Seafloor microplastic hotspots controlled by deep-sea circulation

Page created by Dale Fox
 
CONTINUE READING
Seafloor microplastic hotspots controlled by deep-sea circulation
REPORTS

                                                                                                                             Cite as: I. A. Kane et al., Science
                                                                                                                             10.1126/science.aba5899 (2020).

Seafloor microplastic hotspots controlled by deep-sea
circulation
Ian A. Kane1*, Michael A. Clare2, Elda Miramontes3,4, Roy Wogelius1, James J. Rothwell5,
Pierre Garreau6, Florian Pohl7
1School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK. 2National Oceanography Centre, University of Southampton Waterfront
Campus, Southampton SO14 3ZH, UK. 3Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany. 4MARUM-Center for Marine Environmental Sciences,
University of Bremen, 28359 Bremen, Germany. 5Department of Geography, University of Manchester, Manchester M13 9PL, UK. 6IFREMER, Univ. Brest, CNRS UMR 6523,
IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France. 7Department of Earth Sciences, Durham University, Durham DH1 3LE, UK.
*Corresponding author. Email: ian.kane@manchester.ac.uk

While microplastics are known to pervade the global seafloor, the processes that control their dispersal and

                                                                                                                                                                     Downloaded from http://science.sciencemag.org/ on December 23, 2020
concentration in the deep sea remain largely unknown. Here we show that thermohaline-driven currents,
which build extensive seafloor sediment accumulations, can control the distribution of microplastics and
create hotspots of up to 1.9 million pieces m−2. This is the highest reported value for any seafloor setting,
globally. Previous studies propose that microplastics are transported to the seafloor by vertical settling
from surface accumulations; here we demonstrate that the spatial distribution and ultimate fate of
microplastics is strongly controlled by near-bed thermohaline currents (bottom currents). These currents
are known to supply oxygen and nutrients to deep sea benthos, suggesting that deep sea biodiversity
hotspots are also likely to be microplastic hotspots.

Plastic pollution has been observed in nearly all environ-                              Microplastics on the deep seafloor are preferentially fo-
ments on Earth (1) and across all of its oceans (2–4). The ef-                      cused within distinct physiographic settings, rather than cor-
fects of plastic pollution on marine ecosystems and                                 responding to the extent of overlying surface garbage patches
implications for human health are of growing concern, as                            (7, 19). Submarine canyons and deep ocean trenches, which
more than ten million tonnes of plastic enter the global ocean                      are foci for episodic, yet powerful, gravity flows, appear to be
each year (4–6). Converging surface currents in oceanic gyres                       microplastic hotspots (7, 20, 25–27) (Fig. 2A). This physio-
are responsible for the global distribution of plastics on the                      graphic bias suggests that the transfer of microplastics to and
ocean surface (2, 3). These gyres effectively concentrate posi-                     across the deep seafloor is therefore not solely explained by
tively buoyant plastics into the now infamous “garbage                              vertical settling from surface gyres. In the same manner as
patches” (2, 3). However, sea surface accumulations only ac-                        surface currents disperse and concentrate microplastics, it is
count for approximately 1% of the estimated global marine                           likely that deep sea currents play a similar role (26, 28), yet a
plastic budget (3, 4, 7, 8). Most of the missing 99% of plastic                     paucity of contextual data (e.g., bathymetric, oceanographic,
ends up in the deep sea (7–9) (Fig. 1A). A considerable pro-                        and sedimentological) hinders the linkage of physical
portion [estimated at 13.5% (8)] of the marine plastic budget                       transport processes to the distribution and ultimate fate of
occurs as microplastics: small (
Seafloor microplastic hotspots controlled by deep-sea circulation
resolution seafloor and ocean circulation data afford the spa-     seafloor as determined from hydrodynamic modeling (Fig.
tial and temporal context to investigate our key questions. We     3B). These variations in shear stress explain the localized sea-
analyze data from the Tyrrhenian Sea, where ocean water cir-       floor distribution of microplastic particles, which typically
culation is driven by the East Corsican Current (ECC) and its      have lower densities than silt- and sand-forming minerals
return branch (Figs. 1C and 2E) which reaches local velocities     and therefore are more easily entrained (39), accounting for
of >0.4 m s−1 near the surface and >0.2 m s−1 near the seafloor    depleted levels of microplastic within certain physiographic
(30). The strongest bottom currents generally occur between        domains and concentration within others (Figs. 2D and 3C).
600 and 900 m water depth, where they actively sculpt exten-       The lowest concentrations of microplastics are found within
sive muddy contourite drifts [Fig. 1D;
Seafloor microplastic hotspots controlled by deep-sea circulation
more widely the Mediterranean Sea, circulating contour cur-        REFERENCES AND NOTES
rents are likely to preferentially accumulate microplastics
                                                                   1. M. L. Taylor, C. Gwinnett, L. F. Robinson, L. C. Woodall, Plastic microfibre ingestion
within contourite drifts. On open continental slopes, contour          by deep-sea organisms. Sci. Rep. 6, 33997 (2016). doi:10.1038/srep33997
currents may disperse rather than concentrate microplastics.           Medline
In such settings, they may play a key role in their spatial seg-   2. M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F.
regation into hotspots.                                                Galgani, P. G. Ryan, J. Reisser, Plastic pollution in the world’s oceans: More than 5
                                                                       trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE 9,
    We have shown that the overall pattern of bottom cur-              e111913 (2014). doi:10.1371/journal.pone.0111913 Medline
rents controls the distribution of microplastics at seafloor.      3. E. van Sebille, C. Wilcox, L. Lebreton, N. Maximenko, B. D. Hardesty, J. A. van
Numerical modeling and direct measurements in the Tyrrhe-              Franeker, M. Eriksen, D. Siegel, F. Galgani, K. L. Law, A global inventory of small
nian Sea reveal a pronounced seasonal variation in bottom              floating plastic debris. Environ. Res. Lett. 10, 124006 (2015). doi:10.1088/1748-
                                                                       9326/10/12/124006
current velocities, with bottom currents being most intense        4. J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R.
in the winter (31). Modeling of microplastic transport shows           Narayan, K. L. Law, Plastic waste inputs from land into the ocean. Science 347,
that some of the near-bed bottom current shear stresses are            768–771 (2015). doi:10.1126/science.1260352 Medline
close to, or in excess of, that required to entrain both fibers    5. R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever
                                                                       made. Sci. Adv. 3, e1700782 (2017). doi:10.1126/sciadv.1700782 Medline

