Walking the dog and moving the cat: Rabies serology in the context of international pet travel schemes
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Schweiz. Arch. Tierheilk. R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger, Band 152, Heft 12, Dezember 2010, 561 – 568 © 2010 by Verlag Hans Huber, Hogrefe AG, Bern DOI 10.1024/0036-7281/a000125 Originalarbeiten 561 Walking the dog and moving the cat: Rabies serology in the context of international pet travel schemes R. G. Zanoni1, Ph. Bugnon2, E. Deranleau1, T. M. V. Nguyen1, D. Brügger1 Swiss Rabies Center, Institute of Veterinary Virology, University of Berne, 2Institute of Laboratory Animal Science, 1 University of Zurich Summary Reisen mit Hunden und Katzen: Tollwutserologie im Zusammenhang mit Data of 13’469 blood samples from 10’999 dogs and internationalen Reisebestimmungen 2’470 cats tested for rabies neutralizing antibodies within the framework of pet travel schemes were ana- In dieser Arbeit wurden die Daten von 13’469 Blut- lysed for single and combined factors influencing an- proben von 10’999 Hunden und 2’470 Katzen, die im tibody titres and failures. The time span between vac- Zusammenhang mit Reisebestimmungen für Haus- cination and drawing the blood sample was confirmed tiere auf Tollwutneutralisierende Antikörper unter- as a major source of failure in dogs with a proportion sucht wurden, auf einzelne und kombinierte Faktoren of 23 % at 4 months after primary vaccination (single mit Einfluss auf Titerhöhe und Versagerquote unter- dose). Failures in dogs and cats (titre < 0.5 IU) were sucht. Die Zeitspanne zwischen Blutentnahme und significantly reduced after double primary vaccination Impfung konnte als eine wichtige Quelle für unge- (2 doses within 7 – 10 days), although failures reached nügende Titer bei Hunden bestätigt werden mit einer comparable levels in dogs as early as 6 months after Quote von 23 % 4 Monate nach Erstimpfung (eine vaccination. In contrast, failure after vaccination was Impfstoff-Dosis). Ein signifikanter Rückgang von generally below 5 % in dogs and absent in cats after a Versagern (Titer < 0.5 IU) ergab sich bei doppelter booster applied at earliest 12 months after single pri- Grundimmunisierung (2 Impfungen im Abstand von mary vaccination. Statistically significant differences 7 – 10 Tagen), wobei dieser Effekt bei Hunden bereits between the failures of the vaccine brands «Rabi- nach 6 Monaten wieder verschwand. Nach einem sin» (1.5 %), «Defensor» (6.7 %), «Nobivac Rabies» Jahres-Booster lag die Versagerquote hingegen bei (11.0 %) and «Rabdomun» (18.2 %) were found in Hunden generell unter 5 % und bei Katzen praktisch dogs but also between the titres induced in cats. Sig- bei Null. Statistisch signifikante Unterschiede zeigten nificant differences were found between different dog sich zwischen den Versagerquoten der Impfstoffe breeds with some small breeds showing a significantly «Rabisin» (1.5 %), «Defensor» (6.7 %), «Nobivac Ra- higher responsiveness. Taken together, a new regimen bies» (11.0 %) und «Rabdomun» (18.2 %) bei Hun- for rabies vaccination consisting of double primary den und zwischen den Titern bei Katzen. Ebenfalls vaccination with a short interval of 7 – 10 days and a signifikante Unterschiede wurden zwischen verschie- one-year booster appears to be highly recommended denen Hunderassen gefunden. Aufgrund dieser Daten for dogs and cats. scheint ein neues Tollwut-Impfschema mit doppelter Grundimmunisierung in kurzem Intervall von 7 – 10 Tagen und einem Jahresbooster für Hunde und Kat- zen als sehr empfehlenswert. Keywords: rabies, pet travel schemes, serology, vac- Schlüsselwörter: Tollwut, Pet Travel Schemes, Sero- cine, regimen, breed logie, Impfstoff, Impfschema, Rasse Introduction scheme (PETS) in Sweden and Norway instead of clas- sical quarantine regulations (Klingeborn and Krogsrud, Rabies serology by serum neutralization assays (Smith et 1993). This has been an important progress toward a al., 1973; Cliquet et al., 1998) has become widely used in more humane procedure for the safe import of pets from dogs and cats after the first introduction of a pet travel dog rabies endemic areas into rabies free countries. In
