Circular economy and its role in the ecological transition: materials as key enabling technology
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Circular economy and its role in the ecological transition: materials as key enabling technology Silvia Gross 1 Dipartimento di Scienze Chimiche – Università degli Studi di Padova INSTM- UdR Padova and 2 Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT), Germany
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 2 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 3 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy: a science driven approach for sustainability Linear economy model ▪ extraction/mining of raw materials ▪ transformation into finished consumer products ▪ distribution/retail ▪ use ▪ disposal and elimination of waste and products ▪ environmental problems (deforestation, desertification, pollution, greenhouse effect, climate changes, accumulation of waste) ▪ non-rational and unplanned exploitation of resources ▪ critical issues in the supply of energy and raw materials (critical raw materials, CRM) → non-sustainability of the linear model 4 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy: a science driven approach for sustainability Linear economy model ▪ product inefficiency (see eco-audit) ▪ overconsumption (energy, materials, natural resources, soil..) ▪ limited life-span (planned obsolescence, not rational design, lack of modularity etc.) ▪ waste production and accumulation/pollution/litter ▪ landfilling 5 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy: a science driven approach for sustainability «an economy which is regenerative by design. In a circular economy there are two types of material flow: biological ones, able to be reintegrated in the biosphere, and technical ones, destined to be re-used without ever entering the biosphere» TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN Ellen MacArthur Foundation, 2007 ▪ conceptually regenerative industrial economy ▪ effective flows of materials, energy, work and information 6 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy: a science driven approach for sustainability «an economy which is regenerative by design. In a circular economy there are two types of material flow: biological ones, able to be reintegrated in the biosphere, and technical ones, destined to be re-used without ever entering the biosphere» TECHNICAL SKILLS NEEDED/SCIENCE DRIVEN Ellen MacArthur Foundation, 2007 ▪ conceptually regenerative industrial economy ▪ effective flows of materials, energy, work and information 7 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The circular economy package: an EU framework https://ec.europa.eu/environment/circular-economy/ EC Communication Dec. 2015 “Closing the loop – An EU action plan for the Circular Economy” The Circular Economy Package – European Commission 4th March 2019 (update) Circular Economy Action Plan – European Commission 20th March 2020 (update) A transition to a more circular economy, where the value of products, materials and resources is maintained in the economy for as long as possible, and the generation of waste is minimized, which is seen as an essential contribution to the EU’s efforts to develop a sustainable, low carbon, resource efficient and competitive economy 8 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 9 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy and materials 11 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Why we need circularity in materials ▪ Each year, 150 million tonnes of steel, plastics, and aluminium, with an original value of €130-140 billion, exits use in the EU economy, after fulfilling essential roles in vehicles, buildings, products, and packaging. ▪ Materials in these three categories are almost all technically recyclable (barring a few categories, such as plastic thermosets), and if all these materials were recycled, they could supply as much as 64% of total EU demand in the same categories (2/3 of EU need) ▪ Today, only about 36% of this original material value remains after one use cycle. In total, the losses amount to € 78 billion per year. Source of data and figure The figure shows total end-of-life (EOL) flows of materials. The estimates include post-consumer scrap, pre-consumer fabrication scrap, and scrap that is not Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 collected
Why we need circularity in materials ▪ Increasing the circularity of steel, plastics, and aluminium can help the EU significantly in meeting its climate targets. ▪ The production of these materials today accounts for 10- 15% of total EU CO2 emissions, and materials recycling is 79-93% less CO2-intense than primary materials production. ▪ Recycling also shifts CO2 emissions away from hard-to- abate sources such as mining, oil and gas extraction, blast furnaces, and steam crackers, towards sources such as electricity and low- or medium-temperature heat production that are easier to decarbonise. Source of data and figure Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 14 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Use of materials in technologies Achzet et al., Materials critical to the energy industry, Augsburg, 2011 15 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Critical raw materials (and metals) Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study, 2021, European Commission 16 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