                                                                                                                                                                  Downloaded from http://science.sciencemag.org/ on December 23, 2020
and fragments (Figs. 3A and 4). While low intensity currents       6. L. C. M. Lebreton, J. van der Zwet, J.-W. Damsteeg, B. Slat, A. Andrady, J. Reisser,
in the summer may allow for the accumulation of microplas-             River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017).
tics at seafloor, at some locations (in particular contourite          doi:10.1038/ncomms15611 Medline
moats) previously deposited microplastics may be re-ex-            7. R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D.
                                                                       McGonigle, A. E. Russell, Lost at sea: Where is all the plastic? Science 304, 838–
humed as shear stresses exceed the critical boundary for re-           838 (2004). doi:10.1126/science.1094559 Medline
mobilization and suspension (Fig. 3A). More powerful, but          8. A. A. Koelmans, M. Kooi, K. L. Law, E. van Sebille, All is not lost: Deriving a top-down
ephemeral seafloor flows such as gravity currents that have            mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017).
been recorded in deep-sea submarine canyons, can reach ve-             doi:10.1088/1748-9326/aa9500
                                                                   9. C. A. Choy, B. H. Robison, T. O. Gagne, B. Erwin, E. Firl, R. U. Halden, J. A. Hamilton,
locities two order of magnitude greater than the bottom cur-           K. Katija, S. E. Lisin, C. Rolsky, K. S. Van Houtan, The vertical distribution and
rents in the Tyrrhenian Sea (up to 20 ms−1) and can last for           biological transport of marine microplastics across the epipelagic and
several days (40–42). These powerful events will undoubtedly           mesopelagic water column. Sci. Rep. 9, 7843 (2019). doi:10.1038/s41598-019-
flush accumulated microplastics either further down-slope              44117-2 Medline
                                                                   10. L. Van Cauwenberghe, L. Devriese, F. Galgani, J. Robbens, C. R. Janssen,
(43) or loft them for recirculation by thermohaline bottom             Microplastics in sediments: A review of techniques, occurrence and effects. Mar.
currents (Fig. 5). Such gravity flows play a globally important        Environ. Res. 111, 5–17 (2015). doi:10.1016/j.marenvres.2015.06.007 Medline
role in the lateral transport of lightweight particulate matter    11. A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, L. Da Ros,
such as organic carbon (41, 44); hence, it stands to reason            Microplastic particles in sediments of Lagoon of Venice, Italy: First observations
                                                                       on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 130,
that they should also be important for microplastics                   54–61 (2013). doi:10.1016/j.ecss.2013.03.022
transport. Episodic flushing of submarine canyons (41, 42, 45)     12. V. Zitko, M. Hanlon, Another source of pollution by plastics: Skin cleaners with
suggests that canyons may only be temporary microplastic               plastic scrubbers. Mar. Pollut. Bull. 22, 41–42 (1991). doi:10.1016/0025-
storage sites (26). This is analogous to rivers where flooding         326X(91)90444-W
                                                                   13. S. A. Mason, D. Garneau, R. Sutton, Y. Chu, K. Ehmann, J. Barnes, P. Fink, D.
can flush high levels of microplastics downstream (46).                Papazissimos, D. L. Rogers, Microplastic pollution is widely detected in US
    Bottom currents are efficient conveyors of nutrients and           municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054
oxygen, and consequently dictate the location of important             (2016). doi:10.1016/j.envpol.2016.08.056 Medline
biodiversity hotspots (41, 47–49). Unfortunately, we show          14. M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway, R.
                                                                       Thompson, Accumulation of microplastic on shorelines worldwide: Sources and
that the same seafloor currents can also transport and em-             sinks. Environ. Sci. Technol. 45, 9175–9179 (2011). doi:10.1021/es201811s
place microplastics. The highest concentrations of microplas-          Medline
tics on the seafloor occur in contourite drifts formed by          15. A. L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–
bottom currents, and their distribution is controlled by spa-          1605 (2011). doi:10.1016/j.marpolbul.2011.05.030 Medline
                                                                   16. X. Tubau, M. Canals, G. Lastras, X. Rayo, J. Rivera, D. Amblas, Marine litter on the
tial variations in current intensity. How effectively microplas-       floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role
tics are buried, or become re-exhumed (and hence become                of hydrodynamic processes. Prog. Oceanogr. 134, 379–403 (2015).
more available for trophic transfer) depends on temporal               doi:10.1016/j.pocean.2015.03.013
fluctuations in current intensity. Although there are ongoing      17. E. D. Goldberg, Plasticizing the seafloor: An overview. Environ. Technol. 18, 195–
                                                                       201 (1997). doi:10.1080/09593331808616527
efforts to reduce the release of plastics into the environment,    18. A. Ballent, A. Purser, P. de Jesus Mendes, S. Pando, L. Thomsen, Physical transport
our oceans will continue to be impacted by the legacy of past          properties of marine microplastic pollution. Biogeosciences Discuss. 9, 18755–
waste mismanagement (4, 5, 8, 50). Seafloor currents will play         18798 (2012). doi:10.5194/bgd-9-18755-2012
a crucial role in the future transfer and storage of microplas-    19. C. K. Pham, E. Ramirez-Llodra, C. H. S. Alt, T. Amaro, M. Bergmann, M. Canals, J.
                                                                       B. Company, J. Davies, G. Duineveld, F. Galgani, K. L. Howell, V. A. I. Huvenne, E.
tics in the deep ocean.                                                Isidro, D. O. B. Jones, G. Lastras, T. Morato, J. N. Gomes-Pereira, A. Purser, H.
                                                                       Stewart, I. Tojeira, X. Tubau, D. Van Rooij, P. A. Tyler, Marine litter distribution and