R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger, Band 152, Heft 12, Dezember 2010, 561 – 568 Schweiz. Arch. Tierheilk. © 2010 by Verlag Hans Huber, Hogrefe AG, Bern 562 Originalarbeiten PETS, quarantine was replaced by vaccination, serologi- Blood collection cal control of neutralizing antibodies correlating with protection and a waiting period before import. The wait- Whole blood samples without anticoagulants or sera of ing period accounts for the incubation of a possible rabies dogs and cats were obtained by veterinarians within the exposure before vaccination since a single dose would framework of the diagnostic services provided by the not ensure protection as postexposure treatment (Cho Swiss Rabies Center for the determination of rabies neu- and Lawson, 1989; Blancou et al., 1991; Clark and Wil- tralizing antibody titres. These animals had been vacci- son, 1996; Mitmoonpitak et al., 2002; WHO, 2005; WHO, nated against rabies for varying periods of time before 2007). The UK PETS was established in 2000 (Fooks et intended international travelling with their owners. Sera al., 2002), followed by the European PETS implemented were recovered as supernatant from coagulated whole in Switzerland in 2003 (Bundesamt für Veterinärwesen, blood by centrifugation at 1’400 g for 10 min at room 2003b) and in Europe in 2004, respectively, and other na- temperature. All samples were stored at – 20 °C before tional schemes based on the same principles (Takahashi- testing (usually within a week). Omoe et al., 2008). Within the framework of the Swedish/ Norwegian model, where testing of rabies neutralizing Rabies Neutralization Test (Rapid Fluorescent antibodies must not be performed earlier than 4 months Focus Inhibition Test, RFFIT) after the last rabies vaccination, the short-lived charac- ter of neutralizing antibodies in a certain proportion of A microtitre adaptation of RFFIT in 96 well microtitre the animals became apparent right away (Klingeborn and tissue culture trays was performed essentially as described Krogsrud, 1993) and was confirmed by several laborato- (Smith et al., 1973; Zalan et al., 1979). A pool of human ries involved (Cliquet et al., 2003; Mansfield et al., 2004). sera calibrated with the 2nd international standard prep- The obvious operational solution to this was a double aration for rabies immunoglobulin (Lyng, 1994) was primary vaccination in a short interval of 7 – 10 days, used for the determination of the neutralizing potency which was also adopted as an official recommendation of test sera and CVS-11 (Challenge Virus Strain, Cliquet by the Swiss authorities (Bundesamt für Veterinärwesen, et al., 1998) was used as challenge virus. The virus neu- 2003a). Over the years of practical experience since its tralizing antibody (VNA) titres were calculated according introduction, PETS have proven to be a safe alternative to Spearman-Kaerber (Spearman, 1908; Kaerber, 1931) to quarantine if not circumvented by illegal import (Za- by extrapolating the dilution of the sample reducing the noni and Breitenmoser, 2003; Cliquet et al., 2005; French number of fluorescent microscopic fields to 50 % and in- multidisciplinary investigation team, 2008; Eurosurveil- ternational units (IU) were determined via standard con- lance, 2008; Van Gucht and Le Roux, 2008; Dacheux and trol (9.0 IU/ml). Bourhy, 2008). The purpose of this work was to identify and confirm risk factors for failure in serological test- Data evaluation ing on the basis of a large number of animals tested in Switzerland, to study the effect of repeated vaccinations The test result was stored quantitatively as a titre in in- and to identify possible implications for the recommen- ternational units (IU) and qualitatively as insufficient dations for rabies vaccination regimens in pets. (< 0.5 IU) or sufficient (≥ 0.5 IU) and used as the dependent (response) variable in statistical analyses. Samples of animals with repeated submissions were in- Animals, Material and Methods cluded only once. Depending on the type of analysis, only subsets of the whole dataset with complete data could be Animals and data collection analyzed. All statistical procedures were performed with the NCSS 2007 software (Number Cruncher Statistical The data of 13’469 blood samples taken from 10’999 dogs Systems, Kaysville, Utah, USA; Anonymous, 2007). Con- and 2’470 cats between July 23, 1997 and June 26, 2009 fidence intervals for proportions (p) and means (m) were (12 years) with complete information on the mandatory calculated as p/m ± 1.96 * sE (standard error). variables were included in this study. Data on the ani- mals were collected on the basis of the request form for animal rabies serology and stored in a Windows Access® Results database. Apart from personal data on the veterinarian and the owner, the following epidemiologically relevant Time of serological testing after vaccination data were recorded: unique identification of the animal (microchip number or tattoo), species, date of collection Soon after the initiation of pet travel schemes (PETS) of blood sample, date of the last vaccination (mandatory in lieu of quarantine in 1994 in Sweden and Norway variables for reporting), date of birth, sex, breed, total (Klingeborn and Krogsrud, 1993) it became obvious that number of rabies vaccinations, date of first vaccination, the period of time elapsed since vaccination is a critical name (brand) of vaccine. factor in test failures (Sihvonen et al., 1995). This effect
