Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Big-Data RU-FR 2018 – UNESCO / Paris Big Data for Bioacoustics & Ethoacoustics of Marine Mammals - Machine Learning & Listening - Hervé Glotin, with Dyni team CNRS LIS, SMIoT, Univ Toulon, EADM MADICS glotin@univ-tln.fr http://sabiod.org http://glotin.univ-tln.fr http://smiot.univ-tln.fr
High velocity low power sound card SMIoT univ Toulon CNRS ⬜ Qualilife-Sound : high performance audio extension board ■ Up to 5 synchronous channels with adjustable sampling rate ■ Up to 2 Msps in 2 channels configuration ■ Up to 800 Ksps on 5 channels configuration ■ High performance anti-aliasing filter. ■ Direct HDD USB recording
Experimented Installations Peru 2016 / Toulon 2018 CHILI CHILI 2017 2018, Patris et al, LIS STICAMSUD Corsica 2018, LIS DYNI
Automatic Humpback song classification Hierarchical Dirichlet process hidden Markov model for unsupervised bioacoustic analysis M Bartcus, F Chamroukhi, H Glotin, in Neural Networks (IJCNN), 2015 It allows computation of cultural distance ! [ Razik Glotin et al. IEEE ICDM 2015] (Haut) Chant de baleine à bosse, sur 12 secondes (enregistré par le groupe à la Réunion). (Bas) Partition construite automatiquement et de manière non supervisée par l'équipe de Pr. H. Glotin [2]. Ces chants de baleine sont disponibles avec leur « partitions » en ligne sur: http://sabiod.univ-tln.fr/workspace/IHMM_Whale_demo/ suivant la méthode développée dans Bartcus et al. Glotin [2]"
Example of recording in AMAZON (Glotin 2014-2018, DCLDE 2018 Paris Sorbonne) [0 micro second 50 ] [0 micro second 50]
Distributed web collaborative annotation and deep learning Active learning, mixture of experts DYNITAG tool
classification f(x) Species A: yes/no ~10 sec J. Schluter, Dyni
Predictions from Audio Fully-Convolutional Net ≤ 30 sec for training, Variant A: Vanilla ConvNet full recording for testing conv 64@3x3, bn, lrelu Magnitude Compression conv 64@3x3, bn, lrelu max-pool 3x3 2D Standardization features conv 128@3x3, bn, lrelu Fully-Convolutional Net conv 128@3x3, bn, lrelu Global Pooling conv 128@3x19, bn, lrelu merge max-pool 3x5 bands Softmax conv 1024@9x1, bn, lrelu conv 1024@1x1, bn, lrelu classify conv 1500@1x1
Ensembling of Predictions Date: 2014-01-22 Time: 16:00 ≤ 30 sec for training, full recording for testing Longitude: -78.3951 Latitude: -3.0936 Magnitude Compression Elevation: 650 Vector Encoding Standardization Standardization Fully-Convolutional Net Global Pooling Multi-Layer Perceptron Softmax
Stereophonic, 4 or more hydrophones array : tracking, direction and behavior
Revealing “Megafauna” Vessel-Avoidance Strategies to better Manage Collision Risk Material and method Bombyx with stereo antenna pointed to South to observe the megafauna (credit Dyni).
Revealing “Megafauna” Vessel-Avoidance Strategies to better Manage Collision Risk Example of monitoring of Pm versus time from stereo Bombyx. Time Delay Of Arrival showing acoustic detections of Pm going from East to West in 5 mn nearby Bombyx the 21/09/2016.
Revealing “Megafauna” Vessel-Avoidance Strategies to better Manage Collision Risk Example of monitoring of Pm versus time from stereo Bomby Total Pm countings and directions in the 0-15 km range of Bombyx, Red: from East to West, Blue inverse, Green: unknown, on 76 days of summer 2016 (Glotin et al., Vamos Pelagos 2016)
Ethoacoustics with 4 hydro ASV Sphyrna Odyssey, Glotin et al. 2018 meter
or our tracking in 3D in Bahamas (Glotin et al 2011, Canadian acoustics) from passive acoustic recordings demo @ sabiod.org
Ethoacoustics with 6 hydro demo at sabiod.univ-tln.fr/orcalab/
Predictions from STEREO Audio ≤ 30 sec for training, full recording for testing Magnitude Compression Standardization Fully-Convolutional Net Global Pooling Softmax
PERSPECTIVE : Monitoring Seals of Baykal : proof of concept CNRS-HSE august 2018 withDmitr (master)
Perspectives : Binaural monitoring of fauna of the Baikal
CONCLUSION We designed for 15 years advanced machine learning and signal processing for innovative big data ethoacoustics. We have OPEN solutions to compute DETECTION, tracking and CLASSIFICATION of cetaceans. Promote homogeneity, distribution, quality of scientific observations.