First release: 30 April 2020                           www.sciencemag.org             (Page numbers not final at time of first release)                      3
Seafloor microplastic hotspots controlled by deep-sea circulation
density in European seas, from the shelves to deep basins. PLOS ONE 9, e95839            38. A. Sanchez-Vidal, R. C. Thompson, M. Canals, W. P. de Haan, The imprint of
     (2014). doi:10.1371/journal.pone.0095839 Medline                                             microfibres in southern European deep seas. PLOS ONE 13, e0207033 (2018).
20. L. C. Woodall, A. Sanchez-Vidal, M. Canals, G. L. Paterson, R. Coppock, V. Sleight,           doi:10.1371/journal.pone.0207033 Medline
     A. Calafat, A. D. Rogers, B. E. Narayanaswamy, R. C. Thompson, The deep sea is a         39. I. A. Kane, M. A. Clare, Dispersion, accumulation, and the ultimate fate of
     major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014).                      microplastics in deep-marine environments: A review and future directions. Front.
     doi:10.1098/rsos.140317 Medline                                                              Earth Sci. 7, 80 (2019). doi:10.3389/feart.2019.00080
21. V. Fischer, N. O. Elsner, N. Brenke, E. Schwabe, A. Brandt, Plastic pollution of the      40. D. J. Piper, P. Cochonat, M. L. Morrison, The sequence of events around the
     Kuril–Kamchatka Trench area (NW pacific). Deep Sea Res. Part II Top. Stud.                   epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and
     Oceanogr. 111, 399–405 (2015). doi:10.1016/j.dsr2.2014.08.012                                turbidity current inferred from sidescan sonar. Sedimentology 46, 79–97 (1999).
22. W. Courtene-Jones, B. Quinn, S. F. Gary, A. O. M. Mogg, B. E. Narayanaswamy,                  doi:10.1046/j.1365-3091.1999.00204.x
     Microplastic pollution identified in deep-sea water and ingested by benthic              41. M. Azpiroz-Zabala, M. J. B. Cartigny, P. J. Talling, D. R. Parsons, E. J. Sumner, M. A.
     invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 231,             Clare, S. M. Simmons, C. Cooper, E. L. Pope, Newly recognized turbidity current
     271–280 (2017). doi:10.1016/j.envpol.2017.08.026 Medline                                     structure can explain prolonged flushing of submarine canyons. Sci. Adv. 3,
23. A. J. Underwood, M. G. Chapman, M. A. Browne, Some problems and practicalities                e1700200 (2017). doi:10.1126/sciadv.1700200 Medline
     in design and interpretation of samples of microplastic waste. Anal. Methods 9,          42. J. J. Mountjoy, J. D. Howarth, A. R. Orpin, P. M. Barnes, D. A. Bowden, A. A. Rowden,
     1332–1345 (2017). doi:10.1039/C6AY02641A                                                     A. C. G. Schimel, C. Holden, H. J. Horgan, S. D. Nodder, J. R. Patton, G. Lamarche,
24. A. R. Thurber, A. K. Sweetman, B. E. Narayanaswamy, D. O. B. Jones, J. Ingels, R.             M. Gerstenberger, A. Micallef, A. Pallentin, T. Kane, Earthquakes drive large-scale
     L. Hansman, Ecosystem function and services provided by the deep sea.                        submarine canyon development and sediment supply to deep-ocean basins. Sci.