Schweiz. Arch. Tierheilk. R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger Band 152, Heft 12, Dezember 2010, 561 – 568 © 2010 by Verlag Hans Huber, Hogrefe AG, Bern Rabies serology in the context of international pet travel schemes 563 a b 0.40 0.40 0.35 0.35 proportion of failure proportion of failure 0.30 0.30 0.25 0.25 primary primary 0.20 0.20 d.primary d.primary 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 1 2 3 4 5 6 1 2 3 4 5 6 months after vaccination months after vaccination Figure 1: Proportion of failure after single or double primary rabies vaccination in dogs (a) and cats (b). The proportion of failure in rabies serology (< 0.5 international units [IU]) is significantly reduced in dogs after double primary vaccination. Bars represent 95 % confidence intervals (CI). was strongest after a single primary rabies vaccination days after single primary vaccination, n = 1’462) trig- in dogs. Therefore, we recommended several years ago gered intermediate antibody kinetics (Fig. 2c) whereas to generally apply a regimen of two rabies vaccinations repeated boosters (altogether more than 2 rabies vac- within a short interval of 7 – 10 days (double primary cinations, n = 4’740) topped all other regimens in terms vaccination). While the proportion of failure (titre < 0.5 of long-term titre stability (Fig. 2d). According to mul- IU) in dogs after four months (minimal delay for anti- tiple analysis of variance, both time after vaccination body determination after vaccination in the Swedish/ and type of vaccination were highly significant effects Norwegian PETS) was 23 % after single primary vacci- on postvaccinal antibody titres (p < 0.001). Through- nation, it was significantly reduced to 6 % after double out all types of vaccinations, cats reacted at significantly primary vaccination (Fig. 1a). The proportion of failure higher levels than dogs (Fig. 3). after a single primary vaccination stabilized at above 30 % in the period of 7 to 12 months after vaccination. The Vaccine, breed, age and gender same effect of double primary vaccination was much less pronounced and not significant at single time points in Besides time interval and type of vaccination, the differ- cats (Fig. 1b). The proportion after a single primary vac- ent vaccine brands were also found to exert a significant cination stabilized in cats at around 10 % in the period influence on the test results, particularly on failures over of 7 to 12 months after vaccination. Conspicuously, the a range of 4 months after a single primary vaccination proportion of failure in dogs with double primary vac- in dogs (p Chi Square < 0.001, Fig. 4a). The propor- cination progressively approximated that of singly vacci- tion of failure of «Rabisin» (RABISIN® ad us. vet., Bio- nated individuals with time, reaching comparable levels kema SA, n = 266) was 1.5 %, of «Defensor» (Defensor at 6 months (Fig. 1a). In sharp contrast to that, after a 3® ad us. vet., Pfizer AG, n = 210) 6.7 %, of «Nobivac booster applied at the earliest 12 months after primary Rabies» (Nobivac® RABIES ad us. vet., Veterinaria AG, vaccination, the proportion of failure up to 12 months n = 390) 11.0 % and that of «Rabdomun» (Rabdomun after vaccination was generally below 5 % in dogs and ab- ad us. vet., Veterinaria AG, n = 214) 18.2 %. In cats, no sent in cats. significant differences were evident between the propor- In order to clarify the effect of the double primary vac- tions of failure of the vaccine brands used (Fig. 4b) in cination and its non-sustained effect, the kinetics of the spite of significant differences of the mean titres (not seroconversion in dogs (n = 10’318) was also studied shown). The frequency distribution of blood sampling quantitatively. As expected, double primary vaccination time span in months after vaccination for the different (interval between doses < 30 d, n = 628) resulted, at least vaccine brands was comparable in both cats and dogs initially, in significantly higher titres than single prima- (not shown). ry vaccination (n = 2’341), but this effect disappeared The breed was a significant factor in both quantitative as early as after 5 months (Fig. 2a). A booster vaccina- (neutralizing antibody titres up to one year after a single tion applied at the earliest 12 months after a single pri- primary vaccination) and qualitative analysis (propor- mary vaccination (n = 1’147) led to significantly differ- tions of failure) in dogs (n=1’248). Using multiple logis- ent postvaccinal antibody kinetics. Titres peaked higher tic regression, the breeds «Yorkshire Terrier», «Maltese» and remained significantly higher throughout the 12 and «Jack Russell Terrier» exhibited a significantly lower months observation period (Fig. 2b). The application risk of failure in comparison to the «Bernese Mountain of an earlier booster vaccination (between 30 and 365 Dog» as reference. In cats (n = 686) neither titres nor
