(SWGO) Southern Wide-field-of-view Gamma-ray Observatory - Adrián Rovero Instituto de Astronomía y Física del Espacio
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Southern Wide-field-of-view Gamma-ray Observatory (SWGO) Adrián Rovero Instituto de Astronomía y Física del Espacio Río de la Plata Ph-Exp Institute IFLP, march 10-11, 2020 !1
Gamma-ray Astronomy Original motivation: to study cosmic-ray sources. Detection: power-law spectra How to detect gamma-rays Satellite Particle Detectors !2
Gamma-ray Astronomy Satellites: Fermi-LAT at HE (High Energy: 50MeV-50GeV) (LAT: Large Area Telescope, ~2m2) 8 years: ~5000 sources + diffuse emission !3
Gamma-ray Astronomy Cherenkov Telescopes: Very High Energy (VHE) 50GeV-50TeV 1.5-2.5 km altitudes 2-5 telescopes few degrees FoV VERITAS 4x12m Since Arizona HESS ~2004 MAGIC 1x28m 2x 17m 4x12m La Palma Namibia !4
Gamma-ray Astronomy TeV Sky ~200 VHE sources Towards Anti-Center Towards Galactic Center Background: Fermi-LAT !6
CTA (Cherenkov Telescope Array) CTA ◉A global effort to build the first true VHE observatory ✦ A user facility serving a wide community ! Data access to all scientists of participating countries ◉A huge improvement in all aspects of performance ✦ ~100 telescopes on two sites for access to the whole sky 31 nations and >1400 scientists involved - Including full teams from HESS, MAGIC + VERITAS !7
CTA (Cherenkov Telescope Array) 10 x Sensitivity, Large Collection Area Energies down to Energies up to 300 → all topics 20 GeV TeV → Cosmology++ → Pevatrons Rapid Slewing in 8o Field of View 20 seconds → surveys, → transients extended objects 10% Energy Few ‘ Angular NASA Resolution Resolution → lines, features → morphology See ’Science with CTA’ https://arxiv.org/abs/1709.07997 & https://www.cta-symposium.com/ !8
HAWC Observatory in Mexico: High Energy Water Cherenkov gamma-ray observatory 300 WCD (Water Cherenkov Detectors) =7.3m x h=5m 4 PMTs at the bottom Observatory in Pico de Orizaba: 4100m, Mexico !10
HAWC Observatory in Mexico: High Energy Water Cherenkov gamma-ray observatory !11
detecting air showers
HAWC Observatory in Mexico: Outriggers !13
HAWC Observatory in Mexico: Outriggers !14
HAWC Observatory in Mexico: Results: Second catalogue (19 months of data) !15
HAWC: Galactic Plane !16
HAWC: Galactic Plane !17
Observatorio HAWC en México: Results: Crab Nebula (preliminary) New source detected HAWC J0543+233 Nov. 2017 (ATel #10941) coincident with pulsar PSR B0540+23 Never detected by Cherenkov Telescopes (VERITAS, MAGIC) [¿Blinded by Crab?] !18
Observatorio HAWC en México: Resultados: SS433+W50 SS433: microquasar: Supergiant + compact object Two jets at 90º with line of sight (no boosting) termination shock at SNR W50. Cherenkov Telescopes have never detected TeV emission [Energies < 10 TeV] !19
Observatorio HAWC en México: Resultados: SS433+W50 SS433: microquasar: Supergiant + compact object Two jets at 90º with line of sight (no boosting) termination shock at SNR W50. Cherenkov Telescopes have never detected TeV emission [Energies < 10 TeV] HAWC detected two sources [Energies > 25 TeV] Nature 562, 82 (2018) !20
Observatorio HAWC en México: Resultados: SS433+W50 SS433: microquasar: Supergiant + compact object Two jets at 90º with line of sight (no boosting) termination shock at SNR W50. Cherenkov Telescopes have never detected TeV emission [Energies < 10 TeV] HAWC detected two sources [Energies > 25 TeV] Nature 562, 82 (2018) Giacani !21
HAWC Observatory in Mexico: High Energy Water Cherenkov gamma-ray observatory A wide field-of-view gamma-ray observatory like HAWC, looking up the sky permanently (24hr a day all the time), provides data to address many scientific issues in astrophysics. There are strong motivations to implement it in the Southern hemisphere Wide-field gamma-ray observatory in the South !22
Next generation of high altitude particle detector array Southern Wide-field-of-view Gamma-ray Observatory SWGO !23
