Characterization of biomaterials and biological materials: a toolbox - Sorbonne Université
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Characterization of biomaterials and biological materials: a toolbox C. Bonhomme – Professor in Chemistry Laboratoire de Chimie de la Matière Condensée UMR CNRS 7574 – Sorbonne Université, Paris christian.bonhomme@upmc.fr 1
A specific class of materials bio-nanocomposites involving: ■ minerals (hydroxyapatite Ca10(PO4)6(OH)2, calcium carbonate CaCO3, calcium oxalates calcite (CaCO3) CaC2O4.nH2O…) → eventual polymorphism … aragonite, vaterite ■ organics (proteins…) ■ organic/inorganic «interfaces» intrinsic structural complexity collagen multiple tools of investigation ! 2
Hierarchical materials: from atomic (Å) to macroscopic (cm) description pathological calcifications (kidney stones) a major societal/health problem worldwide (in France, related costs per year: > 800 millions $) ■ minerals (calcium oxalates, phosphates, struvite…) ■ proteins ■ triglycerids ■… M. Daudon, D. Bazin et al., J. Appl. Crystallogr., 42,109,32009
The electromagnetic spectrum keywords / questioning: ■ local vs long range probe ■ specific frequency / time domain noyaux Spin e- ■ complementarity of techniques ■ advantages / drawbacks ■ equipment (lab., synchrotron…) ■ spectroscopy / diffraction / imaging 4
Vibrational spectroscopies (IR and Raman diffusion) harmonic oscillator - h2/2m d2/dx2 + V(x) = E v V(x) = ½ kx2 v v v v v v !! w = (k/m)1/2 k : force constant Ev = (v+1/2) hw w = (k/m)1/2 m = m1m2/(m1+m2) 5
Assignments of IR / Raman modes normal modes of vibrations ex : H2O characteristic frequencies symmetry group theory active / inactive modes (IR & Raman) 6
Hydroxyapatite, Ca10(PO4)6(OH)2 and carbonates main mineral in bones, teeth, enamel Ca10 (PO4)6 (OH)2 Mg2+, Zn2+, Na+,K+ … SO42-, CO CO3 3 …. 2 2- Ca10 (PO4)6 (OH)2 CO3 CO3 2-, F-, Cl-… 2- B A SiO44- or CO32- 7
Nuclear Magnetic Resonance (NMR) B0 (~10T) ^ m = gh Î mI=-1/2 DmI = 1 magnetic moment spin angular momentum mI=+1/2 n0=gB0/2p gyromagnetic ratio Larmor frequency ! E = - m . B Boltzmann equation Curie’s law M My N g2 h2 B0 I(I+1) M= 12 p2 kT Man, Encyclopedia of analytical B1 (RF) at resonance ! chemistry, 2000, 12228. 8
NMR parameters: the chemical shift and J coupling interactions 13C-{1H}: the case of a steroid chemical shift: d indirect coupling: J F - B F F F ex: 19F spectrum of BF4- multiplets (J in Hz) d in ppm 9
Characterization of hydrated calcium oxalates by 13C solid state NMR 1 T.Echigo et al., Mineral. Mag., 2005, 69(1), 77-88 2 V.Tazzoli et al., Amer. Mineral., 1980, 65, 327-334 10 C. Leroy, PhD thesis 3 S. Deganello et al., Amer. Mineral., 1981, 66, 859-865
The structure of interfaces in biological hydroxyapatites a model by C. Rey et al., Toulouse ■ 2D and 3D experiments ■ connectivities and internuclear distances ■ towards interfaces ! Y. Wang et al., Nature Mater. 2013 11
Imaging by NMR inhomogeneous field : B0 (r) ex vivo bone sample 12 Levitt, Spin dynamics, 2002.
X-ray diffraction Thomson’s formula (1856-1940) periodic crystalline structure P x symmetry as mP>>me: only the contribution cell of the electrons has to be taken space group into account 13
X-ray structure and powder pattern powder diffraction periodic structure -> diffraction pattern ! “chemistry” “periodicity” electronic density calculation single crystal diffraction an old presentation: LiCl.C5H5N ... to proteins !... 14
X-ray diffraction: the case of Cl- substituted hydroxyapatite 15
Identification of phases and crystallinity of powders 16
Domain of coherence Scherrer’s law ■ chemical disorder ■ size of the (nano-) particles ■ strain 17
Neutron diffraction 18
Application to hydrated calcium oxalates calcium oxalate powder neutron diffraction powder XRD improved structural models 19
Scanning Electron Microscopy and Transmission Electron Microscopy ■ morphology ■ diffraction patterns ■ local chemical analyses http://barrett-group.mcgill.ca/tutorials/nanotechnology/nano02.htm 20
SEM of bone and derivatives cell in a bone matrix bone building blocks 21
SEM of apatite, calcium oxalates and bioglasses micro- HAp micro- HAp Ca oxalates 10 mm C. Leroy, PhD 2 mm Ca oxalates C. Chan Chang, Master 2 pathological calcifications (kidney stones & Randall’s plaque) D. Bazin, M. Daudon 22
TEM of synthetic apatite nano- HAp 50 nm HAp nanoparticles obtained by precipitation methods Y. Wang et al., Nature Mater. 2013 23
Atomic Force Microscopy 24
Analysis of surfaces 25
Cell on surfaces 26
Applications of the synchrotron radiation see: 27
A large variety of experiments see: 28
X ray absorption X-ray Absorption Near Edge Spectroscopy Extended X-ray Absorption Fine Structure the (linear) absorption coefficient of X-rays by an element 29
X ray absorption X-ray Absorption Near Edge Spectroscopy Extended X-ray Absorption Fine Structure XANES: • oxydation state EXAFS: • site symmetry • type of ligands carefull calibration • distances of the E scale • coordination number error bar for accurate distances: 0.02 Å comparison of XANES spectra CN: 20-25% 30
Fe containing samples 31
Applications to the study of KS see: 32
Micro-tomography 33
Mechanical properties 34
Thermal analyses 35
You can also read