R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger, Band 152, Heft 12, Dezember 2010, 561 – 568 Schweiz. Arch. Tierheilk. © 2010 by Verlag Hans Huber, Hogrefe AG, Bern 564 Originalarbeiten 35 35 a b 30 30 type type d.primary booster 25 25 d.primary primary primary 20 20 IU IU 15 15 10 10 5 5 0 0 -5 -5 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 months after last vaccination months after last vaccination 35 35 c d 30 30 type type booster booster 25 d.primary 25 d.primary e.booster e.booster 20 primary 20 primary r.booster IU IU 15 15 10 10 5 5 0 0 -5 -5 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 months after last vaccination months after last vaccination Figure 2: Kinetics of rabies antibody titres in dogs after a given «type» of last vaccination. (a) Titre decrease after double primary («d.primary») in comparison to single primary vaccination («primary»), (b) Titre decrease after a booster vaccination («booster») applied at the earliest 12 months after single primary vaccination, (c) Inter- mediate titre course after an early booster vaccination («e.booster») between 30 days and one year after single primary vac- cination, (d) Rabies antibody titres after repeated booster vaccination («r.booster», altogether > 2 rabies vaccinations). The respective time of the application of a given last vaccination is defined as time point zero of the x-axis. Bars represent 95 % CI. IU = international units. proportions of failures seen up to one year after a single 60 species primary vaccination differed significantly between the 55 cat breeds analysed. Neither age in dogs (n = 1344; min = 1 50 dog year; max = 18 years; mean = 2.3 years; median = 1 year) 45 or cats (n = 727; min = 1 year; max = 20 years; mean = 40 5.1 years; median = 4 years) nor gender in dogs (50.8 % 35 females) or cats (50.9 % females) had a significant influ- IU 30 ence on neutralizing titre or proportion of failures in uni- 25 20 variate analysis (p > 0.05). 15 10 5 Discussion 0 1 2 3 4 5 6 7 8 9 10 11 12 months after last vaccination Since the introduction of pet travel schemes (PETS) in- stead of quarantine in 1994, the time of taking blood Figure 3: Comparative rabies antibody titre kinetics in dogs samples after vaccination has repeatedly been recognized (n = 4740) and cats (n = 548) after repeated booster vacci- as the most critical factor for failures with a proportion nations (altogether > 2 rabies vaccinations). Bars represent of around 25 % at 4 months after primovaccination (Sih- 95 % CI. IU = international units. vonen et al., 1995; Anonymous, 1996; Cliquet et al., 2003;
Schweiz. Arch. Tierheilk. R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger Band 152, Heft 12, Dezember 2010, 561 – 568 © 2010 by Verlag Hans Huber, Hogrefe AG, Bern Rabies serology in the context of international pet travel schemes 565 p a b 0.24 0.24 0.22 0.22 0.20 0.20 0.18 0.18 proportion of failure proportion of failure 0.16 0.16 Defensor Defensor 0.14 0.14 Nobivac Rabies Nobivac Rabies 0.12 0.12 Rabdomun Rabdomun 0.10 0.10 Rabisin Rabisin 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 Vaccine Vaccine Figure 4: Proportions of failure (neutralizing titre < 0.5 IU) in dogs (a) and cats (b) after a single primary vaccination over a range of 4 months after vaccination with different vaccine brands. A significantly lower proportion of failure after the use of «Rabisin» is evident for dogs but not for cats with generally lower failure rates. Mansfield et al., 2004; Kennedy et al., 2007). According to was clearly confirmed for dogs. Double primary vaccina- our data, about 1/3 of the dogs appear to fall below the tion also helps to minimize the risk for cats, although cats threshold (serorevert) within a year after initial vaccina- generally reacted much more strongly than dogs. Inter- tion. This is reminiscent of a similar situation described estingly, the titre kinetics observed in dogs were less im- for preexposure rabies vaccinations in humans, where pressive than expected with titres and failure rates com- so-called serological low responders were identified, who parable to single primary vaccination reached as early as needed at least one booster for long-term persistence of after 5 – 6 months. By contrast, clearly different titre ki- rabies neutralizing antibodies (Strady et al., 1998). As also netics with sustained immunity and low