References @ http://sabiod.org - Massive Biosonar recordings and inversion model for new sonar generation - DGA and Amiens region Phd Thesis, Maxence Ferrari, Codir M. Asch and H. Glotin, 2017-2020 - High Performance Computing for Blue whale monohydrophone localisation, Phd Thesis J. Patris, Codir M. Asch and H. Glotin, 2015-2018 - Semi-supervised Deep learning for bioacoustic monitoring, Phd Thesis, Vincent Roger, Codir F. Chamroukhi and H. Glotin, 2016-2019, with NORTEK SA - F. Chamroukhi (dir Glotin), 'Statistical learning of latent data models for complex data analysis' with some applications to Bioacoustics, HDR thesis, defended in dec 2015 in front to G. McLachlan, C. Ambroise, Y. Benani, Christophe Biernacki... - M. Bartcus (dir Glotin, codir Chamroukhi) Non Parametric Bayesian Model - with some applications to Bioacoustics, defended in october 2015 - Yann Doh (dir Glotin, codir Adam, co-adv. Razik, Nolibe Cesigma) A new intra-spectral monohydrophone range estimator and bioacoustic sparse coding for scaled submarine biodiversity. Defended dec. 2014, jury: Pinquier, Zarader, Gerard (DGA), Pavan, Cristini, Razik, Nolibe, Adam, Glotin. - Régis Abeille (dir Glotin, coll. Pavan, co-adv. Giraudet), Automatic Inter-Pulse Interval diarization - Application to scaled whale bio-population in Pelagos sanctuary [.pdf] Defended dec. 2013, jury: Sueur, Pavan, Adam, Giraudet, Glotin. PROCEEDINGS in int. conf. - Franck Malige, Julie Patris, Susannah Buchan, Marie Trone, and Hervé Glotin. Advanced interdisciplinary bioacoustical analyses for cetacean observatories in chile and peru. In 1st Listening for Aquatic Mammals in Latin America Workshop (LAMLA 1), Natal, Brazil, 2016. - Julie Patris, Hervé Glotin, Dimitri Komatitsch, Elwin van ‘t Wout, Franck Malige, and Mark Asch. High-performance computing for whale sound propagation in south american oceans based on accurate numerical techniques. In 1st Listening for Aquatic Mammals in Latin America Workshop (LAMLA 1), Natal, Brazil, 2016. - Patris et al. "Congreso internacional de turismo comunitario sustentable : Conservar y Valorar”, 11-12 December 2017 Chañaral de Aceituno. " Sonidos del Pacíficos : presentación y primeros resultados de un experimento acústico en la caleta Chañaral de Aceituno - verano 2017" - Glotin, Pavan, Dugan, Zhao, 'Environmental Acoustic Data Mining', IEEE ICDM 2015, http://sabiod.org/eadm, Atlantic city - Glotin, Alecu, Big Data Sciences for Bioacoustic Environmental Survey 21 and 22 April 2015, Toulon - http://glotin.univ-tln.fr/ERMITES15 - Chamroukhi, Glotin, Dugan, Clark, Artières, LeCun, et al., Proc. of the second workshop on Machine Learning for bioacoustics -
BOOKS / BOOK CHAPTERS - Patris et al. SPECFEM to monitor bioacoustic sources, in Berkowitz Héloïse & Dumez Hervé [eds] (2017) Racket in the oceans: why underwater noise matters, how to measure and how to manage it. Paris: Observatory for Responsible Innovation / Palaiseau (France): i3-CRG (CNRS – École polytechniqu e). The Racket in the Oceans initiative is open to industry, policy, science and societal stakeholders, and to anybody interested in the problem of underwater noise. - Joly, Goeau, Glotin, Spampinato, Bonnet, Vellinga,..., Müller, Lifeclef 2014: multimedia life species identification challenges. In Information Access Evaluation. Multilinguality, Multimodality, and Interaction (pp. 229-249). Springer International Publishing, 2014. - Soundscape Semiotics - Localization and Categorization, collected by Glotin, ISBN 978-953-51-1226-6, 208 p., Publisher: InTech, Open Book, 2014. - Detection Classification Localization of Marine Mammals Using Passive Acoustics: 2003-2013, 10 Years of International Research, collected by Adam , Samaran, Dirac NGO Ed., ISBN2746661187, 298 p., 2013. - SAMARAN, GANDILHON, DOH, PACE, CAZAU, LAPLANCHE, LOPATKA, GLOTIN, WHITE, ZARZYCKI, MOTSCH and ADAM, Inside the sounds emitted by some cetacean species, In DCL MM using PA, Dirac Ed, 2013 - Dufour, Artières, Glotin, Giraudet, Clusterized Mel Filter Cepstral Coefficients and Support Vector Machines for Bird Song Identification, in Soundscape Semiotics, Localization and Categorization, InTech Open Book, 2013. JOURNAL ARTICLE - Unsupervised Bioacoustic Segmentation by Hierarchical