this grand
  challenge of metals recycling
▪ inorganic chemists are ideally positioned to develop new chemistry and greener processes that are more efficient and
  use less hazardous reagents to separate high-value metals from waste electronics.
▪ fundamental inorganic and coordination chemistry that can contribute to new recycling technologies for gold, lithium,
  palladium, germanium, and rare earths, especially using simple approaches in solid−liquid extraction
▪ inorganic chemistry, motivated by goals in sustainability, provides a platform for the development of fundamental
  chemistry that addresses emerging problems and potentially creates new opportunities for industry
▪ fundamental studies are expected to help close metal supply chain loops and create circular economies

                                                                                                                      65
Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The actual eco-sustainability of reuse of materials

                                               66
The relevance of eco-informed materials choice

                           Slides from the course «Materials
                           design and selection for circular
                           economy», Gross, Bernardo, Orian,
                           Casalini, UniPD
                           Master        Degree      «Sustainable
                           Chemistry and Technologies for
                           Circular Economy».
                           Courtesy Prof. Enrico Bernardo    67
The materials challenges: an example

                                 Multi-metal recycling requires optimised chains
                      ²   Losses due     Not collected       Exports             Process-performance
                          to:
                                                                            Wrong fractions        Residues

                          EoL products          Collection                                                         Recycled
                                                                       Pre-processing*        End-processing**
                                                                                                                    metals
                                                                                                                                    * manual-mechanical
                                                        Products            Components/fractions                                    ** chemical-metallurgical
                        Chain efficiency: 50%        X        70%          X     95%       =         33%
                      e.g.. Au from WEEE
                                          Collection rate                   Recycling rate              Physical circularity rate

                     Separation selectivity
                      of pre-processing is
                       crucial for overall
                          metal yields

                                                                                                                                                                68
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice

                 Slides from the course «Materials design and selection for
                 circular economy», Gross, Bernardo, Orian, Casalini
                 Master Degree «Sustainable Chemistry and Technologies      69 for
                 Circular Economy»., University of Padua Courtesy Prof. Bernardo
Circular Economy – leveraging supply & demand

  Industrial CE approaches                                Increasing raw materials supply & security
                                                          • Diversified, robust & efficient primary production chains
                                                             (mining – metallurgy, feedstocks for polymer-based materials)
                                                          • Comprehensive & high quality recycling of production scrap & EoL
                                                             products within EU
                                                             (collection – metallurgy, chemical mechanical approches to polymer
                                                             recycling)

                                                          Decreasing raw materials demand & dependency:
                                                          • Flexible & resource-efficient product development & fabrication
                                                          • Extend product lifetime (incl. repair/reuse)

                                                                    General:                                    Figure by Dr. C. Hagelücken,
                                                                                                               Umicore AG, Hanau, Germany
                                                                    • Smart design of products & services
                                                                       lifetime, ease of circularity & recycling
    Source: L.Tercero et al.: Criticality and the circular economy, • New business models for systemic optimisation
    Resources, conservation & Recycling (2020)                      • Responsible sourcing & recycling
                                                                                                                                         70
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023  Mitigation of reputational risks
The 9R of the Circular Economy

▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically
  different (e.g. digital) product or service
▪ R2 Rethink Make product use more intensive (e.g. through product-as-a service, reuse and sharing models or
  by putting multi-functional products on the market)
▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and
  materials
▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste)
  for the same purpose for which it was conceived
▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function
▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level)
▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new-
  condition)
▪ R8 Repurpose Use a redundant product or its parts in a new product with different function
▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances
  whether for the original or other purposes. It includes the reprocessing of organic material but does not
  include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling
  operations                                                                                                    71
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The 9R of the Circular Economy and the role of
                                          chemistry and materials science

▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically
  different (e.g. digital) product or service
▪ R2 Rethink Design to make product use more intensive
▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and
  materials
▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste)
  for the same purpose for which it was conceived
▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function
▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level)
▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new-
  condition)
▪ R8 Repurpose Use a redundant product or its parts in a new product with different function
▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances
  whether for the original or other purposes. It includes the reprocessing of organic material but does not
  include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling
  operations
                                                                                                                72
Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
You can also read