failure rates were noted by others (Tepsumethanon et al., 1991; Kennedy observed after a one-year booster. Interestingly, earlier et al., 2007), the titres after primo-vaccination shown boosters between 30 days and one year remained associ- here are in line with primary immune response kinet- ated with both significantly different kinetics and a high- ics. It must be noted that the classification of titres into er failure rate. By modelling over the range of intervals pass and failure categories both in humans and animals between the first and second rabies vaccination in dogs, is based on an arbitrary decision (Fishbein et al., 1987) the earliest boosting time for a sustained effect on immu- being applied in PETS in a strictly decisive sense. In spite nity was observed to be around 10 months (not shown). of the clear correlation with humoral neutralizing anti- This is compatible with findings in humans vaccinated bodies (Dietzschold et al., 1990; Wunderli et al., 1991), against rabies, who showed long-term immunity after a protection in vivo is just as much related to cellular im- one-year booster after triple primary preexposure vacci- munity (Dietzschold et al., 1987; Bunschoten et al., 1989; nation for at least 10 years (Strady et al., 1998; Strady et Kawano et al., 1990; Dietzschold et al., 1990; Herzog et al., al., 2001) but also with more general principles of matu- 1992; Xiang et al., 1995; Mansfield et al., 2004). As long ration of humoral immunity and emergence of the long- as efficacy and potency of rabies vaccines are confirmed lived memory repertoire (Bernasconi et al., 2002; Traggiai on the basis of animal challenge experiments (Bunn, et al., 2003). 1991; Cliquet et al., 2003; Anonymous, 2005), protection The effect of the vaccine brand used on serological in the absence of neutralizing antibodies might reason- failure was quite noticeable as described also by oth- ably be assumed. This notwithstanding, in view of several ers (Mansfield et al., 2004; Kennedy et al., 2007). It is possible shortcomings in practical vaccine application, difficult to speculate on the reasons for this, all of the regularly reported vaccine failures in vaccinated animals vaccine brands used being inactivated and alum-adju- (Schwendenwein and Gerstl, 1993; Clark and Wilson, vanted vaccines produced in cell culture. A possible ex- 1996; Okoh, 2000; Weber et al., 2003; De Benedictis et planation might be the application of a seed viral strain al., 2009; Murray et al., 2009) might also be attributed to for vaccine production like the Flury-LEP strain used in overconfidence in the efficacy of vaccines or in the dura- «Rabdomun» as in purified chick embryo cell rabies vac- tion of protection. Furthermore, protection of the popu- cine (PCECV) for human use (Barth et al., 1990), which lation due to a sufficient level of herd immunity is quite is not very closely related to the challenge virus strain different from protection of a single individual, which is used to measure the neutralizing antibodies (Moore et aimed at in PETS. al., 2005). Nevertheless, apart from the potential impli- The positive effect of double primary vaccination on the cation on protection, this might be an important factor risk of serological failure (Sihvonen et al., 1995; Anony- for travellers and their veterinary advisors in terms of mous, 1996; Cliquet et al., 2003; Mansfield et al., 2004) costs and time minimization for compliance with the
R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger, Band 152, Heft 12, Dezember 2010, 561 – 568 Schweiz. Arch. Tierheilk. © 2010 by Verlag Hans Huber, Hogrefe AG, Bern 566 Originalarbeiten regulations. Furthermore, also a significant effect of Acknowledgements breed could be confirmed in this work. Taken together, in order to minimize the failure rate for PETS The scrutinizing proofreading and valuable expert sug- and presumably also to improve protection, a new regimen gestions for improvement of the manuscript by Dr. G. for rabies vaccination consisting of double primary vaccina- Bertoni and two reviewers were highly appreciated. The tion with a short interval of 7 – 10 days and a one-year boost- indulgence of the respective author’s families for lost pri- er appears to be highly recommended for dogs and cats. vate time is gratefully recognized. Voyages avec des chiens et des chats: Viaggiare con cani e gatti: sierologia della sérologies rabiques en rapport avec les rabbia in relazione alle disposizioni dispositions internationales internazionali di viaggio Dans ce travail, les données de 13’469 échantillons In questo studio sono stati analizzati i dati di 13'469 sanguins, provenant de 10’999 chiens et de 2’470 chats, campioni di sangue provenienti da 10'999 cani e 2'470 prélevés