EU dependence on raw materials 39 Zinc 86 Percentage of imported and produced 14 elements in EU (www.worldbank.org) 36 Copper 14 86 48 Tungsten 3 97 59 Cobalt 1 99 8 Tin 100 21 Rare Earth Oxides 100 20 Antimony 100 0 20 40 60 80 100 (imports+domestic products)/world production (2012) % domestic production EU-28 (2012) % imports to EU-28 (2012) 17 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Critical raw materials (and metals) Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study, 2021, European Commission 18 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
Critical raw materials (and metals) Critical Raw Materials for Strategic Technologies and Sectors in the EU A Foresight Study, 2021, European Commision 19 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Designing for circularity Ellen MacArthur Foundation We need to radically rethink how we design (ellenmacarthurfoundation.org) •Eliminate waste and pollution upstream through design • Consider choosing safe materials designed for repeat circulation, making use of by-products, or engaging in material and product innovation •Circulate materials and products by designing them to be kept in use, and at their highest value, for as long as possible • Consider designing for repairability, upgradability and emotional durability, as well as creating the reuse, repair, remanufacture, and recycling systems and business models (resale, rental, sharing) that allow products and materials to be used more times, by more people, and for longer •Regenerate nature by designing to improve local biodiversity, air, and water quality • Consider designing for regenerative outcomes, i.e. creating the conditions for nature to thrive • Consider designing for successive cycles in which bio-based materials are used through different applications and are safely returned to the earth 20 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy: the new era of circular chemistry Circular chemistry to enable a circular economy T. Keijer, V. Bakker, J. C. Slootweg Nature Chemistry, 11, 2019, 190 “‘Green Chemistry represents 'old thinking' since it optimises a linear production chain whereas future sustainable processes should be circular.” […..] “We have to replace today's linear, take-make-dispose approach with circular chemical processes and work towards a closed-loop, waste-free chemical industry.” (J. C. Slootweg) 21 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy: the new era of circular chemistry Circular chemistry to enable a circular economy T. Keijer, V. Bakker, J. C. Slootweg Nature Chemistry, 11, 2019, 190 22 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy: the new era of circular chemistry 23 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy: the new era of circular chemistry 1. Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis steps, may have additional undesirable properties, and can be more difficult to recycle). 2. Design products for recycling, including all additives and other components of the product. 3. Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity), design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling. 4. Avoid complex products (e.g., multiple components, materials). 5. Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals). 6. Design products not suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides, personal care and cleaning products). 7. Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals). 8. Avoid entropic losses and transfers (e.g., dissipation of metals, energy). 9. Avoid rebound effects (e.g., using less carbon often means higher demand for metals). 10. Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling. 11. Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes). 12. Develop and apply circular metrics (e.g., giving credit to the use of by-products). 13. Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share business models. 14. Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification). 15. Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity). 24 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The role of chemistry in the Circular Economy: the new era of circular chemistry 1. Keep molecular complexity to the minimum required for the desired performance, including end of life (complex molecules require more synthesis steps, may have additional undesirable properties, and can be more difficult to recycle). 2. Design products for recycling, including all additives and other components of the product. 3. Reduce and simplify diversity and dynamics of substance, material, and product flows; e.g., use fewer chemicals overall (both number and quantity), design for less resource intensity, and adapt innovation speed of products to adaptation speed of recycling. 4. Avoid complex products (e.g., multiple components, materials). 5. Minimise use of product components that cannot easily be separated and recycled (e.g., solvents, metals). 6. Design products suitable for capture and recycling for complete fast mineralization at the end of their lives (e.g., pharmaceuticals, pesticides, personal care and cleaning products). 