                                                                                                                                                                                            Downloaded from http://science.sciencemag.org/ on December 23, 2020
     Biogeosciences 11, 3941–3963 (2014). doi:10.5194/bg-11-3941-2014                             Adv. 4, eaar3748 (2018). doi:10.1126/sciadv.aar3748 Medline
25. D. K. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Accumulation and                     43. F. Pohl, J. T. Eggenhuisen, I. A. Kane, M. A. Clare, Transport and burial of
     fragmentation of plastic debris in global environments. Philos. Trans. R. Soc.               microplastics in deep-marine sediments by turbidity currents. Environ. Sci.
     London Ser. B 364, 1985–1998 (2009). doi:10.1098/rstb.2008.0205 Medline                      Technol. 54, 4180–4189 (2020). doi:10.1021/acs.est.9b07527 Medline
26. A. Ballent, S. Pando, A. Purser, M. F. Juliano, L. Thomsen, Modelled transport of         44. V. Galy, C. France-Lanord, O. Beyssac, P. Faure, H. Kudrass, F. Palhol, Efficient
     benthic marine microplastic pollution in the Nazaré Canyon. Biogeosciences 10,               organic carbon burial in the Bengal fan sustained by the Himalayan erosional
     7957–7970 (2013). doi:10.5194/bg-10-7957-2013                                                system. Nature 450, 407–410 (2007). doi:10.1038/nature06273 Medline
27. X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai,       45. M. Canals, P. Puig, X. D. de Madron, S. Heussner, A. Palanques, J. Fabres, Flushing
     Microplastics contaminate the deepest part of the world’s ocean. Geochem.                    submarine canyons. Nature 444, 354–357 (2006). doi:10.1038/nature05271
     Perspect. Lett. 9, 1–5 (2018). doi:10.7185/geochemlet.1829                                   Medline
28. I. E. Chubarenko, I. E. Esiukova, A. Bagaev, I. Isachenko, N. Demchenko, M. Zobkov,       46. R. Hurley, J. Woodward, J. J. Rothwell, Microplastic contamination of river beds
     I. Efimova, M. Bagaeva, L. Khatmullina, “Behavior of microplastics in coastal                significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257
     zones” in Microplastic Contamination in Aquatic Environments (Elsevier, 2018),               (2018). doi:10.1038/s41561-018-0080-1
    pp. 175–223.                                                                              47. S. J. Hall, The continental shelf benthic ecosystem: Current status, agents for
29. M. Rebesco, F. J. Hernández-Molina, D. Van Rooij, A. Wåhlin, Contourites and                  change and future prospects. Environ. Conserv. 29, 350–374 (2002).
     associated sediments controlled by deep-water circulation processes: State-of-               doi:10.1017/S0376892902000243
    the-art and future considerations. Mar. Geol. 352, 111–154 (2014).                        48. C. Treignier, S. Derenne, A. Saliot, Terrestrial and marine n-alcohol inputs and
     doi:10.1016/j.margeo.2014.03.011                                                             degradation processes relating to a sudden turbidity current in the Zaire canyon.
30. S. Vignudelli, P. Cipollini, M. Astraldi, G. P. Gasparini, G. Manzella, Integrated use        Org. Geochem. 37, 1170–1184 (2006). doi:10.1016/j.orggeochem.2006.03.010
     of altimeter and in situ data for understanding the water exchanges between the          49. A. J. Davies, G. C. A. Duineveld, M. S. S. Lavaleye, M. J. N. Bergman, H. van Haren,
     Tyrrhenian and Ligurian Seas. J. Geophys. Res. Oceans 105, 19649–19663                       J. M. Roberts, Downwelling and deep‐water bottom currents as food supply
     (2000). doi:10.1029/2000JC900083                                                             mechanisms to the cold‐water coral Lophelia pertusa (Scleractinia) at the
31. E. Miramontes, P. Garreau, M. Caillaud, G. Jouet, R. Pellen, F. J. Hernández-Molina,          Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).