au vu des dispositions liées à des voyages, ont gatti sui fattori singoli o combinati che influenzano été examinés quant aux anticorps rabiques pour re- i risultati della titolazione e della percentuale di in- chercher des facteurs isolés ou combinés influençant le successi, in relazione alle disposizioni di viaggio per titre et les échecs vaccinaux. Le délai entre la vaccina- animali da compagnia riguardo gli anticorpi neutra- tion et la prise de sang a pu être confirmé comme une lizzanti contro la rabbia. source importante de titre insuffisant chez les chiens Nei cani, il periodo trascorso tra la raccolta del sangue avec une prévalence de 23 % 4 mois après la primo e la vaccinazione potrebbe essere una fonte importan- vaccination (1 dose). On a constaté une réduction te per confermare l’insufficienza di titolo, con un tasso significative des échecs vaccinaux (titre inférieur à 0.5 del 23 % dopo 4 mesi dalla prima vaccinazione (una IU) après une double immunisation de base (2 vaccins dose di vaccino). Un significativo rallentamento de- avec un intervalle de 7 à 10 jours), cet effet disparaissait gli insuccessi (titolo < 0.5 IU) risultava da una doppia toutefois chez les chiens déjà après 6 mois. Après un immunizzazione primaria (2 vaccinazioni a distanza rappel annuel, le taux d’échec était, par contre, chez les di 7 – 10 giorni), anche se questo effetto nei cani spa- chiens inférieurs à 5 % et chez les chats, pratiquement riva dopo circa 6 mesi. Dopo un richiamo annuale il nuls. On a constaté des différences significatives dans tasso di insuccessi rimaneva generalmente inferiore les taux d’échecs entre les vaccins «Rabisin» (1.5 %), al 5 % e nei gatti praticamente a zero. Differenze sta- «Defensor» (6.7 %) «Nobivac Rabies» (11.0 %) et tisticamente significative sono risultate tra i tassi di «Rabdomun» (18.2 %) chez les chiens ainsi qu’entre insuccessi nei vaccini «Rabisin» (1.5 %), «Defensor» les titres chez les chats. Des différences significatives (6.7 %), «Nobivac Rabies» (11.0 %) e «Rabdomun» ont également été trouvées entre différentes races de (18.2 %) in cani e tra i titoli nei gatti. Inoltre si sono chiens. Sur la base de ces données, un nouveau schéma riscontrate differenze consistenti tra le diverse razze di vaccinal comportant une double immunisation de cani. Sulla base di questi dati sembra necessario rac- base dans un intervalle court de 7 à 10 jours et un rap- comandare un nuovo schema di vaccinazioni contro pel annuel pour les chiens et les chats semblent très la rabbia con doppia vaccinazione primaria praticata recommandables. ad un breve intervallo di 7 – 10 giorni e un richiamo annuale sia per i cani che per i gatti. References Anonymous: User's Guide, NCSS Statistical System. Ed. Dr. Jerry L. Hintze, NCSS, Kaysville, Utah 84037, 2007. Anonymous: Rabies vaccination for Norway and Sweden – a sec- Barth R., Franke V., Müller H., Weinmann E.: Purified chick- ond follow-up vaccination provides more safety. Tijdschr. embryo-cell (PCEC) rabies vaccine – its potency performance Diergeneeskd. 1996, 121: 44. in different test systems and in humans. Vaccine 1990, 8: 41 – 48. Anonymous: Rabies vaccine (inactivated) for veterinary use. Bernasconi N.L., Traggiai E., Lanzavecchia A.: Maintenance of In: European Pharmacopoeia 5.0, 5th ed., Council of Europe, serological memory by polyclonal activation of human memory Strasbourg, 2005, 790 – 792. B cells. Science 2002, 298: 2199 – 2202.
Schweiz. Arch. Tierheilk. R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger Band 152, Heft 12, Dezember 2010, 561 – 568 © 2010 by Verlag Hans Huber, Hogrefe AG, Bern Rabies serology in the context of international pet travel schemes 567 Blancou J., Baltazar R.S., Molli I., Stoltz J.F.: Effective postex- Eurosurveillance: Identification of a rabid dog illegally intro- posure treatment of rabies-infected sheep with rabies immune duced from the Republic of the Gambia to Belgium and France. globulin and vaccine. Vaccine 1991, 9: 432 – 437. Euro.Surveill. 2008, 13: 1 – 2. Bundesamt für Veterinärwesen: Einfuhrbedingungen für Fishbein D.B., Pacer R.E., Holmes D.F., Ley A.B., Yager P., Tong Hunde und Katzen. Mitteilungen BVET 2003a, 14/2005: T.C.: Rabies preexposure prophylaxis with human diploid cell 283 – 288. rabies vaccine: a dose-response study. J.Infect.Dis. 1987, 156: 50 – 55. Bundesamt für Veterinärwesen: Neue Einfuhrbedingungen für Hunde und Katzen. Mitteilungen BVET 2003b, 13/2003: Fooks A.R., McElhinney L.M., Brookes S.M., Johnson N., Keene V., 200 – 201. Parsons G., Soldan A.: Rabies antibody testing and the UK Pet Travel Scheme. Vet.Rec. 2002, 150: 428 – 430. Bunn T.O.: Canine and feline vaccines, past and present. In: The natural history of rabies, Ed. G. M. Baer, CRC Press, Herzog M., Lafage M., Montano-Hirose J.A., Fritzell C., Scott- Boca Raton, Ann Arbor, Boston, 1991, 415 – 425. Algara D., Lafon M.: Nucleocapsid specific T-cell and B-cell re- sponses in humans after rabies vaccination. Virus Res. 1992, 24: Bunschoten H., Klapmuts R.J., Claassen I.J.T.M., Reyneveld S.D., 77 – 89. Osterhaus A.D.M.E., Uytdehaag F.G.C.M.: Rabies virus-specific human T cell clones provide help for an in vitro antibody re- Kaerber G.: Beitrag zur kollektiven Behandlung pharmakolo- sponse against neutralizing antibody-inducing determinants of gischer Reihenversuche. Arch.exp.Pathol.Pharmakol. 