7. Prevent raw materials from becoming critical through reduced use and efficient recovery and recycling (e.g., many metals). 8. Avoid entropic losses and transfers (e.g., dissipation of metals, energy). 9. Avoid rebound effects (e.g., using less carbon often means higher demand for metals). 10. Be responsible for/develop ownership of your product throughout its complete life cycle, including recycling. 11. Ensure traceability and consider use of product digital passports (e.g., composition of products, components, and processes). 12. Develop and apply circular metrics (e.g., giving credit to the use of by-products). 13. Change traditional chemical practices based on “bigger-faster” into “optimal adapted-better-safer” and change ownership to rent, lease, and share business models. 14. Keep processes as simple as possible with a minimum number of steps, auxiliaries, energy, and unit operations (e.g., separations, purification). 15. Design processes for optimal material recovery of auxiliaries, unused substrates, and unintended by-products (based on quality and quantity). 25 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice ▪ Availability of raw materials ▪ Key materials for industrialized society ▪ Availability of energy ▪ Energy-material correlations ▪ End of life options (recycling, reuse, remanufacturing, refurbishment, reconditioning, retrofitting…) Reference book, by Prof. Ashby (University of Cambridge, UK) available @ https://www.sciencedirect.com/book/9780128215210/ materials-and-the-environment 26 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini, UniPD Master Degree «Sustainable Chemistry and Technologies for Circular Economy». Courtesy Prof. Bernardo 27 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini Master Degree «Sustainable Chemistry and Technologies for Circular Economy» University of Padua Courtesy Prof. Enrico Bernardo 28 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice Courtesy Prof. Enrico Bernardo Università di Padova 29
LCA-driven eco-design strategies 30 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Designing for circularity End-of-life recycling input rate measures the proportion of metal and metal products that are produced from end-of-life scrap and other metal-bearing low grade residues in end-of-life scrap worldwide. n is the number of elements in the alloy chemical composition, and wt% is the amount of element ‘i’ contained in the alloy and measured in weight percent. EOL-RIR of non-critical elements is assumed as equal to 100%. 31 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 32 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare MATERIALI TRAIETTORIE DI RICERCA M01 - Metalli Elaborato con D.01 - Materiali M02 - Polimeri e prodotti D.02 - Valorizzazione M03 - Ceramici Prof. Loredana Incarnato biodegradabili degli scarti da biomasse Uni Salerno M04 - Compositi D.03 - Riciclo dei D.04 - Recupero di metalli M05 - Vetri materiali e di elementi critici M06 - Cementizi D.05 - Separazione e sorting D.06 - Materiali di sostituzione M07 - Naturali D.07 - Biodegradazione e per riduzione della criticità M08 - Cellulosici compostaggio D.08 - Eco-design per ridotto impatto TECNOLOGIE ABILITANTI D.09 - Life Cycle Assessment ambientale e riutilizzo a fine vita T01 - Calcolo scientifico e tecnologico (LCA), Carbon footprint and D.10 - Quantificazione T02 – Tecnologie tradizionali Cost-Benefit Analysis (CBA) della circolarità T03 - Sintemi manufatturieri avanzati D.11 - Nanotecnologie per lo sviluppo T04 - Stampa 3D di materiali e prodotti eco-sostenibili T05 - Nanotecnologie D.12 - Approcci di chimica circolare T06 - Biotecnologie industriali per molecole e materiali T07 - Tecnologie chimiche tradizionali T08 - Tecnologie chimiche innovative 33 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare Traiettorie di ricerca proposte D.01 - MATERIALI E PRODOTTI BIODEGRADABILI Sono di pertinenza di questa traiettoria le tematiche relative alla progettazione e allo sviluppo di materiali e prodotti biodegradabili provenienti da fonti rinnovabili e non, nonchè tematiche relative all’applicazione delle tecnologie di modifica e funzionalizzazione innovative (realizzazione di biocompositi e bionanocompositi, modifiche strutturali, miscelazione, impiego di riempitivi, trattamenti superficiali/coating etc.) per il miglioramento delle performance, e la verifica e definizione della biodegradabilità dei materiali. D.02 - VALORIZZAZIONE DEGLI SCARTI DA BIOMASSE Riguarda lo sviluppo di materiali e prodotti ottenuti dalla conversione di scarti e sottoprodotti provenienti da diversi settori industriali (agroalimentare, ittico, forestale, rifiuti organici urbani, …) adottando tecnologie rigenerative e di valorizzazione. D.03 - RICICLO DEI MATERIALI Riguarda la progettazione e lo sviluppo di manufatti completamente riciclabili e di processi innovativi e sostenibili (es. basso consumo energetico) di riciclo; gli aspetti chimico-fisici, gli avanzamenti tecnologici nei processi di riciclo meccanico, chimico, termico; le tecnologie di upgrading dei materiali riciclati per il miglioramento della processabilità e delle proprietà in relazione all’applicazione prevista. Di questo tema fa parte la ricerca nel settore dell ’End of Waste dei prodotti riciclati, cruciale per rendere disponibile