Dirichlet Process Hidden Markov Model. Roger V., Chamroukhi, Glotin H. MTAP special issue, to appear in 2018. - A Real-Time Streaming and Detection System for Bio-acoustic Ecological Studies after the Fukushima Accident Hill Hiroki Kobayashi, Hiromi Kudo, Hervé Glotin, Vincent Roger, Marion Poupard, Daisuké Shimotoku, Akio Fujiwara, Kazuhiko Nakamura, Kaoru Saito and Kaoru Sezaki. MTAP special issue, to appear in 2018. - Gaël Richard, Tuomas Virtanen, Nobutaka Ono and Juan Pablo Bello, Hervé Glotin edit a special issue of the prestigious IEEE/ACM Transactions on Audio, Speech and Language Processing. The topic of the issue is scaled sound scene and event analysis for indoor and outdoor environments, including applications in bio-acoustics, 2017 march - Trone, M., Glotin, H., Balestriero, R., Bonnett, D.E. (2015). Enhanced feature extraction using the Morlet transform on 1 MHz recordings reveals the complex nature of Amazon River dolphin (Inia geoffrensis) clicks. Journal of the Acoustical Society of America, 138, 1904. http://dx.doi.org/10.1121/1.4933985 - Towsey M, Parsons S, Sueur J, Editorial: Ecology and acoustics at a large scale. Ecological Informatics, 21 : 13., 2014. - Potamitis, Automatic Classification of a Taxon-Rich Community Recorded in the Wild, in PLOS One, 10.1371, 2014 - Pavan G., Favaretto A., Bovelacci B., Scaravelli D., Macchio S., Glotin H., 'Bioacoustics and Ecoacoustics Applied to Environmental Monitoring and
more to see at http://sabiod.org or https://scholar.google.com/citations?user=DqieizcAAAAJ&hl=en Project supported by BRILAM STIC AmSud 17-STIC-01, CNRS SABIOD, INPS Toulon, SMIoT, EADM MADICS CNRS
Contextual analyses Multimodal data Accuracy in hydrophones quality, orientation, effort, Meteorological condition, acoustic masking… Content is governed by schema. Complete diagrams at: http://tethys.sdsu.edu/schema/d iagrams/ 35
36 Thetis coll. M. Roch
Examples in int. symp Acoustical Society of America, 2018
Etho-acoustics : High dimensional clustering on Dolphin Whistles & Evidenced of Anthropic ImpactsAnalyzing Dolphin Whistles in presence of [ Poupard, Glotin, Mongolfier 2017 ] Presentation of the experiment boats in Martinique a. Context Localisation : West coast of Martinique Species : Pantropical spotted dolphin, Stenella attenuata Development of “Whales-watching” and tourism Partners : Aquasearch b. Objective Analyse impact of whales watching on communication by Pantropical spotted dolphin : comparing whistles produced without boat or in the presence of several boats.
Materials and methods On December 1, in 2003 and April 28, 2016 in Martinique with AQUASEARCH - Hydrophone (H2a-XLR, Aquarian Audio Products) - Records were realized in continue from animals were coming, until they lived zone. The environmental data : - Start and end of the observation, the date, Geographic coordinates - Number of animals, Behaviors, adults and juveniles - Number of boats in the area *Anthropogenic pressure
Whistles tracking Detection processing Automatic detection Signal on spectrogram Binarization Fig 5: Spectrogram of 13 seconds containing signals from Sa, and representation of whistles with our detector, for each windows Continuous trajectories ? Select optimal parameters for the algorithm (windows size…) (DECAV PNPC Glotin et al 2012).
Extraction of Automatic detection features for each whistles Matrix for each recording containing: 16 features (for each whistles) : maximal, minimal frequencies, duration, velocities of whistles... Dimensionality reduction t-SNE: Ethoacoustic clusters? Max freq Min freq duration … … … … whi 1 Whi 2
Evidences of the effect of Anthropic Pressure on bioacoustic emissions Whistles depend on activity Acoustic emissions in anthropogenic pressure (AP) are different compared to other behaviours See also submitted to PONE-D-18-30047 "Behavioural responses of humpback whales to food-related chemical stimuli.". Bertrand Bouchard, Jean-Yves Barnagaud; Hervé Glotin; Marion Poupard; et al. Visualizing dolphin Sa whistles in 2-dimensions with t-SNE as a function of velocity and behaviors (with 4 important features), according to BNP clustering => Prevention of anthropogenic pressure by acoustic passive method
Scoring : JASA Halkias Glotin
You can also read