Calibration statistique du modèle Arpège-Climat - Meteo France

 
CONTINUE READING
Calibration statistique du modèle Arpège-Climat - Meteo France
Calibration statistique
  du modèle Arpège-Climat

Aurélien Ribes, Olivier Audouin, Romain Roehrig
      CNRM – Météo-France and CNRS

             AMA, 11 mars 2019
Calibration statistique du modèle Arpège-Climat - Meteo France
Motivation

 I Tuning of Arpège-Climat v6 (new global model, widely revisited physical parametrisations,
   atmosphere only),

 I Tuning based on 3D global climate properties (as opposed to 1D models and/or single
   parametrisations),

 I Tuning by hand is challenging – a number of physical parameters could be tuned.

 I Primary objective: adjust the model as well as possible to the observed
   (∼2000’s) climate.

 I Secondary objective: provide information to modellers on dependencies
   between parameters.

 I Use existing mathematical techniques and literature (UQ: Uncertainty Quantification).

 I First (exploratory) attempt, aside from our official CMIP version,
Calibration statistique du modèle Arpège-Climat - Meteo France
General algorithm

 1. Inputs: Define which (input) parameters to perturb,

 2. Training Data: Run the model for some combination of parameters,

 3. Outputs: Define a few (output) metrics / variables to be used to evaluate the
    model,

 4. Emulator: Construct a statistical emulator of the climate model, to estimate
    what would be the model behaviour (ie output variables) for other combinations
    of parameters,

 5. Calibration: Optimise model performance by minising a cost function over the
    parameter space... or...
    Select regions of the (input) parameter space where the model is consistent
    with available observations (given the uncertainties involved; NROY space
    approach).
Calibration statistique du modèle Arpège-Climat - Meteo France
Which (input) parameters?
 I We used 21 parameters (out of... many), mainly related to cloud radiative
   properties, microphysics and convection.
                                                 Paramètres perturbés

                       Paramètres    Valeur refT2x   Minimum    Maximum              Signification
                       RKDN             50.e-6        20.e-6      50.e-6      Freinage minimale pour vitesse
                                                                              verticale de l'updraft convectif

                       RKDX            100.e-6        50.e-6     1000.e-6     Freinage maximale pour vitesse
                                                                              verticale de l'updraft convectif

                       TENTR             5.e-6         4.e-6      20.e-6       Entrainement minimale pour
                                                                                 ascendance convective

                       TENTRX           57.e-6        40.e-6     150.e-6       Entrainement maximale pour
                                                                                  ascendance convective

                       VVX               -35           -50         -20        Vitesse verticale convective de
                                                                                  transition entre régimes
                                                                                  d'entrainement/freinage

                       RAUTEFR           1.e-3        0,5.e-3     6.e-3     Inverse du temps caractéristique de
                                                                                 l'autoconversion liquide

                       RAUTEFS          5,2e-3        0,5.e-3     6.e-3     Inverse du temps caractéristique de
                                                                                  l'autoconversion solide

                       RQICRMIN        0,04e-6        0,01e-6     0,3e-6    Contenu spécifique en glace critique
                                                                              minimum pour autoconversion
                                                                                          solide

                       RQICRMAX        0,21e-4        0,1e-4      0,5e-4    Contenu spécifique en glace critique
                                                                              maximum pour autoconversion
                                                                                          solide

                       RQLCR             2.e-4        0,5e-4      10.e-4     Contenu spécifique en eau liquide
                                                                                  critique minimum pour
                                                                                  autoconversion liquide

                       TFVI              0,08           0          0,2        Vitesse de chute des cristaux de
                                                                                           glace

                       TFVL              0,02           0          0,2        Vitesse de chute des gouttelettes
                                                                                       d'eau nuageuse

                       RACCEF             1             0,5        1,5           Efficacité d'accrétion des
                                                                                      hydrométéores

                       RRIMEF             1,3           0,5         2           Efficacité d'aggrégation des
                                                                                      hydrométéores

                       RAGGEF             0,3           0,1        1,5      Efficacité de riming et d'aggrégation
                                                                                     des hydrométéores

                       REVASX            1.e-7          0         1.e-6        Evaporation des précipitations
                                                                                      grande échelle

                       RREVASXCS          1             0           1           Ratio entre évaporation des
                                                                                précipitations convective et
                                                                               évaporation des précipitations
                                                                                      grande échelle

                       RSWINHF_LIQ        0,6           0,5         1         Coefficient d'hétérogénéïté des
                                                                             propriétés radiaves des nuages en
                                                                                   phase liquide en SW

                       RSWINHF_ICE        0,6           0,5         1         Coefficient d'hétérogénéïté des
                                                                             propriétés radiaves des nuages en
                                                                                    phase glace en SW

                       RLWINHF_LIQ        0,8           0,5         1         Coefficient d'hétérogénéïté des
                                                                             propriétés radiaves des nuages en
                                                                                   phase liquide en LW

                       RLWINHF_ICE        0,8           0,5         1         Coefficient d'hétérogénéïté des
                                                                             propriétés radiaves des nuages en
                                                                                    phase glace en LW
Which training data / ensemble

 I Sample 200 combinations of parameters, i.e. points in the predefined 21-d
   hypercube,

 I Only one step – no iteration,

 I Sampling is done using a Latin Hypercube Sampling (LHS) technique with
   minimax optimisation,

 I For each combination, run a 10-yr long simulation (forced atmosphere only with
   2000-2009 SSTs), i.e. 2000 years of simulation.