Historia: 2005: post Milagro. Gestación de HAWC. Reunión LAGO en La Paz, búsqueda de sitios (en el norte y el sur). Visita sitios en Bolivia. Se hablaba de las ventajas de venir al sur: contactos en Argentina y Bolivia. 2006: Primeras búsquedas en Argentina (Salta y Jujuy). Se elige México para HAWC. Colaboración básicamente USA-México. 2015: Finalización de HAWC. Se intensifica la promoción de un observatorio sur. 2016-17: Primeras propuestas de conceptos: • HAWC-Sur • ALTO • LATTES 2017: Creación de la Alianza SGSO (Southern Gamma-ray Survey Observatory). Reunión de Buenos Aires, diciembre 2017. 2019: Formación de la Colaboración SWGO. Reunión de Lisboa, mayo 2019: Colaboradores de 9 países: Alemania, Argentina, Brasil, EEUU, Italia, México, Reino Unido, Rep.Checa. Recientemente: Perú y Corea del Sur. White paper: febrero 2019 (arXiv:1902.08429)…. 1+ año de trabajo !24
SWGO Collaboration (July 2019; for 3 yr.) 45 Institutions from 11 countries 114 members (+19 supporting members) !25
The Array: basic concept High altitudes and WCDs (Water Cherenkov Detectors) duty-cycle: ~100% Particle Field of view: 90º detector array North: HAWC South: —— High altitudes Future: SWGO (South) to detect LHASSO (North) shower particles duty-cycle: ~15% Field of view:
The Array: basic concept Goal: to improve HAWC sensitivity significantly at the Southern hemisphere (latitude 10-30 ºS) Higher altitudes to lower the energy threshold 4400-5000 m Array area inproves Collection area x4 detector density inproves reconstruction 80% !27
The Array: basic concept Type of detector: (Based on WCDs) WCD: HAWC like LATTES: Pb plate + small WCD RPC (gas) (Resistive plate chambers) Lake (pond) LHASSO style !28
The Array: basic concept Type of detector: WCD: HAWC like LATTES: Pb plate + small WCD RPC (gas) (Resistive plate chambers) + Design & Engineering Lake (pond) LHASSO style !29
The Array: basic concept Sensitivity (preliminar) Each detecting unit has a Threshold of 50MeV (elect.) or one muon !30
The Array: basic concept Performance (preliminar) Resolution Sensitivity SWGO HAWC 1-5 years Current Cherenkov Telescopes 50 hours Fermi 10 years SWGO 5 years CTA South 50 hours www.cta-observatory.org www.swgo.org !31
The Array: basic concept Performance (preliminar) Annual Exposure CTA 25 h/y SWGO 25% obs. ◉Short timescales: If CTA can get there ! more sensitivity ◉Steady sources: If background can be suppressed ! more sensitivity than CTA over several years www.cta-observatory.org www.swgo.org !32
Science with SWGO, few cases advantages over HAWC (see white paper) (arXiv:1902.08429) !33
VHE sky with IACTs Galactic coordinates HAWC (lat. +19o) and SWGO (lat. -25o) Point sources (gamma-sky.net +TeVcat) SWGO: Souther sky more populated !34
Fermi bubbles: Extended sources at Radio and HE (Fermi-LAT) Controversy about its origin and nature. Very extended sources with diffuse borders: difficult for CTA !35
Origin of CR: galactic ➔ Pevatrons SNR: enough power to be the sources up to PeV SNRs are gamma-ray sources (up to ~10TeV) Mechanisms??: p+ (πo decay); e- (IC) Gamma-ray observations are not conclusive (just few cases of p+) Taylor A.M. (Nature 2016) !36
Origin of CR: galactic ➔ Pevatrons SNR: enough power to be the sources up to PeV SNRs are gamma-ray sources (up to ~10TeV) Mechanisms??: p+ (πo decay); e- (IC) Gamma-ray observations are not conclusive (just few cases of p+) Taylor A.M. (Nature 2016) CR spectrum ➔ knee (~3 PeV) PeV CR ➔ gamma ~100 TeV (at these energies IC not efficient) If a 100TeV gamma is detected ➔ CR !37
Origin of CR: galactic ➔ Pevatrons SNR: enough power to be the sources up to PeV SNRs are gamma-ray sources (up to ~10TeV) Mechanisms??: p+ (πo decay); e- (IC) Gamma-ray observations are not conclusive (just few cases of p+) Taylor A.M. (Nature 2016) CR spectrum ➔ knee (~3 PeV) PeV CR ➔ gamma ~100 TeV (at these energies IC not efficient) If a 100TeV gamma is detected ➔ CR Models: If SNR are Pevatrons ➔ only for the first few 100 yr. ➔ few candidates SWGO ideal for the search (~10 candidates in the South) Best candidate: G1.9+0.3 (~100yr). !38
Galctic Center: First detected Pevatron? HESS (Nature 2016): Detected gamma-rays at tens of TeV with no indication of cutoff.. Central BH (Sag A*)?, or a set of SNRs, massive stars and pulsars? SWGO will be able to follow all posible sources simultaneously !39
Gamma Ray Burst (GRB): Previous to GRB detections at VHE: Difficult to observe with IACTs (alert+tracking) The most energetic observed at HE (Fermi-LAT): GRB 130427A Extrapolation showed that detection at VHE was possible Estimation for SWGO !40