al mercato i nuovi materiali circolari. D.04 - RECUPERO DI METALLI E DI ELEMENTI CRITICI In questa traiettoria, strettamente correlata alla precedente, ma più specifica e limitata a metalli ed elementi critici, si ottimizzeranno processi di natura chimica e sostenibili che consentano una lisciviazione selettiva di metalli ed elementi critici a partire da rifiuti soliti o acque di scarto. In particolare, liscivianti di natura inorganica ad elevato impatto ambientale (es. acidi inorganici, ossidanti) verranno parzialmente o totalmente sostituiti da altri agenti liscivianti (es. deep eutectic solvents, acidi organici) in grado di separare in modo selettivo e possibilmente con alte rese materiali critici recuperati da attività, ad esempio, di urban mining. D.05 - SEPARAZIONE E SORTING Obiettivo di questa traiettoria, correlata alle traiettorie precedenti 3. e 4., riguarda lo sviluppo di metodologie avanzate di caratterizzazione, analisi e sorting per il riconoscimento selettivo di materie prime da scarti e rifiuti da trasformare in materie prime seconde. Tali attività sperimentali andranno integrate con approcci computazionali/statistici e/o basati su machine learning per l’analisi rapida di grandi quantità di dati. Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare Traiettorie di ricerca proposte D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili), l’aerospazio e la catalisi. D.07 - BIODEGRADAZIONE E COMPOSTAGGIO Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà intrinseche durante il tempo di vita utile. D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per l’approvvigionamento dei materiali da fonti sostenibili. D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA) È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti. D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi. Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare Traiettorie di ricerca proposte D.11 - NANOTECNOLOGIE PER LO SVILUPPO DI MATERIALI E PRODOTTI ECO-SOSTENIBILI Sono di pertinenza di questa traiettoria le tematiche relative all’implementazione di processi basati sulle nanotecnologie per lo sviluppo di materiali e prodotti ecosostenibili multifunzionali, con proprietà termiche, elettroniche, ottiche, meccaniche, barriera, catalitiche e magnetiche superiori. D.12 - APPROCCI DI CHIMICA CIRCOLARE PER MOLECOLE E MATERIALI In questa traiettoria, a partire dai 12 principi della Circular Chemistry codificati nel 2019*, e che rappresentano un’evoluzione della green chemistry con una dimensione circolare, si svilupperanno ed ottimizzeranno procedure di sintesi e di produzione di molecole e materiali per consentirne una completa circolarità. * Circular chemistry to enable a circular economy T. Keijer, V. Bakker, J. C. Slootweg Nature Chemistry, 11, 2019, 190 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare Traiettorie di ricerca proposte D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili), l’aerospazio e la catalisi. D.07 - BIODEGRADAZIONE E COMPOSTAGGIO Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà intrinseche durante il tempo di vita utile. D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per l’approvvigionamento dei materiali da fonti sostenibili. D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA) È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti. D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi. Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Outline Circular economy: a short overview The role of materials design and selection for circular economy Raw materials criticality: how to cope with it Circular chemistry and eco-audit approaches to materials design Critical raw materials substitution: a possible option? Circular Economy & Materials: the INSTM perspective (a proposal) 38 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies: a possible option? Substitution is as an important mitigation strategy to overcome the potential disruption in the supply of critical raw materials: it covers the partial substitution (minimization of CRM) to the complete substitution (full replacement). Four types of substitution aspects are depicted below: Source of the figure: SCRREEN Coordination and Support Action (CSA) 39 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies: the framework 40 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies 1. Technical performance advantage, properties comparison 2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing, better recycleability and lower cost of disposal, lower running cost of the product 3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g. sound or heat insulation) 4. Environmental and legislative considerations 41 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies 1. Technical performance advantage, properties comparison 2. Economic advantage over the total life cycle of the product: cheaper material lower cost of processing, better recycleability and lower cost of disposal, lower running cost of the product 3. Improving the aesthetics of the product: using a more attractive material, providing more comfort (e.g. sound or heat insulation) 4. Environmental and legislative considerations 42 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical knowledge for substitution strategies Substitutability scale (from “Poor” to “Good”) Source of the figure: SCRREEN Coordination and Support Action (CSA) The periodic table of substitute performance. The results are scaled from 0 to 100, with 0 indicating that exemplary substitutes exist for all major uses and 100 indicating that no substitute with even adequate performance exists for any of the major uses. Souce: Graedel, T & Harper, E & Nassar, Nedal & Reck, Barbara. (2013). On the materials basis of modern society. PNAS 43 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical knowledge for substitution strategies substitution often based on chemical affinity/similarities in chemical properties and reactivity 44 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Avoid rebound effect in substitution Replacements of any critical material should indeed start from the balance among the required functionality and the actual availability of materials, in order to avoid replacing one CRM with another: this is the “rebound effect“ Price development for precious metals 1988-2009 Figure provided by Dr. C. Hagelücken, Umicore AG, Hanau, Germany 45 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical and engineering knowledge for substitution strategies Property Currently used material Alternative material (1) Alternative material (2) Alternative material (3) (value) Property 1 C1 0 - + Property 2 C2 + + + Property 3 C3 + + + Property 4 C4 + + + Property 5 C5 - 0 - Property 6 C6 0 - 0 Total (+) 3 3 4 Total (-) 1 2 1 Total (0) 2 1 1 Pugh decision matrix: properties as compared with respect to the currently used material as (+) if more favorable, (-) if less favorable (0) if is the same. 46 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Chemical and engineering knowledge for substitution strategies Property Neodymium Alternative material (1) Alternative material (2) Alternative material (3) Ce Pr Availability C1 + + + Cost C2 + + + Magnetic properties C3 - 0 + Thermal stability C4 + + + Recycling rate C5 + 0 - Alloying ability C6 0 - 0 Mechanical properties C7 Total (+) 4 3 4 Total (-) 1 1 1 Total (0) 1 2 1 Pugh decision matrix: properties as compared with respect to the currently used material as (+) if more favorable, (-) if less favorable (0) if is the same. 47 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies Nd2Fe14B hard magnetic alloys ▪ electric veihcles ▪ wind turbines (e.g. the electric motor of Toyota Prius require 1 kg Nd) Considering the growing rate of global wind power and overall benefits of the permanent magnet synchronous generator (PMSG) wind turbines, the future demand for high-performing NdFeB magnet and its constituent elements is likely to increase. 48 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Substitution strategies Aiming for cost-efficiency through balanced utilization of rare-earth resources, the use of Ce, the cheapest and most abundant of all rare-earth elements, as potential candidate to substitute the expensive and resource-critical Nd in Nd2Fe14B hard magnetic alloys was tested. Emphasis is put on the effects of substitution on the alloys structural properties and the related response to hydrogen treatment, one of the main processing routes in the production of Nd2Fe14B-based permanent magnets. Significant texture and very reasonable magnetic properties were obtained at x = 0.3, attributed to a favorable phase composition with Ce mainly concentrated in the intergranular material. 49 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Grazie per l’attenzione - Ringraziamenti Christian Hagenlücken, Umicore AG, Hanau, Germany Wet chemistry and colloids group, University of Padova Enrico Bernardo, Franco Bonollo, Maria Cristina Lavagnolo, Manuele Dabalà and all the colleagues of the Master „Sustainable Chemistry and Technologies for Circular Economy“ of the University of Padova Andrea Caneschi and Consiglio Scientifico, INSTM SFB Track Act, KIT Karlsruhe (PI: Jan Dierk Grunwaldt) DFG Mercator Fellowship 2021-2024 50 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Circular economy, twin transitions and Industry 4.0 Intersections: Artificial intelligence Robotics Automation Big data Blockchain Digitalization Logistics, supply chain Machine learning Additive manufacturing Smart factory Industrial symbiosis …… https://www.rinnovabili.it/economia-circolare/economia-circolare-soluzioni-industria-4-0/ 51 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
D1: Economia verde ed economia circolare Traiettorie di ricerca proposte D.06 - MATERIALI DI SOSTITUZIONE PER RIDUZIONE DELLA CRITICITÀ In questa traiettoria, a partire dalla valutazione sistematica dalle proprietà e dalle prestazioni funzionali di un materiale/elemento critico, si cercheranno possibili materiali/elementi di sostituzione in grado di eliminare o ridurre la criticità ed i rischi legati all’approvvigionamento dei materiali critici stessi, in particolare in relazione ad applicazioni strategiche quali le energie rinnovabili (es. batterie, celle a combustibili), l’aerospazio e la catalisi. D.07 - BIODEGRADAZIONE E COMPOSTAGGIO Questa traiettoria concerne le tematiche relative all’analisi e alla modellazione dei meccanismi di biodegradazione e compostaggio dei materiali e all’implementazione di opportune strategie atte a modulare le cinetiche di degradazione dei prodotti, mantenendo