1931, 162: the viral glycoprotein. J.Gen.Virol. 1989, 70: 1513 – 1521. 480 – 487. Cho H.C., Lawson K.F.: Protection of dogs against death from Kawano H., Mifune K., Ohuchi M., Mannen K., Cho S., Hira- experimental rabies by postexposure administration of rabies matsu K., Shichijo A.: Protection against rabies in mice by a vaccine and hyperimmune globulin (human). Can.J.Vet.Res.- cytotoxic T-cell clone recognizing the glycoprotein of rabies Rev.Can.Rech.Vet. 1989, 53: 434 – 437. virus. J.Gen.Virol. 1990, 71: 281 – 287. Clark K.A., Wilson P.J.: Postexposure rabies prophylaxis and Kennedy L.J., Lunt M., Barnes A., McElhinney L., Fooks A.R., preexposure rabies vaccination failure in domestic animals. Baxter D.N., Ollier W.E.R.: Factors influencing the antibody J.Am.Vet.Med.Assoc. 1996, 208: 1827 – 1830. response of dogs vaccinated against rabies. Vaccine 2007, 25: 8500 – 8507. Cliquet F., Aubert M., Sagne L.: Development of a fluorescent antibody virus neutralisation test (FAVN test) for the quantita- Klingeborn B., Krogsrud J.: Vaccination and antibody testing re- tion of rabies-neutralising antibody. J.Immunol.Methods 1998, placing quarantine as rabies safety measure for transfer of dogs 212: 79 – 87. and cats into Sweden and Norway from EU/EFTA-countries. Rabies Bulletin Europe 1993, 17/4: 13 – 14. Cliquet F., Barrat J., Picard E.: «Au-delà des chiffres...Impor- tation d'un cas de rage canine du Maroc en Gironde en août Lyng J.: Calibration of a replacement preparation for the inter- 2004: conséquences sur les activités de l'AFSSA Nancy». Bulletin national standard for rabies immunoglobulin. Biologicals 1994, Epidemiologique Mensuel de la Rage Animale en France 2005, 22: 249 – 255. 35/7 – 8 – 9: 1 – 5. Mansfield K.L., Burr P.D., Snodgrass D.R., Sayers R., Fooks A.R.: Cliquet F., Verdier Y., Sagne L., Aubert M., Schereffer J.L., Selve Factors affecting the serological response of dogs and cats to M., Wasniewski M., Servat A.: Neutralising antibody titration in rabies vaccination. Vet.Rec. 2004, 154: 423 – 426. 25,000 sera of dogs and cats vaccinated against rabies in France, in the framework of the new regulations that offer an alterna- Mitmoonpitak C., Limusanno S., Khawplod P., Tepsumethanon tive to quarantine. Rev.sci.tech.Off.int.Epiz. 2003, 22: 857 – 866. V., Wilde H.: Post-exposure rabies treatment in pigs. Vaccine 2002, 20: 2019 – 2021. Dacheux L., Bourhy H.: Identification de deux cas de rage chez des chiens introduits illégalement en France à partir de zones Moore S.M., Ricke T.A., Davis R.D., Briggs D.J.: The influence d'enzootie rabique. Bulletin Epidemiologique Mensuel de la Rage of homologous vs. heterologous challenge virus strains on the Animale en France 2008, 38/1 – 2 – 3 – 4 – 5 – 6 – 7 – 8 – 9: 1 – 5. serological test results of rabies virus neutralizing assays. Bio- logicals 2005, 33: 269 – 276. De Benedictis P., Mutinelli F., Veggiato C., Capua I., Squecco G., Coassin R., Ferri G.: Rabies in a vaccinated dog in Italy. Vet.Rec. Murray K.O., Holmes K.C., Hanlon C.A.: Rabies in vaccinated 2009, 165: 216. dogs and cats in the United States, 1997 – 2001. J.Am.Vet.Med. Assoc. 2009, 235: 691 – 695. Dietzschold B., Gore M., Marchadier D., Niu H.-S., Bunschoten H.M., Otvos L., Jr., Wunner W.H., Ertl H.C.J., Osterhaus Okoh A.E.J.: Antigenic characterization of rabies virus isolates A.D.M.E., Koprowski H.: Structural and immunological char- from vaccinated dogs in Plateau State, Nigeria. Vet.Res.Com- acterization of a linear virus-neutralizing epitope of the rabies mun. 2000, 24: 203 – 211. virus glycoprotein and its possible use in a synthetic vaccine. J.Virol. 1990, 64: 3804 – 3809. Schwendenwein I., Gerstl F.: Atypical course of rabies in a vaccinated dog. Wien.Tierarztl.Monatsschr. 1993, 80: 108 – 112. Dietzschold B., Wang H., Rupprecht C.E., Celis E., Tollis M., Ertl H., Heber-Katz E., Koprowski H.: Induction of protective immu- Sihvonen L., Kulonen K., Neuvonen E., Pekkanen K.: Rabies nity against rabies by immunization with rabies virus ribonu- antibodies in vaccinated dogs. Acta Vet.Scand. 1995, 36: cleoprotein. Proc.Natl.Acad.Sci.U.S.A. 1987, 84: 9165 – 9169. 87 – 91.
