Calibration statistique du modèle Arpège-Climat - Meteo France
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Calibration statistique du modèle Arpège-Climat Aurélien Ribes, Olivier Audouin, Romain Roehrig CNRM – Météo-France and CNRS AMA, 11 mars 2019
Motivation I Tuning of Arpège-Climat v6 (new global model, widely revisited physical parametrisations, atmosphere only), I Tuning based on 3D global climate properties (as opposed to 1D models and/or single parametrisations), I Tuning by hand is challenging – a number of physical parameters could be tuned. I Primary objective: adjust the model as well as possible to the observed (∼2000’s) climate. I Secondary objective: provide information to modellers on dependencies between parameters. I Use existing mathematical techniques and literature (UQ: Uncertainty Quantification). I First (exploratory) attempt, aside from our official CMIP version,
General algorithm 1. Inputs: Define which (input) parameters to perturb, 2. Training Data: Run the model for some combination of parameters, 3. Outputs: Define a few (output) metrics / variables to be used to evaluate the model, 4. Emulator: Construct a statistical emulator of the climate model, to estimate what would be the model behaviour (ie output variables) for other combinations of parameters, 5. Calibration: Optimise model performance by minising a cost function over the parameter space... or... Select regions of the (input) parameter space where the model is consistent with available observations (given the uncertainties involved; NROY space approach).
Which (input) parameters? I We used 21 parameters (out of... many), mainly related to cloud radiative properties, microphysics and convection. Paramètres perturbés Paramètres Valeur refT2x Minimum Maximum Signification RKDN 50.e-6 20.e-6 50.e-6 Freinage minimale pour vitesse verticale de l'updraft convectif RKDX 100.e-6 50.e-6 1000.e-6 Freinage maximale pour vitesse verticale de l'updraft convectif TENTR 5.e-6 4.e-6 20.e-6 Entrainement minimale pour ascendance convective TENTRX 57.e-6 40.e-6 150.e-6 Entrainement maximale pour ascendance convective VVX -35 -50 -20 Vitesse verticale convective de transition entre régimes d'entrainement/freinage RAUTEFR 1.e-3 0,5.e-3 6.e-3 Inverse du temps caractéristique de l'autoconversion liquide RAUTEFS 5,2e-3 0,5.e-3 6.e-3 Inverse du temps caractéristique de l'autoconversion solide RQICRMIN 0,04e-6 0,01e-6 0,3e-6 Contenu spécifique en glace critique minimum pour autoconversion solide RQICRMAX 0,21e-4 0,1e-4 0,5e-4 Contenu spécifique en glace critique maximum pour autoconversion solide RQLCR 2.e-4 0,5e-4 10.e-4 Contenu spécifique en eau liquide critique minimum pour autoconversion liquide TFVI 0,08 0 0,2 Vitesse de chute des cristaux de glace TFVL 0,02 0 0,2 Vitesse de chute des gouttelettes d'eau nuageuse RACCEF 1 0,5 1,5 Efficacité d'accrétion des hydrométéores RRIMEF 1,3 0,5 2 Efficacité d'aggrégation des hydrométéores RAGGEF 0,3 0,1 1,5 Efficacité de riming et d'aggrégation des hydrométéores REVASX 1.e-7 0 1.e-6 Evaporation des précipitations grande échelle RREVASXCS 1 0 1 Ratio entre évaporation des précipitations convective et évaporation des précipitations grande échelle RSWINHF_LIQ 0,6 0,5 1 Coefficient d'hétérogénéïté des propriétés radiaves des nuages en phase liquide en SW RSWINHF_ICE 0,6 0,5 1 Coefficient d'hétérogénéïté des propriétés radiaves des nuages en phase glace en SW RLWINHF_LIQ 0,8 0,5 1 Coefficient d'hétérogénéïté des propriétés radiaves des nuages en phase liquide en LW RLWINHF_ICE 0,8 0,5 1 Coefficient d'hétérogénéïté des propriétés radiaves des nuages en phase glace en LW
Which training data / ensemble I Sample 200 combinations of parameters, i.e. points in the predefined 21-d hypercube, I Only one step – no iteration, I Sampling is done using a Latin Hypercube Sampling (LHS) technique with minimax optimisation, I For each combination, run a 10-yr long simulation (forced atmosphere only with 2000-2009 SSTs), i.e. 2000 years of simulation. I 17 simulations out of 200 crashed and are not considered... probably because we perturbed the model a bit too much
Which (output) variables / metric to evaluate the model? We focus on the global radiation budget first: I RST: net shortwave radiative flux at the top of the atmosphere, 240.48 ± 2W .m−2 , I RLUT: net long-wave radiative flux at the top of the atmosphere, 239.68 ± 3.5W .m−2 , RLUT RST 80 80 60 60 Frequency Frequency 40 40 20 20 0 0 220 225 230 235 240 245 250 255 220 225 230 235 240 245 250 255 RLUT RST
Which (output) variables / metric to evaluate the model? In addition to global radiation budget, we consider the RMSE of 8 variables: I Cloud cover, high and low, I Cloud radiative effect, SW and LW, I Near-surface temperature over continents, summer and winter, I Precipitation, summer and winter. These 8 metrics are aggregated into one single metric (weighted sum of RMSE).
