Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening

Page created by Brenda Curry
 
CONTINUE READING
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Big-Data RU-FR 2018 – UNESCO / Paris

Big Data for Bioacoustics & Ethoacoustics
          of Marine Mammals
    - Machine Learning & Listening -
                          Hervé Glotin,
   with Dyni team CNRS LIS, SMIoT, Univ Toulon, EADM MADICS

                                 glotin@univ-tln.fr

            http://sabiod.org   http://glotin.univ-tln.fr http://smiot.univ-tln.fr
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
A Big data issue

                   → Recording 300 kHz SR
                   stereo

                   ~ 100 Go / day

                   3 To / month
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
High velocity low power
      sound card
SMIoT univ Toulon CNRS
⬜ Qualilife-Sound : high performance audio extension board
  ■ Up to 5 synchronous channels with adjustable sampling rate
        ■ Up to 2 Msps in 2 channels configuration
        ■ Up to 800 Ksps on 5 channels configuration
   ■ High performance anti-aliasing filter.
   ■ Direct HDD USB recording
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Experimented Installations

                          Peru 2016 / Toulon 2018

                                                    CHILI CHILI 2017 2018,
                                                    Patris et al, LIS STICAMSUD
 Corsica 2018, LIS DYNI
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Long term Frequency
and voicing pattern analysis
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
In submission
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Global statistics at long range   Malige et al 2018
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Automatic Humpback song classification
Hierarchical Dirichlet
process hidden Markov
model for unsupervised
bioacoustic analysis
M Bartcus, F Chamroukhi, H
Glotin, in Neural Networks
(IJCNN), 2015
                                                                                                                                                      It allows
                                                                                                                                                      computation of
                                                                                                                                                      cultural
                                                                                                                                                      distance !
                                                                                                                                                      [ Razik Glotin
                                                                                                                                                      et al. IEEE
                                                                                                                                                      ICDM 2015]

  (Haut) Chant de baleine à bosse, sur 12 secondes (enregistré par le groupe à la Réunion). (Bas) Partition construite automatiquement et de manière non supervisée par
  l'équipe de Pr. H. Glotin [2]. Ces chants de baleine sont disponibles avec leur « partitions » en ligne sur: http://sabiod.univ-tln.fr/workspace/IHMM_Whale_demo/
  suivant la méthode développée dans Bartcus et al. Glotin [2]"
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Example of recording in AMAZON (Glotin 2014-2018, DCLDE 2018 Paris Sorbonne)

                                 [0       micro second    50 ]

[0 micro second 50]
Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
Distributed web
collaborative annotation
   and deep learning
  Active learning, mixture of experts

            DYNITAG tool
classification

                 f(x)      Species A: yes/no
~10 sec

                                        J. Schluter, Dyni
Predictions from Audio
                              Fully-Convolutional Net
 ≤ 30 sec for training,
                              Variant A: Vanilla ConvNet
 full recording for testing         conv 64@3x3, bn, lrelu
 Magnitude Compression
                                    conv 64@3x3, bn, lrelu
                                        max-pool 3x3          2D
      Standardization                                         features
                                    conv 128@3x3, bn, lrelu
  Fully-Convolutional Net
                                    conv 128@3x3, bn, lrelu

       Global Pooling              conv 128@3x19, bn, lrelu   merge
                                        max-pool 3x5          bands
          Softmax                  conv 1024@9x1, bn, lrelu
                                   conv 1024@1x1, bn, lrelu   classify
                                       conv 1500@1x1
Ensembling of Predictions
                                        Date:          2014-01-22
                                        Time:          16:00
 ≤ 30 sec for training,
 full recording for testing
                                        Longitude:     -78.3951
                                        Latitude:      -3.0936
 Magnitude Compression
                                        Elevation:     650
                                             Vector Encoding
      Standardization

                                             Standardization
  Fully-Convolutional Net

       Global Pooling                     Multi-Layer Perceptron

                              Softmax
Stereophonic, 4 or more
hydrophones array : tracking,
   direction and behavior
Revealing “Megafauna” Vessel-Avoidance Strategies to
                  better Manage Collision Risk
Material and method