inalterate le proprietà intrinseche durante il tempo di vita utile. D.08 - ECO-DESIGN PER RIDOTTO IMPATTO AMBIENTALE E RIUTILIZZO A FINE VITA Riguarda la progettazione sostenibile, seguendo i principi dell’eco-design, dei manufatti per minimizzarne l’impatto ambientale durante l’intero ciclo di vita e per assicurare il loro riutilizzo/recupero/ricondizionamento a fine vita, senza comprometterne le prestazioni fondamentali. E’ di pertinenza di quest’area l’implementazione di opportune strategie per la riduzione della quantità di materie prime impiegate, per l’approvvigionamento dei materiali da fonti sostenibili. D.09 - LIFE CYCLE ASSESSMENT (LCA), CARBON FOOTPRINT AND COST-BENEFIT ANALYSIS (CBA) È di pertinenza di questa traiettoria l’impiego di strumenti per valutare l’impronta ambientale di un prodotto e/o processo per operare scelte di progettazione sostenibile, basate sull’analisi del flusso di processi che comprendono l'estrazione o la raccolta, la trasformazione, la produzione, il consumo, il riciclo, lo smaltimento dei materiali e la valutazione dei costi e benefici diretti e indiretti. D.10 - QUANTIFICAZIONE DELLA CIRCOLARITÀ Sono di pertinenza di questa traiettoria, fortemente allineata e conforme a quanto è in corso di sviluppo a livello comunitario e di UNI, approcci di tipo numerico e statistico per la quantificazione della circolarità di processi di produzione. In particolare è rilevante l’elaborazione di indicatori semplici e complessi per la misura e il monitoraggio nel tempo della circolarità dei processi. Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity ▪ evaluation of circularity (e.g. how to quantify the circularity/reduction in GHG emission of a process) 54 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity: timeline Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
Quantifying the circularity Conceptual scheme of the components of a circular economy Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 Source of the picture: https://www.materialflows.net/circular-economy/
Quantifying the circularity: indicators an example Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy: waste as resources through sustainable recovery Case study 1 Gold: the starting point ▪ concentration of gold in mobile-phone waste is estimated to be up to ∼70 times that of primary mining ores ▪ gold is also an important target in terms of environmental impact. ▪ distributed, small-scale gold mining typically relies upon cyanide salts and mercury amalgamation to process ores. ▪ gold mining waste accumulated in tailings ponds, resulting in mercury contamination of the water and soil, a significant health hazard for nearby communities. ▪ other notable metals in mobile-phone waste include copper, silver, palladium, recycling rate of elements in mobile phones iron, and rare earths 60 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy: waste as resources through sustainable recovery Case study 2 Lithium: the starting point ▪ Lithium is critical for commercial interest because of its importance in modern battery technology. ▪ Projections estimate the need for a minimum of doubling production in the coming decades to meet growing demand ▪ single car lithium-ion battery pack (of a type known as NMC532) could contain around 8 kg of lithium, 35 kg of nickel, 20 kg of manganese and 14 kg of cobalt ▪ the lack of supplier diversity has led to price spikes. ▪ Lithium is found globally in brines and in pegmatite or spodumene ores and Nature, 596 (2021) 336 requires purification for commercial use. 61 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy: waste as resources through catalysis ▪ an attractive approach to tackle the challenge of chemical waste reduction is to utilize these waste products as feedstocks for the production of useful chemicals. ▪ catalytic (de) hydrogenation is an atom-economic, green and sustainable approach in organic synthesis, and several new environmentally benign transformations 62 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy Invited Essay Chem. Eur. J., 2021, 27, 6676 63 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy: waste as resources through sustainable recovery The starting point: urban mining instead of ores mining ▪ In 2020, 10.3 kg of electrical and electronic equipment waste were collected per inhabitant in the EU (EuroStat, 2021). ▪ separation and purification of raw materials are estimated to consume ∼15% of global energy use ▪ materials containing essential metals that are expensive or otherwise energy-intensive to purify from their primary ores, such as gold, lithium, palladium, germanium, and rare earths ▪ need of pursuit of selectivity for the purification of one metal over others from complex mixtures. Typical composition of WEEE (data from Yang et al. 2013; Kaya 2018) Source of the figure: Charitopoulou, M. et al. (2021). Environmental Science and Pollution Research. 24. 64 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The specific role of inorganic chemistry in the Circular Economy: waste as resources through sustainable recovery ▪ there is a clear need for transformative, fundamentally new approaches in inorganic chemistry that address this grand challenge of metals recycling ▪ inorganic chemists are ideally positioned to develop new chemistry and greener processes that are more efficient and use less hazardous reagents to separate high-value metals from waste electronics. ▪ fundamental inorganic and coordination chemistry that can contribute to new recycling technologies for gold, lithium, palladium, germanium, and rare earths, especially using simple approaches in solid−liquid extraction ▪ inorganic chemistry, motivated by goals in sustainability, provides a platform for the development of fundamental chemistry that addresses emerging problems and potentially creates new opportunities for industry ▪ fundamental studies are expected to help close metal supply chain loops and create circular economies 65 Silvia Gross – Materiali ed Economia Circolare – Accademia dei Lincei, 24-25 gennaio 2023