Statistical emulator I Input data: 183 realisations for 21 parameters, I Statistical model: Kriging / Gaussian Process - Need to specify a Covariance structure, Separable with Matérn 5/2 kernel and nugget effect, - Fit this covariance structure to the sample, 24 parameters, which are estimated by maximizing likelihood in R24 - Likelihood maximisation is difficult: iterative optimisation algo with random starting points We explore sensitivity to starting points.
Illustration of the emulator Radiation budget Top of the Atmosphere (TOA) as a function of 2 key parameters: I TFVL: fall velocity of liquid droplets (x-axis) I RSWINHF_LIQ: SW radiation heterogeneity coefficient for liquid clouds (y -axis), Emulated radiative budget Variance of emulator TOA Bilan radiatif TOA Variance 8 4.5 6 4 4.0 RSWINHF_LIQ RSWINHF_LIQ 2 3.5 0 −2 3.0 −4 −6 TFVL TFVL
Modélisation statistique de ARPEGE-CLIMAT Exemple d’information apportée par une analyse de sen Sensitivity analysis I Fraction of variance explained by each (input) parameter: the Sobol indices. Sobol indices for the net radiative budget TOA Météo-France Calibration statistique d’u I Input parameters which explain less than 1% of the total variance are removed from the emulator. For radiative budget TOA, we retain only 8 input parameters. I Maximisation of the likelihood is much easier in such a reduced set of parameters.
Final calibration strategy I We construct emulators for each of the 9 outputs considered I Net radiation TOA and RMSE of the 8 output variables mentioned. I Sensitivity analysis and selection of useful (input) parameters is done in each case I We compute the NROY space for net radiation budget I asking the 2000’s value to be near +0.75 W.m− 1 ([0, 1.5]), I assuming no structural error. I The 8 emulated RMSE are added in one single metric measuring model accuracy, I We minimise the aggregated metric over the net radiation NROY space.
Results Calibration statistique de ARPEGE-CLIMAT – 2 Résultat de la calibration I New parameter values, quite close from their reference values i.e. values selected by modellers I Tuned model close to previous version but apparently slightly better. Bias of annual mean high cloud cover for the reference (i.e. before calibration, left), vs the Météo-France calibrated (right) versions of Arpège-Climat. Calibration statistique d’un modèle de climat — 05
Conclusions and outlook I This first attempt suggests this statistical approach is of interest to calibrate the model and describe sensitivity to input parameters. I We explore the parameter space quite systematically, I Our procedure could be improved in many ways I Design of simulations (e.g. larger ensemble, with shorter runs), I Statistical emulator, I Aggregated metric to evaluate the model, I Other inputs parameters to be potentially considered, I etc I The technique could be applied to weather forecast model (with existing scoring rules). I Provide better information on how some parameters should be adjusted given another (or a few others). I Usefulness for calibrating future versions of the model is to be determined.
You can also read