     M. A. Clare, A. Cattaneo, Contourite distribution and bottom currents in the NW              doi:10.4319/lo.2009.54.2.0620
     Mediterranean Sea: Coupling seafloor geomorphology and hydrodynamic                      50. D. Xanthos, T. R. Walker, International policies to reduce plastic marine pollution
     modeling.            Geomorphology              333,          43–60           (2019).        from single-use plastics (plastic bags and microbeads): A review. Mar. Pollut. Bull.
     doi:10.1016/j.geomorph.2019.02.030                                                           118, 17–26 (2017). doi:10.1016/j.marpolbul.2017.02.048 Medline
32. G. Dalla Valle, F. Gamberi, Slope channel formation, evolution and backfilling in a       51. A. Shields, “Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung
     wide shelf, passive continental margin (Northeastern Sardinia slope, Central                 auf die Geschiebebewegung,” thesis, Technische Universität Berlin (Preussischen
     Tyrrhenian         Sea).        Mar.      Geol.      286,       95–105         (2011).       Versuchsanstalt für Wasserbau, 1936).
     doi:10.1016/j.margeo.2011.06.005                                                         52. L. C. van Rijn, Sediment transport, part II: Suspended load transport. J. Hydraul.
33. I. N. McCave, Formation of sediment waves by turbidity currents and geostrophic               Eng. 110, 1613–1641 (1984). doi:10.1061/(ASCE)0733-9429(1984)110:11(1613)
     flows:      A      discussion.       Mar.      Geol.    390,      89–93       (2017).    53. Y. Niño, F. Lopez, M. Garcia, Threshold for particle entrainment into suspension.
     doi:10.1016/j.margeo.2017.05.003                                                             Sedimentology 50, 247–263 (2003). doi:10.1046/j.1365-3091.2003.00551.x
34. S. Liubartseva, G. Coppini, R. Lecci, E. Clementi, Tracking plastics in the               54. I. Kane, M. A. Clare, E. Miramontes, R. Wogelius, J. J. Rothwell, P. Garreau, F. Pohl,
     Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull. 129, 151–162 (2018).                  Seafloor microplastic hotspots controlled by deep-sea circulation, Dryad (2020);
     doi:10.1016/j.marpolbul.2018.02.019 Medline                                                  https://doi.org/10.5061/dryad.tht76hdwf.
35. C. Cencini, Physical processes and human activities in the evolution of the Po            55. M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck, C. R. Janssen,
     delta, Italy. J. Coast. Res. 14, 774–793 (1998).                                             Occurrence and distribution of microplastics in marine sediments along the
36. D. A. Kroodsma, J. Mayorga, T. Hochberg, N. A. Miller, K. Boerder, F. Ferretti, A.            Belgian       coast.     Mar.     Pollut.    Bull.     62,     2199–2204       (2011).
     Wilson, B. Bergman, T. D. White, B. A. Block, P. Woods, B. Sullivan, C. Costello, B.         doi:10.1016/j.marpolbul.2011.06.030 Medline
     Worm, Tracking the global footprint of fisheries. Science 359, 904–908 (2018).           56. L. Van Cauwenberghe, A. Vanreusel, J. Mees, C. R. Janssen, Microplastic pollution
     doi:10.1126/science.aao5646 Medline                                                          in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013).
37. M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M. B. Tekman, G.               doi:10.1016/j.envpol.2013.08.013 Medline
     Gerdts, High quantities of microplastic in arctic deep-sea sediments from the            57. J. H. Dekiff, D. Remy, J. Klasmeier, E. Fries, Occurrence and spatial distribution of
     HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).                       microplastics in sediments from Norderney. Environ. Pollut. 186, 248–256
     doi:10.1021/acs.est.7b03331 Medline                                                          (2014). doi:10.1016/j.envpol.2013.11.019 Medline

