Seafloor microplastic hotspots controlled by deep-sea circulation
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
REPORTS Cite as: I. A. Kane et al., Science 10.1126/science.aba5899 (2020). Seafloor microplastic hotspots controlled by deep-sea circulation Ian A. Kane1*, Michael A. Clare2, Elda Miramontes3,4, Roy Wogelius1, James J. Rothwell5, Pierre Garreau6, Florian Pohl7 1School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK. 2National Oceanography Centre, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK. 3Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany. 4MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany. 5Department of Geography, University of Manchester, Manchester M13 9PL, UK. 6IFREMER, Univ. Brest, CNRS UMR 6523, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France. 7Department of Earth Sciences, Durham University, Durham DH1 3LE, UK. *Corresponding author. Email: ian.kane@manchester.ac.uk While microplastics are known to pervade the global seafloor, the processes that control their dispersal and Downloaded from http://science.sciencemag.org/ on December 23, 2020 concentration in the deep sea remain largely unknown. Here we show that thermohaline-driven currents, which build extensive seafloor sediment accumulations, can control the distribution of microplastics and create hotspots of up to 1.9 million pieces m−2. This is the highest reported value for any seafloor setting, globally. Previous studies propose that microplastics are transported to the seafloor by vertical settling from surface accumulations; here we demonstrate that the spatial distribution and ultimate fate of microplastics is strongly controlled by near-bed thermohaline currents (bottom currents). These currents are known to supply oxygen and nutrients to deep sea benthos, suggesting that deep sea biodiversity hotspots are also likely to be microplastic hotspots. Plastic pollution has been observed in nearly all environ- Microplastics on the deep seafloor are preferentially fo- ments on Earth (1) and across all of its oceans (2–4). The ef- cused within distinct physiographic settings, rather than cor- fects of plastic pollution on marine ecosystems and responding to the extent of overlying surface garbage patches implications for human health are of growing concern, as (7, 19). Submarine canyons and deep ocean trenches, which more than ten million tonnes of plastic enter the global ocean are foci for episodic, yet powerful, gravity flows, appear to be each year (4–6). Converging surface currents in oceanic gyres microplastic hotspots (7, 20, 25–27) (Fig. 2A). This physio- are responsible for the global distribution of plastics on the graphic bias suggests that the transfer of microplastics to and ocean surface (2, 3). These gyres effectively concentrate posi- across the deep seafloor is therefore not solely explained by tively buoyant plastics into the now infamous “garbage vertical settling from surface gyres. In the same manner as patches” (2, 3). However, sea surface accumulations only ac- surface currents disperse and concentrate microplastics, it is count for approximately 1% of the estimated global marine likely that deep sea currents play a similar role (26, 28), yet a plastic budget (3, 4, 7, 8). Most of the missing 99% of plastic paucity of contextual data (e.g., bathymetric, oceanographic, ends up in the deep sea (7–9) (Fig. 1A). A considerable pro- and sedimentological) hinders the linkage of physical portion [estimated at 13.5% (8)] of the marine plastic budget transport processes to the distribution and ultimate fate of occurs as microplastics: small (
resolution seafloor and ocean circulation data afford the spa- seafloor as determined from hydrodynamic modeling (Fig. tial and temporal context to investigate our key questions. We 3B). These variations in shear stress explain the localized sea- analyze data from the Tyrrhenian Sea, where ocean water cir- floor distribution of microplastic particles, which typically culation is driven by the East Corsican Current (ECC) and its have lower densities than silt- and sand-forming minerals return branch (Figs. 1C and 2E) which reaches local velocities and therefore are more easily entrained (39), accounting for of >0.4 m s−1 near the surface and >0.2 m s−1 near the seafloor depleted levels of microplastic within certain physiographic (30). The strongest bottom currents generally occur between domains and concentration within others (Figs. 2D and 3C). 600 and 900 m water depth, where they actively sculpt exten- The lowest concentrations of microplastics are found within sive muddy contourite drifts [Fig. 1D;
more widely the Mediterranean Sea, circulating contour cur- REFERENCES AND NOTES rents are likely to preferentially accumulate microplastics 1. M. L. Taylor, C. Gwinnett, L. F. Robinson, L. C. Woodall, Plastic microfibre ingestion within contourite drifts. On open continental slopes, contour by deep-sea organisms. Sci. Rep. 6, 33997 (2016). doi:10.1038/srep33997 currents may disperse rather than concentrate microplastics. Medline In such settings, they may play a key role in their spatial seg- 2. M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, J. C. Borerro, F. regation into hotspots. Galgani, P. G. Ryan, J. Reisser, Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLOS ONE 9, We have shown that the overall pattern of bottom cur- e111913 (2014). doi:10.1371/journal.pone.0111913 Medline rents controls the distribution of microplastics at seafloor. 