                Bombyx with stereo antenna pointed to South to observe the megafauna (credit Dyni).
Revealing “Megafauna” Vessel-Avoidance Strategies to
              better Manage Collision Risk

Example of monitoring of Pm versus time from stereo Bombyx. Time Delay Of Arrival showing acoustic detections of Pm going from East to West in
5 mn nearby Bombyx the 21/09/2016.
Revealing “Megafauna” Vessel-Avoidance Strategies to
     better Manage Collision Risk

Example of monitoring of Pm versus time from stereo Bomby Total Pm countings and directions in the 0-15 km range of Bombyx,
Red: from East to West, Blue inverse, Green: unknown, on 76 days of summer 2016 (Glotin et al., Vamos Pelagos 2016)
Ethoacoustics with 4 hydro
ASV Sphyrna Odyssey, Glotin et al. 2018

meter
or our tracking in 3D in Bahamas (Glotin et al 2011, Canadian acoustics) from passive acoustic
  recordings
demo  @
sabiod.org
Ethoacoustics with 6 hydro
demo at sabiod.univ-tln.fr/orcalab/
Predictions from STEREO Audio

 ≤ 30 sec for training,
 full recording for testing

 Magnitude Compression

      Standardization

  Fully-Convolutional Net

       Global Pooling

          Softmax
PERSPECTIVE : Monitoring Seals of Baykal : proof of concept CNRS-HSE august 2018 withDmitr (master)
Perspectives : Binaural monitoring of fauna of the Baikal
CONCLUSION
  We designed for 15 years advanced machine learning and
   signal processing for innovative big data ethoacoustics.

We have OPEN solutions to compute DETECTION, tracking and
            CLASSIFICATION of cetaceans.

    Promote homogeneity, distribution, quality of scientific
                     observations.
References @ http://sabiod.org
  - Massive Biosonar recordings and inversion model for new sonar generation - DGA and Amiens region Phd Thesis, Maxence Ferrari, Codir M.
       Asch and H. Glotin, 2017-2020
  - High Performance Computing for Blue whale monohydrophone localisation, Phd Thesis J. Patris, Codir M. Asch and H. Glotin, 2015-2018
  - Semi-supervised Deep learning for bioacoustic monitoring, Phd Thesis, Vincent Roger, Codir F. Chamroukhi and H. Glotin, 2016-2019, with
       NORTEK SA
  - F. Chamroukhi (dir Glotin), 'Statistical learning of latent data models for complex data analysis' with some applications to Bioacoustics, HDR
       thesis, defended in dec 2015 in front to G. McLachlan, C. Ambroise, Y. Benani, Christophe Biernacki...
  - M. Bartcus (dir Glotin, codir Chamroukhi) Non Parametric Bayesian Model - with some applications to Bioacoustics, defended in october
       2015
  -           Yann Doh          (dir           Glotin,         codir        Adam,          co-adv.          Razik,        Nolibe         Cesigma)
       A new intra-spectral monohydrophone range estimator and bioacoustic sparse coding for scaled submarine biodiversity.
       Defended dec. 2014, jury: Pinquier, Zarader, Gerard (DGA), Pavan, Cristini, Razik, Nolibe, Adam, Glotin.
  -              Régis Abeille               (dir             Glotin,            coll.           Pavan,             co-adv.             Giraudet),
       Automatic Inter-Pulse Interval diarization - Application to scaled whale bio-population in Pelagos sanctuary [.pdf] Defended dec. 2013,
       jury: Sueur, Pavan, Adam, Giraudet, Glotin.

PROCEEDINGS in int. conf.