First release: 30 April 2020                                                  www.sciencemag.org                 (Page numbers not final at time of first release)                     4
Seafloor microplastic hotspots controlled by deep-sea circulation
58. V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, M. Thiel, Microplastics in the marine            seafloor circulation patterns. F.P. integrated microplastic and sediment
     environment: A review of the methods used for identification and quantification.          transport modeling work, R.W. analyzed FT-IR spectra. All authors contributed to
     Environ. Sci. Technol. 46, 3060–3075 (2012). doi:10.1021/es2031505 Medline                writing the manuscript. Competing interests: The authors declare no competing
59. R. L. Coppock, M. Cole, P. K. Lindeque, A. M. Queirós, T. S. Galloway, A small-scale,      interests. Data and materials availability: The data that support the findings of
     portable method for extracting microplastics from marine sediments. Environ.              this study are available from https://doi.org/10.5061/dryad.tht76hdwf (54).
     Pollut. 230, 829–837 (2017). doi:10.1016/j.envpol.2017.07.017 Medline
60. B. De Witte, L. Devriese, K. Bekaert, S. Hoffman, G. Vandermeersch, K. Cooreman,        SUPPLEMENTARY MATERIALS
     J. Robbens, Quality assessment of the blue mussel (Mytilus edulis): Comparison         science.sciencemag.org/cgi/content/full/science.aba5899/DC1
     between commercial and wild types. Mar. Pollut. Bull. 85, 146–155 (2014).              Materials and Methods
     doi:10.1016/j.marpolbul.2014.06.006 Medline                                            Figs. S1 to S5
61. P. L. Corcoran, M. C. Biesinger, M. Grifi, Plastics and beaches: A degrading            Table S1
     relationship.        Mar.       Pollut.     Bull.     58,      80–84        (2009).    References (55–72)
     doi:10.1016/j.marpolbul.2008.08.022 Medline                                            Data S1
62. M. R. Jung, F. D. Horgen, S. V. Orski, V. Rodriguez C., K. L. Beers, G. H. Balazs, T.
     T. Jones, T. M. Work, K. C. Brignac, S.-J. Royer, K. D. Hyrenbach, B. A. Jensen, J.    16 December 2019; accepted 9 April 2020
     M. Lynch, Validation of ATR FT-IR to identify polymers of plastic marine debris,       Published online 30 April 2020
     including those ingested by marine organisms. Mar. Pollut. Bull. 127, 704–716          10.1126/science.aba5899
     (2018). doi:10.1016/j.marpolbul.2017.12.061 Medline