 I 17 simulations out of 200 crashed and are not considered...   probably because we
    perturbed the model a bit too much
Which (output) variables / metric to evaluate the
model?
            We focus on the global radiation budget first:
                 I      RST: net shortwave radiative flux at the top of the atmosphere,
                        240.48 ± 2W .m−2 ,
                 I      RLUT: net long-wave radiative flux at the top of the atmosphere,
                        239.68 ± 3.5W .m−2 ,

                                     RLUT                                                                        RST
            80

                                                                                    80
            60

                                                                                    60
Frequency

                                                                        Frequency
            40

                                                                                    40
            20

                                                                                    20
            0

                                                                                    0

                 220   225   230   235          240   245   250   255                    220   225   230   235         240   245   250   255

                                         RLUT                                                                    RST
Which (output) variables / metric to evaluate the
model?

In addition to global radiation budget, we consider the RMSE of 8 variables:
  I   Cloud cover, high and low,
  I   Cloud radiative effect, SW and LW,
  I   Near-surface temperature over continents, summer and winter,
  I   Precipitation, summer and winter.

These 8 metrics are aggregated into one single metric (weighted sum of RMSE).
Statistical emulator

 I Input data: 183 realisations for 21 parameters,

 I Statistical model: Kriging / Gaussian Process
       - Need to specify a Covariance structure,
            Separable with Matérn 5/2 kernel and nugget effect,

       - Fit this covariance structure to the sample,
            24 parameters, which are estimated by maximizing likelihood in R24

       - Likelihood maximisation is difficult: iterative optimisation algo with random
         starting points
            We explore sensitivity to starting points.
Illustration of the emulator
Radiation budget Top of the Atmosphere (TOA) as a function of 2 key parameters:
  I   TFVL: fall velocity of liquid droplets (x-axis)
  I   RSWINHF_LIQ: SW radiation heterogeneity coefficient for liquid clouds
      (y -axis),

                      Emulated radiative budget                      Variance of emulator
                             TOA Bilan radiatif                           TOA Variance

                                                  8                                         4.5

                                                  6

                                                  4                                         4.0
        RSWINHF_LIQ

                                                       RSWINHF_LIQ
                                                  2

                                                                                            3.5
                                                  0

                                                  −2

                                                                                            3.0
                                                  −4

                                                  −6

                                   TFVL                                       TFVL
Modélisation statistique de ARPEGE-CLIMAT
                  Exemple d’information apportée par une analyse de sen
Sensitivity analysis
  I   Fraction of variance explained by each (input) parameter: the Sobol indices.

                             Sobol indices for the net radiative budget TOA
                                Météo-France                                   Calibration statistique d’u

  I   Input parameters which explain less than 1% of the total variance are removed
      from the emulator.
         For radiative budget TOA, we retain only 8 input parameters.
  I   Maximisation of the likelihood is much easier in such a reduced set of
      parameters.
Final calibration strategy

  I   We construct emulators for each of the 9 outputs considered
       I   Net radiation TOA and RMSE of the 8 output variables mentioned.
       I   Sensitivity analysis and selection of useful (input) parameters is
           done in each case

  I   We compute the NROY space for net radiation budget
       I asking the 2000’s value to be near +0.75 W.m− 1 ([0, 1.5]),
       I assuming no structural error.

  I   The 8 emulated RMSE are added in one single metric measuring
      model accuracy,

  I   We minimise the aggregated metric over the net radiation NROY space.
Results
      Calibration statistique de ARPEGE-CLIMAT – 2
      Résultat de la calibration
  I   New parameter values, quite close from their reference values
      i.e. values selected by modellers
  I   Tuned model close to previous version but apparently slightly better.

  Bias of annual mean high cloud cover for the reference (i.e. before calibration, left), vs the
     Météo-France
                        calibrated (right) versions of Arpège-Climat.
                                                             Calibration statistique d’un modèle de climat — 05
Conclusions and outlook

 I This first attempt suggests this statistical approach is of interest to calibrate the
    model and describe sensitivity to input parameters.

 I We explore the parameter space quite systematically,

 I Our procedure could be improved in many ways
       I   Design of simulations (e.g. larger ensemble, with shorter runs),
       I   Statistical emulator,
       I   Aggregated metric to evaluate the model,
       I   Other inputs parameters to be potentially considered,
       I   etc

 I The technique could be applied to weather forecast model (with existing scoring
   rules).

 I Provide better information on how some parameters should be adjusted given
   another (or a few others).

 I Usefulness for calibrating future versions of the model is to be determined.
You can also read