  - Franck Malige, Julie Patris, Susannah Buchan, Marie Trone, and Hervé Glotin. Advanced interdisciplinary bioacoustical analyses for cetacean
       observatories in chile and peru. In 1st Listening for Aquatic Mammals in Latin America Workshop (LAMLA 1), Natal, Brazil, 2016.
  - Julie Patris, Hervé Glotin, Dimitri Komatitsch, Elwin van ‘t Wout, Franck Malige, and Mark Asch. High-performance computing for whale
       sound propagation in south american oceans based on accurate numerical techniques. In 1st Listening for Aquatic Mammals in Latin
       America Workshop (LAMLA 1), Natal, Brazil, 2016.
  - Patris et al. "Congreso internacional de turismo comunitario sustentable : Conservar y Valorar”, 11-12 December 2017 Chañaral de
       Aceituno. " Sonidos del Pacíficos : presentación y primeros resultados de un experimento acústico en la caleta Chañaral de Aceituno -
       verano 2017"
  - Glotin, Pavan, Dugan, Zhao, 'Environmental Acoustic Data Mining', IEEE ICDM 2015, http://sabiod.org/eadm, Atlantic city
  - Glotin, Alecu, Big Data Sciences for Bioacoustic Environmental Survey 21 and 22 April 2015, Toulon - http://glotin.univ-tln.fr/ERMITES15
  - Chamroukhi, Glotin, Dugan, Clark, Artières, LeCun, et al., Proc. of the second workshop on Machine Learning for bioacoustics -
BOOKS / BOOK CHAPTERS

    - Patris et al. SPECFEM to monitor bioacoustic sources, in Berkowitz Héloïse & Dumez Hervé [eds] (2017) Racket in the oceans: why underwater noise
    matters, how to measure and how to manage it. Paris: Observatory for Responsible Innovation / Palaiseau (France): i3-CRG (CNRS – École polytechniqu
    e).
          The Racket in the Oceans initiative is open to industry, policy, science and societal stakeholders, and to anybody interested in the problem of
         underwater noise.
    - Joly, Goeau, Glotin, Spampinato, Bonnet, Vellinga,..., Müller, Lifeclef 2014: multimedia life species identification challenges. In Information Access
         Evaluation. Multilinguality, Multimodality, and Interaction (pp. 229-249). Springer International Publishing, 2014.
    - Soundscape Semiotics - Localization and Categorization, collected by Glotin, ISBN 978-953-51-1226-6, 208 p., Publisher: InTech, Open Book, 2014.
    - Detection Classification Localization of Marine Mammals Using Passive Acoustics: 2003-2013, 10 Years of International Research, collected by Adam
         , Samaran, Dirac NGO Ed., ISBN2746661187, 298 p., 2013.
    -    SAMARAN,      GANDILHON,      DOH,     PACE,    CAZAU,     LAPLANCHE,      LOPATKA,     GLOTIN,    WHITE,     ZARZYCKI,   MOTSCH       and   ADAM,
         Inside the sounds emitted by some cetacean species, In DCL MM using PA, Dirac Ed, 2013
    - Dufour, Artières, Glotin, Giraudet, Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification, in
         Soundscape Semiotics, Localization and Categorization, InTech Open Book, 2013.

JOURNAL ARTICLE

    - Unsupervised Bioacoustic Segmentation by Hierarchical Dirichlet Process Hidden Markov Model. Roger V., Chamroukhi, Glotin H. MTAP special issue,
         to appear in 2018.
    - A Real-Time Streaming and Detection System for Bio-acoustic Ecological Studies after the Fukushima Accident Hill Hiroki Kobayashi, Hiromi Kudo,
         Hervé Glotin, Vincent Roger, Marion Poupard, Daisuké Shimotoku, Akio Fujiwara, Kazuhiko Nakamura, Kaoru Saito and Kaoru Sezaki. MTAP special
         issue, to appear in 2018.
    - Gaël Richard, Tuomas Virtanen, Nobutaka Ono and Juan Pablo Bello, Hervé Glotin edit a special issue of the prestigious IEEE/ACM Transactions on
         Audio, Speech and Language Processing. The topic of the issue is scaled sound scene and event analysis for indoor and outdoor environments,
         including applications in bio-acoustics, 2017 march
    - Trone, M., Glotin, H., Balestriero, R., Bonnett, D.E. (2015). Enhanced feature extraction using the Morlet transform on 1 MHz recordings reveals the
         complex nature of Amazon River dolphin (Inia geoffrensis) clicks. Journal of the Acoustical Society of America, 138, 1904.
         http://dx.doi.org/10.1121/1.4933985
    - Towsey M, Parsons S, Sueur J, Editorial: Ecology and acoustics at a large scale. Ecological Informatics, 21 : 13., 2014.
    - Potamitis, Automatic Classification of a Taxon-Rich Community Recorded in the Wild, in PLOS One, 10.1371, 2014
-         Pavan G., Favaretto A., Bovelacci B., Scaravelli D., Macchio S., Glotin H., 'Bioacoustics and Ecoacoustics Applied to Environmental Monitoring and
more to see at http://sabiod.org
or https://scholar.google.com/citations?user=DqieizcAAAAJ&hl=en

