Toward In-Situ Assembly of a Large Space Telescope - Máximo A. Roa Institute of Robotics and Mechatronics German Aerospace Center - DLR - WVRTC
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Toward In-Situ Assembly of a Large Space Telescope Máximo A. Roa Institute of Robotics and Mechatronics German Aerospace Center - DLR IROS Workshop “Robotic In-Situ Servicing, Assembly and Manufacturing” October 25, 2020 Cyberspace
Factory of the future Reconfigurable Workcell Collaborative Mobile Manipulation Autonomous Assembly Workbench
Task Pattern Classification ⚫ Example of a generated sequence ⚫ Classification of assembly tasks ⚫ Four major task types: ⚫Insert_slot_nut ⚫Add_angle_bracket ⚫Add_screw ⚫Position_profiles
Exemplary Skill Sequence for the insert_slot_nut Task Start PickUpGroupFromStorage PlacePegInHole PickUpGroupFromStorage Finish PlaceSlotNutIntoProfile MoveSlotNutIntoProfile PickUpAndPlaceGroupInAss emblyFixture.
Skill Robustness through Sensor-Based Execution PlaceObject PlacePegInHole PickUpScrew
Skill Library PickUpObject MovePlanned PegInHole PickUpObject PlaceSlotNut MoveSlotNut PlaceObject PickUpObject PlaceObject PickUpObject PickUpScrew PlaceScrew
Limitations limited manipulability specialized tools limited workspace specialized fixtures
Assembling one-of-a-kind in a more flexible way [Rodriguez et al., RA-L 19]
Cosmological questions Scientific questions: • How did we come to be? • Are Earth-like planets common? • Are we alone? • …
Telescopes [cmglee]
Space telescopes [Roa et. al., ASTRA 2017]
Foldable structures James Webb Space Telescope [ESA/NASA]
In-space assembly using robots [Lee et al., 2016] [Vaughan, 1981]
Required technologies • High maturity: ➢ Launch vehicles ➢ Mirror segment fabrication • Medium maturity: ➢ Segmented mirror wavefront and jitter control ➢ Robot hardware (arms) • Low maturity ➢ Autonomous assembly ➢ In-space assembly
PULSAR: Prototype of an Ultra-Large Structure Assembly Robot www.h2020-pulsar.eu [Rognant et al., EUCASS 2019]
PULSAR: Prototype of an Ultra-Large Structure Assembly Robot dPAMT, demonstrator of Precise Assembly of Mirror Tiles (physical) Requirements: -Assembly of min. 5 mirror tiles -Functional demonstration of mirror (adapt optical surfaces) Challenges: -1G conditions -Standard interconnections between elements -Assembly, grasp, motion planning -Perception, visual servoing
PULSAR: Prototype of an Ultra-Large Structure Assembly Robot dPAMT Active tile Passive tile SIROM HOTDOCKinterface interface Focal point Fixed tile Base
dPAMT - Components Torque-controlled robot Visual recognition/servoing (KUKA iiwa) SMT container SMT (Segmented Mirror Tile) Standard Interface (HOTDOCK) Fixed SMT Mobile platform (KUKA KMR) Assembly area
dPAMT - Assembly planner Semantic constraints Optimization-based path planner [Martinez et al., Aeroconf 2021]
dPAMT - Assembly planner Feasible sequences Exploration and pruning [Martinez et al., Aeroconf 2021]
dPAMT - Initial verification Planning stage Trajectory verification [Martinez et al., Aeroconf 2021]
dPAMT - Current status… Segmented Mirror Tile, SMT HOTDOCK Standard Interface Robotic system [Letier et al., IAC 2020]
Keypoints ⚫ Combination of high/medium/low level planning tools allow the automatic generation of complete workflows ⚫ Active compliance is a key factor for assembly ⚫ Space-based assembly (of telescopes) is our next technological application - Ground-based demonstrator as first step - Multiple challenges: AOCS, robotic manipulator, autonomous assembly with standard interfaces, modularity, robustness,… - Final demonstration coming on Spring 2021!
Acknowledgments DLR Team: Korbinian Nottensteiner Ismael Rodriguez Juan Jose Martinez Jean-Pascal Lutze Timo Bachmann Andreas Stemmer Gerhard Grunwald Peter Lehner dPAMT partners: EU projects: Interested on a joint research project? maximo.roa@dlr.de www.robotic.dlr.de/maximo.roa
References ⚫ Hybrid Planning System for In-Space Robotic Assembly of Telescopes using Segmented Mirror Tiles. J. Martinez, I. Rodriguez, K. Nottensteiner, J. Lutze, P. Lehner, M.A. Roa. IEEE Aerospace Conference - AEROCONF 2021 (under review) ⚫ HOTDOCK: Design and Validation of a New Generation of Standard Robotic Interface for On-Orbit Servicing. P. Letier, T. Siedel, M. Deremetz, E. Pavlovskis, B. Lietaer, K. Nottensteiner, M.A. Roa, J. Sanchez, J. Corella, J. Gancet. International Astronautical Congress – IAC 2020 ⚫ Iteratively refined feasibility checks in robotic assembly sequence planning. I. Rodriguez, K. Nottensteiner, D. Leidner, M. Kassecker, F. Stulp, A. Albu-Schäffer. IEEE Robotics and Automation Letters, 2019 ⚫ Autonomous Assembly of Large Structures in Space: A Technology Review. M. Rognant, C. Cumer, J.M. Biannic, M.A. Roa, A. Verhaeghe, V. Bissonnette. European Conference for Aeronautics and Aerospace Sciences – EUCASS 2019 ⚫ Robotic Technologies for In-Space Assembly Operations. M.A. Roa, K. Nottensteiner, A. Wedler, G. Grunwald. Symposium on Advanced Space Technologies in Robotics and Automation – ASTRA 2017 ⚫ A Complete Automated Chain for Flexible Assembly using Recognition, Planning and Sensor-Based Execution. K. Nottensteiner, T. Bodenmüller, M. Kassecker, M. A. Roa, A. Stemmer, D. Seidel, U. Thomas. International Symposium of Robotics – ISR 2016
You can also read