                                                                                                                                                                                   Downloaded from http://science.sciencemag.org/ on December 23, 2020
63. N. P. Edwards, H. E. Barden, B. E. van Dongen, P. L. Manning, P. L. Larson, U.
     Bergmann, W. I. Sellers, R. A. Wogelius, Infrared mapping resolves soft tissue
     preservation in 50 million year-old reptile skin. Proc. Biol. Sci. 278, 3209–3218
     (2011). doi:10.1098/rspb.2011.0135 Medline
64. I. N. McCave, B. Manighetti, S. G. Robinson, Sortable silt and fine sediment
     size/composition slicing: Parameters for palaeocurrent speed and
     palaeoceanograpy.           Paleoceanography         10,     593–610         (1995).
     doi:10.1029/94PA03039
65. B. Graca, K. Szewc, D. Zakrzewska, A. Dołęga, M. Szczerbowska-Boruchowska,
     Sources and fate of microplastics in marine and beach sediments of the Southern
     Baltic Sea—a preliminary study. Environ. Sci. Pollut. Res. Int. 24, 7650–7661
     (2017). doi:10.1007/s11356-017-8419-5 Medline
66. H. A. Leslie, S. H. Brandsma, M. J. M. van Velzen, A. D. Vethaak, Microplastics en
     route: Field measurements in the Dutch river delta and Amsterdam canals,
     wastewater treatment plants, North Sea sediments and biota. Environ. Int. 101,
     133–142 (2017). doi:10.1016/j.envint.2017.01.018 Medline
67. J. Martin, A. Lusher, R. C. Thompson, A. Morley, The deposition and accumulation
     of microplastics in marine sediments and bottom water from the Irish continental
     shelf. Sci. Rep. 7, 10772 (2017). doi:10.1038/s41598-017-11079-2 Medline
68. L. D. K. Kanhai, C. Johansson, J. P. G. L. Frias, K. Gardfeldt, R. C. Thompson, I.
     O’Connor, Deep sea sediments of the Arctic Central Basin: A potential sink for
     microplastics. Deep Sea Res. Part I Oceanogr. Res. Pap. 145, 137–142 (2019).
     doi:10.1016/j.dsr.2019.03.003
69. P. Lazure, F. Dumas, An external–internal mode coupling for a 3D hydrodynamical
     model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250
     (2008). doi:10.1016/j.advwatres.2007.06.010
70. T. Duhaut, M. Honnorat, L. Debreu, Développements numériques pour le modele
     MARS. Contrat Prévimer–Ref 9, 211 (2008).
71. F. Léger, C. Lebeaupin Brossier, H. Giordani, T. Arsouze, J. Beuvier, M.-N. Bouin, É.
     Bresson, V. Ducrocq, N. Fourrié, M. Nuret, Dense water formation in the north‐
     western Mediterranean area during HyMeX‐SOP2 in 1/36° ocean simulations:
     Sensitivity to initial conditions. J. Geophys. Res. Oceans 121, 5549–5569 (2016).
     doi:10.1002/2015JC011542
72. H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, 2016).
ACKNOWLEDGMENTS
We sincerely thank Thomas Bishop and John Moore in the Department of Geography
   at The University of Manchester for their help with a range of analyses. We thank
   the staff at the British Ocean Sediment Core Research Facility (BOSCORF) for
   access to sediment cores. We thank GALSI PROJECT for access to survey data.
   The constructive comments of David Piper and two anonymous reviewers, and
   the editorial work of Jesse Smith, are gratefully acknowledged. Funding: M.A.C.
   was supported by the CLASS program (NERC Grant No. NE/R015953/1).
   Author contributions: I.A.K. and M.A.C. conceived and designed the study, and
   sub-sampled core samples. I.A.K. carried out the microplastic extraction and
   analysis. M.A.C. and I.A.K. analyzed seafloor, subsurface data and integrated
   microplastics concentrations with modeling outputs. E.M. and P.G. modeled the