R. G. Zanoni, Ph. Bugnon, E. Deranleau, T. M. V. Nguyen, D. Brügger, Band 152, Heft 12, Dezember 2010, 561 – 568 Schweiz. Arch. Tierheilk. © 2010 by Verlag Hans Huber, Hogrefe AG, Bern 568 Originalarbeiten Smith J.S., Yager P.A., Baer G.M.: A rapid reproducible test for WHO: WHO expert consultation on rabies, first report. In: determining rabies neutralizing antibody. Bull.World Health WHO Technical Report Series 931, WHO, Geneva, 2005. Organ. 1973, 48: 535 – 541. WHO: Rabies vaccine – update. Wkly.Epidemiol.Rec. 2007, 82: Spearman C.: The method of «right or wrong cases» (constant 62 – 68. stimuli) without Gauss's formulae. Brit.J.Psychol. 1908, 2: 227 – 242. Wunderli P.S., Shaddock J.H., Schmid D.S., Miller T.J., Baer G.M.: The protective role of humoral neutralizing antibody in the Strady A., Lang J., Lienard M., Blondeau C., Jaussaud R., Plotkin NIH potency test for rabies vaccines. Vaccine 1991, 9: 638 – 642. S.A.: Antibody persistence following preexposure regimens of cell-culture rabies vaccines: 10-year follow-up and proposal for Xiang Z.Q., Knowles B.B., McCarrick J.W., Ertl H.C.J.: Immune a new booster policy. J.Infect.Dis. 1998, 177: 1290 – 1295. effector mechanisms required for protection to rabies virus. Vi- rology 1995, 214: 398 – 404. Strady C., Nguyen V.H., Jaussaud R., Lang J., Lienard M., Strady A.: Pre-exposure rabies vaccination: strategies and cost-mini- Zalan E., Wilson C., Pukitis D.: A microtest for the quantitation mization study. Vaccine 2001, 19: 1416 – 1424. of rabies virus neutralizing antibodies. J.Biol.Stand. 1979, 7: 213 – 220. Takahashi-Omoe H., Omoe K., Okabe N.: Regulatory systems for prevention and control of rabies, Japan. Emerg.Infect.Dis. 2008, Zanoni R., Breitenmoser U.: Rabies in a puppy in Nyon, Switzer- 14: 1368 – 1374. land. Euro.Surveill. 2003, 7: 2 – 4. Tepsumethanon W., Polsuwan C., Lumlertdaecha B., Khawplod P., Hemachudha T., Chutivongse S., Wilde H., Chiewbamrungkiat M., Phanuphak P.: Immune response to rabies vaccine in Thai dogs – a preliminary report. Vaccine 1991, 9: 627 – 630. French multidisciplinary investigation team: Identification of a Corresponding author rabid dog in France illegally introduced from Morocco. Euro. Surveill. 2008, 13: 107 – 108. Prof. Dr. R. Zanoni Institute of Veterinary Virology Traggiai E., Puzone R., Lanzavecchia A.: Antigen dependent and Länggass-Strasse 122 independent mechanisms that sustain serum antibody levels. Vaccine 2003, 21 Suppl 2: S35-S37. CH-3012 Bern Tel.: + 41 (0)31 631 23 78 Van Gucht S., Le Roux I.: Rabies control in Belgium: from Fax: + 41 (0)31 631 25 34 eradication in foxes to import of a contaminated dog. Vlaams E-mail: zanoni@ivv.unibe.ch Diergen. Tijds. 2008, 77: 376 – 384. Weber A., Keller B., Berg H., Schmahl W., Suss J., Muller T.: Case report: Rabies in a vaccinated dog imported from Azerbaijan. Received: 17 December 2009 Prakt.Tierarzt 2003, 84: 912 – 914. Accepted: 5 February 2010
You can also read