Project supported by
BRILAM STIC AmSud 17-STIC-01, CNRS SABIOD, INPS Toulon, SMIoT, EADM MADICS CNRS
Contextual analyses
Multimodal data
Accuracy in hydrophones quality, orientation, effort,
      Meteorological condition, acoustic masking…

          Content is governed by schema.

     Complete diagrams at:
     http://tethys.sdsu.edu/schema/d
     iagrams/

                                                        35
36
Thetis coll. M. Roch
Examples in
int. symp
Acoustical
Society of
America, 2018
Etho-acoustics : High dimensional clustering on Dolphin
   Whistles & Evidenced of Anthropic ImpactsAnalyzing
   Dolphin Whistles in presence of
                            [ Poupard, Glotin, Mongolfier 2017 ]

Presentation of the experiment
   boats in Martinique
a. Context
Localisation : West coast of Martinique
Species : Pantropical spotted dolphin, Stenella attenuata
Development of “Whales-watching” and tourism
Partners : Aquasearch

b. Objective

Analyse impact of whales watching on communication by Pantropical spotted dolphin : comparing
whistles produced without boat or in the presence of several boats.
Materials and methods
On December 1, in 2003 and April 28, 2016 in Martinique with AQUASEARCH
- Hydrophone (H2a-XLR, Aquarian Audio Products)
- Records were realized in continue from animals were coming, until they lived zone.
The environmental data :
- Start and end of the observation, the date, Geographic coordinates

- Number of animals, Behaviors, adults and juveniles

- Number of boats in the area

    *Anthropogenic pressure
Whistles tracking

                             Detection processing
Automatic detection

Signal on spectrogram

Binarization                                        Fig 5: Spectrogram of 13 seconds containing signals from Sa, and representation of
                                                    whistles with our detector, for each windows

Continuous trajectories ?

Select optimal parameters for the algorithm (windows size…)                (DECAV PNPC Glotin et al 2012).
Extraction of
         Automatic detection

                                                                                  features for
                                                                                 each whistles

Matrix for each recording containing:
16 features (for each whistles) : maximal, minimal
frequencies, duration, velocities of whistles...                          Dimensionality reduction
                                                                        t-SNE: Ethoacoustic clusters?

                       Max freq   Min freq   duration   …   …   …   …

whi 1

Whi 2
Evidences of the effect of Anthropic Pressure
                                    on bioacoustic emissions

Whistles depend on activity
Acoustic emissions in
anthropogenic pressure (AP) are
different compared to other
behaviours

See also submitted to PONE-D-18-30047 "Behavioural
responses of humpback whales to food-related chemical
stimuli.". Bertrand Bouchard, Jean-Yves Barnagaud; Hervé
Glotin; Marion Poupard; et al.
                                                           Visualizing dolphin Sa whistles in 2-dimensions with t-SNE as a function of
                                                           velocity and behaviors (with 4 important features), according to BNP clustering

                                    => Prevention of anthropogenic pressure by acoustic passive method
Scoring :
JASA Halkias Glotin
You can also read