First release: 30 April 2020                                                www.sciencemag.org              (Page numbers not final at time of first release)                 5
Downloaded from http://science.sciencemag.org/ on December 23, 2020

First release: 30 April 2020   www.sciencemag.org   (Page numbers not final at time of first release)   6
Fig. 1. Plastic sources and ocean circulation affecting the Tyrrhenian Sea. (A) Location of
               study area in the Tyrrhenian Sea, annotated with published terrestrial (~80%) and maritime
               (fishing and shipping; ~20%) plastic sources (34). Terrestrial input sources shown as circles
               and diamonds. Vessel traffic and shipping lanes shown as dashed black lines. Modeled (and
               hence inferred) plastic debris fluxes on the Mediterranean seafloor illustrated as a blue-
               green-red backdrop. The period modeled was for 2013–2017, assuming vertical settling
               from surface distributions using a 2D Lagrangian model (34). Inferred values in the North
               Tyrrhenian Sea are
Downloaded from http://science.sciencemag.org/ on December 23, 2020
                         Fig. 2. Global and local abundance of seafloor microplastics.
                         (A) Comparison of microfiber abundance in different deep-sea settings
                         worldwide (see references in supplementary material), demonstrating the
                         high concentrations observed in the contourite drift deposits in the
                         Tyrrhenian Sea. Results from the Tyrrhenian sea illustrating: (B) how
                         microplastic abundance does not decrease with distance from terrestrial
                         input sources; (C) microplastics appear to be concentrated within a depth
                         range of c. 600 to 900 m; (D) microplastic concentration is biased toward
                         physiographic domains, in particular enhanced within mounded drifts, and
                         depleted within moats. (E) A 3D rendering (perspective view looking toward
                         the south-west) of the regional EMODNet bathymetry (greyscale) and AUV
                         bathymetry (colored) shows the relationship of sediment samples to the
                         local seafloor currents (10 × vertical exaggeration). Horizontal distance
                         from bottom left core (red) to top left (green) is approximately 100 km,
                         compare to map view in Fig. 1C. Inset microscope photographs show
                         representative examples of fibers and fragments extracted from the
                         sediment.
First release: 30 April 2020                        www.sciencemag.org     (Page numbers not final at time of first release)   8
Downloaded from http://science.sciencemag.org/ on December 23, 2020
                         Fig. 3. Influence of bottom currents on the distribution of seafloor
                         microplastics. (A) As near bed-shear stresses initially increase, so does the
                         concentration of microplastics; however, when a threshold (c. 0.04 N m−2)
                         is exceeded, there is a sudden reduction in the abundance of microplastics.
                         This corresponds to the modeled threshold of motion based on empirical
                         approaches (Fig. 4 and fig. S6). (B) Hydrodynamic modeling of bottom
                         current circulation shows the formation of seafloor gyres, with corridors of
                         enhanced bed-shear stress along the continental slope and particularly
                         focused within contourite moats and on the flanks of a prominent
                         seamount. 90th percentile for bed shear stress and mean near-bed (bottom
                         current) velocity are shown (see supplementary material). This focusing of
                         bottom current intensity explains the limited abundance of microplastics on
                         the shelf, upper continental slope and within contourite moats (C). Zones of
                         lower shear-stresses adjacent to these corridors of elevated currents
                         (where mounded contourite drifts form) feature the highest concentrations
                         of microplastics.
First release: 30 April 2020                          www.sciencemag.org     (Page numbers not final at time of first release)   9
Fig. 4. Relating microplastics to seafloor shear
                                                                   stress. Flow regime diagram to show that the critical
                                                                   shear stress required to move particles [i.e., above
                                                                   the dashed grey line (51)] falls between 0.03 and
                                                                   0.04 N m−2, and that suspension, i.e., within or above
                                                                   the grey filled area (52, 53), may occur >0.1 N m−2.
                                                                   Two densities of microplastics are assumed (nylon
                                                                   and polyethylene) based on the results of FTIR
                                                                   analysis. Three particle sizes for microplastics are
                                                                   shown, to represent the general range observed
                                                                   through visual microscopic examination [0.1 mm
                                                                   (red symbols), 0.5 mm (blue) and 1 mm (green)
                                                                   width]. The upper and lower bound measured grain
                                                                   size (D90) for the host sediment are also shown by
                                                                   grey symbols.

                                                                                                                                   Downloaded from http://science.sciencemag.org/ on December 23, 2020
                        Fig. 5. Bottom currents control the deep-sea fate of microplastics.
                        Schematic diagram illustrating the role of near bed currents in the transfer,
                        concentration and storage of microplastic in the deep sea. Along shelf
                        currents disperse microplastics, powerful gravity flows effectively flush
                        microplastic to the deep sea, while thermohaline-drive bottom currents
                        segregate microplastics into localized hotspots of high concentration; the
                        effectiveness of their long-term sequestration depends upon the intensity of
                        subsequent bottom current activity and rate of burial.

First release: 30 April 2020                         www.sciencemag.org     (Page numbers not final at time of first release) 10
Seafloor microplastic hotspots controlled by deep-sea circulation
Ian A. Kane, Michael A. Clare, Elda Miramontes, Roy Wogelius, James J. Rothwell, Pierre Garreau and Florian Pohl

published online April 30, 2020

                                                                                                                        Downloaded from http://science.sciencemag.org/ on December 23, 2020
  ARTICLE TOOLS                   http://science.sciencemag.org/content/early/2020/04/29/science.aba5899

  SUPPLEMENTARY                   http://science.sciencemag.org/content/suppl/2020/04/29/science.aba5899.DC1
  MATERIALS

  RELATED                         http://science.sciencemag.org/content/sci/368/6495/1055.full
  CONTENT

  REFERENCES                      This article cites 68 articles, 6 of which you can access for free
                                  http://science.sciencemag.org/content/early/2020/04/29/science.aba5899#BIBL

  PERMISSIONS                     http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of
Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.
Copyright © 2020, American Association for the Advancement of Science
You can also read