What compound to synthesize next? - Wie Machine Learning und KI das Wirkstoffdesign beeinflussen - PharmaForum
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
What compound to synthesize next? Wie Machine Learning und KI das Wirkstoffdesign beeinflussen Daniel Kuhn Computational Chemistry & Biologics Merck Healthcare KGaA 2021-04-14
Efficiency in drug discovery is declining over years Scannell et al., Nat Rev Drug Disc 2012 Daniel Kuhn | 2021-04-14 | PharmaForum 2021 https://www.nature.com/articles/nrd3681
Drug discovery development is costly and timely Duration: 12-14 years Graphic created by John Chodera https://www.choderalab.org/s/2021-03-31OxfordCentreforMedicinesDiscovery-compressed.pdf Daniel Kuhn | 2021-04-14 | PharmaForum 2021
Drug development A multi-parameter optimization problem Efficacy PGP permeability hERG Microsomal stability Solubility HepG2 cytotoxicity CACO2 permeability Protein kinase selectivity TEPMETKO (Tepotinib) bound to c-Met Daniel Kuhn | 2021-04-14 | PharmaForum 2021
Which compounds to make next? Challenge: Chemical space is huge – which compounds to make next? Chemical space is huge ML/AI Foote et al., J. Med. Chem. 2013, 56, 2125–2138 Daniel Kuhn | 2021-04-14 | PharmaForum 2021
AI creatively inventing novel stuff Neural network DALL·E is a 12-billion parameter version of GPT-3 language model trained to generate images from text descriptions „Draw a picture of an armchair in the shape of an DALL·E NN avocado “ http://openai.com - DALL·E: Creating images from text Daniel Kuhn | 2021-04-14 | PharmaForum 2021
„Design a cellular potent c-Met inhibitor with good microsomal stability and high CACO2 permeability“ AI-NN Daniel Kuhn | 2021-04-14 | PharmaForum 2021
Predictive models in MOCCA: Endpoints & performance Very PGP permeability good Good hERG Microsomal stability Solubility HepG2 cytotoxicity CACO2 permeability Protein kinase selectivity Daniel Kuhn | 2021-04-14 | PharmaForum 2021
Generally global models are preferrable due to greater in-house modelling experience and larger AD, but we are happy to support projects with local models if needed.
e.g.
Combination is key for impact in compound optimization MOCCA: A MASSIV: Enumeration of synthetically 2 Application of ML/DNN predictive models a ffo ld 1 accessible chemical space Sc Generative design A ld a ffo MASSIV & Generative Design Sc Virtual Screening as 1st filter MOCCA FEP: Binding constant FEP calculations 3 prediction 12 Daniel Kuhn | 2021-04-14 | PharmaForum 2021
Discovery of new chemical starting points with FEP+ML Use case 3: From fragment to hit Enamine RealSpace 903 ideas SPR KDss = 300 µM Top 1 in FEP LE = 0.25 IC50 = 1.2 µM 3D ROCS overlay ITC KD = 1 µM LE = 0.41 750 ideas Docking + MMGBSA 400 ideas IC50 = 24 µM Synthesis at Enamine ML model: CLint - 4 weeks 250 ideas - < 100 EUR per compound 5 out of 8 molecules have IC50 < 100 µM IC50 = 47 µM FEP 8 ideas Daniel Kuhn | 2021-04-14 | PharmaForum 2021 Christina Schindler
The next ten years Medicinal Chemistry Predictive modelling for & AIthe Futuredrug design driving Merck celebrated it’s 352th birthday on August 26th 2020 X Ten 14
Acknowledgements IT-Consultants Christina Schindler Johannes Schimunek Jan Fiedler Lukas Friedrich Kristina Preuer Christian Röder Friedrich Rippmann Günter Klambauer Samo Turk Vanita Sood Sepp Hochreiter Andrew Dalke Mireille Krier Tim Knehans Cornelius Kohl Gianna Pohl Michael Krug Quentin Perron Jakub Gunera Yann Gaston-Mathe Franca Klingler Christian Lemmen Theresa Johnson Hans-Peter Buchstaller Paul Czodrowski Marcel Baltruschat Daniel Kuhn | 2021-04-14 | PharmaForum 2021
You can also read