Gamma Ray Burst (GRB): GRB detections at VHE: GRB 180720B: HESS: 10 hr. after alert 100-440 GeV (5.3 ) z = 0.65 GRB 190114C: MAGIC: 1 min. after alert 200GeV - 1TeV (50 ) in the first 20 min. !!!! z = 0.42 GRB 190829A: HESS: 4.3 hr. after alert 3.5 hr. of data (>5 ) z = 0.078 SWGO will be able to catch all these kind of events !41
Dark Matter: WIMP annihilation New generation of instruments reaches the critical sensitivity. Thermal relic WIMP accessible over a very wide mass range (Galactic Centre/Halo observations @ VHE) arXiv:1906.03353 _ bb i rm Fe Thermal Relic? SWGO CTA !42
Diffuse galactic emission: CRs propagating in the Galaxy produce diffuse gamma-rays. Measurements of this flux is relevant to study the diffusion of CRs. Very difficult task for IACTs (point sources, small FoV). Based on an extension of the Fermi diffuse model Estimation for SWGO !43
Otros estudios: Transitorios y flares en blazares Ondas Gravitacionales Campañas multi-onda Nuevos fenómenos transitorios: Fast Radio Burst Correlación con detección de neutrinos Materia oscura: observación de galaxias satétiles Rayos Cósmicos: anisotropía Meteorología Espacial SWGO ayudará al entendimiento de todos estos fenómenos con su monitoreo constante en gran parte del cielo VER White paper: arXiv1902.08429 (feb. 2019) !44
Sitios !45
Sitios posibles: Condiciones: 4400-5000 msnm; 10-30o latitud Sur. Solo en Sudamérica: Argentina, Bolivia, Chile, Perú Estudio realizado para CTA. Datos radar en satélite. Área mínima 1km2 Elevation Key >2500m >3000m >3500m >4000m >4500m Dave Fegan (2005) >5000m !46
Sitios posibles: Condiciones: 4400-5000 msnm; 10-30o latitud Sur. Solo en Sudamérica: Argentina, Bolivia, Chile, Perú Estudio realizado para CTA. Datos radar en satélite. Área mínima 1km2 Elevation Key >2500m >3000m >3500m >4000m >4500m >5000m !47
Sitios posibles: Condiciones: ~5000 msnm; 20-30o latitud Sur. Solo en Sudamérica: Argentina, Bolivia, Chile, “Perú” !48
Sitio argentino propuesto: Cerro Vecar: Sitios de LLAMA y QUBIC. 30 km de San Antonio de los Cobres, Salta. !49
Sitio argentino propuesto: Observatorios Comodato LLAMA QUBIC SGSO !50
Colaboración SGSO: Visita a Salta delegación 14 personas (dic. 2017) !51
Colaboración SGSO: Antecedentes Puebla (2016); Rochester (2017), en conjunto con HAWC. Buenos Aires, diciembre 2017: formación Alianza SGSO Ahora 125 personas, 18 países: Alemania, Argentina, Brasil, Chile, España, EEUU, Francia, Israel, Italia, Japón, México, Países Bajos, Perú, Polonia, Reino Unido, Suecia, Sudáfrica, Suiza. Visita a Salta delegación 14 personas. Heidelberg (2018): primera reunión como SGSO Lisboa (mayo 2019): discusión algún tipo de formalización !52
Sitio argentino propuesto: Vistas Volcan Tuzgle Cerro Vecar Visita al sitio de comitiva internacional (dic. 2017) !53
Colaboración argentina: En formación Comunidad: Auger, CTA + Universidad Nacional de Salta La participación de la UNSa es muy importante por su localía. Motivación actual: • blazares: • origen de RC • meteorologia espacial • desarrollo de detectores, simulaciones • procesamiento y almacenamiento de datos Tareas a corto y mediano plazo: • Presentación a la Secretaría de CyT [hecho: oct-2019] • Instalación de prototipo en el sitio [PICT 2018] • Simulaciones del detector (empezando por el prototipo) • Estudios de impacto y factibilidad (agua): INTI Salta. [iniciado: ene-2020] • Estudios geotécnicos: INENCO, UNSa. • Próximo hito: elección del sitio ~2021-22 !54
Colaboración argentina: En formación Firmantes del SoI: Necesitamos: • participación de locales: más visibilidad internacional • recursos: viajes, prototipo en el sitio, etc. • infraestructura en el sitio: electricidad, conectividad • determinar con certeza la disponibilidad de agua. Grupos de Trabajo: !55
Conclusions ◉Strong motivation for a southern hemisphere wide field of view high duty cycle detector! ✦ SWGO – 3 year design/preparation period ! project launch! ◉Strong complementarity between SWGO & CTA ✦ Triggering CTA: flares and transients ✦ Detecting hard spectrum sources ! CTA follow-up ✦ Large scale emission complementing CTAs detailed view Argentinian Collaboration: ✦ Triggering CTA: flares and transients ◉Argentinian Collaboration ✦ Three institution signed the SoI (Members of the Steering Committee) ✦ Financing is being requested ✦ Participation is crucial for the Argentinian site proposal. 56
You can also read