The actual eco-sustainability of reuse of materials 66
The relevance of eco-informed materials choice Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini, UniPD Master Degree «Sustainable Chemistry and Technologies for Circular Economy». Courtesy Prof. Enrico Bernardo 67
The materials challenges: an example Multi-metal recycling requires optimised chains ² Losses due Not collected Exports Process-performance to: Wrong fractions Residues EoL products Collection Recycled Pre-processing* End-processing** metals * manual-mechanical Products Components/fractions ** chemical-metallurgical Chain efficiency: 50% X 70% X 95% = 33% e.g.. Au from WEEE Collection rate Recycling rate Physical circularity rate Separation selectivity of pre-processing is crucial for overall metal yields 68 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The relevance of eco-informed materials choice Slides from the course «Materials design and selection for circular economy», Gross, Bernardo, Orian, Casalini Master Degree «Sustainable Chemistry and Technologies 69 for Circular Economy»., University of Padua Courtesy Prof. Bernardo
Circular Economy – leveraging supply & demand Industrial CE approaches Increasing raw materials supply & security • Diversified, robust & efficient primary production chains (mining – metallurgy, feedstocks for polymer-based materials) • Comprehensive & high quality recycling of production scrap & EoL products within EU (collection – metallurgy, chemical mechanical approches to polymer recycling) Decreasing raw materials demand & dependency: • Flexible & resource-efficient product development & fabrication • Extend product lifetime (incl. repair/reuse) General: Figure by Dr. C. Hagelücken, Umicore AG, Hanau, Germany • Smart design of products & services lifetime, ease of circularity & recycling Source: L.Tercero et al.: Criticality and the circular economy, • New business models for systemic optimisation Resources, conservation & Recycling (2020) • Responsible sourcing & recycling 70 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023 Mitigation of reputational risks
The 9R of the Circular Economy ▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically different (e.g. digital) product or service ▪ R2 Rethink Make product use more intensive (e.g. through product-as-a service, reuse and sharing models or by putting multi-functional products on the market) ▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and materials ▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste) for the same purpose for which it was conceived ▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function ▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level) ▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new- condition) ▪ R8 Repurpose Use a redundant product or its parts in a new product with different function ▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances whether for the original or other purposes. It includes the reprocessing of organic material but does not include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling operations 71 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
The 9R of the Circular Economy and the role of chemistry and materials science ▪ R1 Refuse Make product redundant by abandoning its function or by offering the same function by a radically different (e.g. digital) product or service ▪ R2 Rethink Design to make product use more intensive ▪ R3 Reduce Increase efficiency in product manufacture or use by consuming fewer natural resources and materials ▪ R4 Re-use Re-use of a product which is still in good condition and fulfils its original function (and is not waste) for the same purpose for which it was conceived ▪ R5 Repair Repair and maintenance of defective product so it can be used with its original function ▪ R6 Refurbish Restore an old product and bring it up to date (to specified quality level) ▪ R7 Remanufacture Use parts of a discarded product in a new product with the same function (and as-new- condition) ▪ R8 Repurpose Use a redundant product or its parts in a new product with different function ▪ R9 Recycle Recover materials from waste to be reprocessed into new products, materials or substances whether for the original or other purposes. It includes the reprocessing of organic material but does not include energy recovery and the reprocessing into materials that are to be used as fuels or for backfilling operations 72 Silvia Gross – Convegno 30 Anni INSTM – Brixen, 23 gennaio 2023
You can also read