3. E. van Sebille, C. Wilcox, L. Lebreton, N. Maximenko, B. D. Hardesty, J. A. van Numerical modeling and direct measurements in the Tyrrhe- Franeker, M. Eriksen, D. Siegel, F. Galgani, K. L. Law, A global inventory of small nian Sea reveal a pronounced seasonal variation in bottom floating plastic debris. Environ. Res. Lett. 10, 124006 (2015). doi:10.1088/1748- 9326/10/12/124006 current velocities, with bottom currents being most intense 4. J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. in the winter (31). Modeling of microplastic transport shows Narayan, K. L. Law, Plastic waste inputs from land into the ocean. Science 347, that some of the near-bed bottom current shear stresses are 768–771 (2015). doi:10.1126/science.1260352 Medline close to, or in excess of, that required to entrain both fibers 5. R. Geyer, J. R. Jambeck, K. L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017). doi:10.1126/sciadv.1700782 Medline Downloaded from http://science.sciencemag.org/ on December 23, 2020 and fragments (Figs. 3A and 4). While low intensity currents 6. L. C. M. Lebreton, J. van der Zwet, J.-W. Damsteeg, B. Slat, A. Andrady, J. Reisser, in the summer may allow for the accumulation of microplas- River plastic emissions to the world’s oceans. Nat. Commun. 8, 15611 (2017). tics at seafloor, at some locations (in particular contourite doi:10.1038/ncomms15611 Medline moats) previously deposited microplastics may be re-ex- 7. R. C. Thompson, Y. Olsen, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. G. John, D. McGonigle, A. E. Russell, Lost at sea: Where is all the plastic? Science 304, 838– humed as shear stresses exceed the critical boundary for re- 838 (2004). doi:10.1126/science.1094559 Medline mobilization and suspension (Fig. 3A). More powerful, but 8. A. A. Koelmans, M. Kooi, K. L. Law, E. van Sebille, All is not lost: Deriving a top-down ephemeral seafloor flows such as gravity currents that have mass budget of plastic at sea. Environ. Res. Lett. 12, 114028 (2017). been recorded in deep-sea submarine canyons, can reach ve- doi:10.1088/1748-9326/aa9500 9. C. A. Choy, B. H. Robison, T. O. Gagne, B. Erwin, E. Firl, R. U. Halden, J. A. Hamilton, locities two order of magnitude greater than the bottom cur- K. Katija, S. E. Lisin, C. Rolsky, K. S. Van Houtan, The vertical distribution and rents in the Tyrrhenian Sea (up to 20 ms−1) and can last for biological transport of marine microplastics across the epipelagic and several days (40–42). These powerful events will undoubtedly mesopelagic water column. Sci. Rep. 9, 7843 (2019). doi:10.1038/s41598-019- flush accumulated microplastics either further down-slope 44117-2 Medline 10. L. Van Cauwenberghe, L. Devriese, F. Galgani, J. Robbens, C. R. Janssen, (43) or loft them for recirculation by thermohaline bottom Microplastics in sediments: A review of techniques, occurrence and effects. Mar. currents (Fig. 5). Such gravity flows play a globally important Environ. Res. 111, 5–17 (2015). doi:10.1016/j.marenvres.2015.06.007 Medline role in the lateral transport of lightweight particulate matter 11. A. Vianello, A. Boldrin, P. Guerriero, V. Moschino, R. Rella, A. Sturaro, L. Da Ros, such as organic carbon (41, 44); hence, it stands to reason Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf Sci. 130, that they should also be important for microplastics 54–61 (2013). doi:10.1016/j.ecss.2013.03.022 transport. Episodic flushing of submarine canyons (41, 42, 45) 12. V. Zitko, M. Hanlon, Another source of pollution by plastics: Skin cleaners with suggests that canyons may only be temporary microplastic plastic scrubbers. Mar. Pollut. Bull. 22, 41–42 (1991). doi:10.1016/0025- storage sites (26). This is analogous to rivers where flooding 326X(91)90444-W 13. S. A. Mason, D. Garneau, R. Sutton, Y. Chu, K. Ehmann, J. Barnes, P. Fink, D. can flush high levels of microplastics downstream (46). Papazissimos, D. L. Rogers, Microplastic pollution is widely detected in US Bottom currents are efficient conveyors of nutrients and municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054 oxygen, and consequently dictate the location of important (2016). doi:10.1016/j.envpol.2016.08.056 Medline biodiversity hotspots (41, 47–49). Unfortunately, we show 14. M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway, R. Thompson, Accumulation of microplastic on shorelines worldwide: Sources and that the same seafloor currents can also transport and em- sinks. Environ. Sci. Technol. 45, 9175–9179 (2011). doi:10.1021/es201811s place microplastics. The highest concentrations of microplas- Medline tics on the seafloor occur in contourite drifts formed by 15. A. L. Andrady, Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596– bottom currents, and their distribution is controlled by spa- 1605 (2011). doi:10.1016/j.marpolbul.2011.05.030 Medline 16. X. Tubau, M. Canals, G. Lastras, X. Rayo, J. Rivera, D. Amblas, Marine litter on the tial variations in current intensity. How effectively microplas- floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role tics are buried, or become re-exhumed (and hence become of hydrodynamic processes. Prog. Oceanogr. 134, 379–403 (2015). more available for trophic transfer) depends on temporal doi:10.1016/j.pocean.2015.03.013 fluctuations in current intensity. Although there are ongoing 17. E. D. Goldberg, Plasticizing the seafloor: An overview. Environ. Technol. 18, 195– 201 (1997). doi:10.1080/09593331808616527 efforts to reduce the release of plastics into the environment, 18. A. Ballent, A. Purser, P. de Jesus Mendes, S. Pando, L. Thomsen, Physical transport our oceans will continue to be impacted by the legacy of past properties of marine microplastic pollution. Biogeosciences Discuss. 9, 18755– waste mismanagement (4, 5, 8, 50). Seafloor currents will play 18798 (2012). doi:10.5194/bgd-9-18755-2012 a crucial role in the future transfer and storage of microplas- 19. C. K. Pham, E. Ramirez-Llodra, C. H. S. Alt, T. Amaro, M. Bergmann, M. Canals, J. B. Company, J. Davies, G. Duineveld, F. Galgani, K. L. Howell, V. A. I. Huvenne, E. tics in the deep ocean. Isidro, D. O. B. Jones, G. Lastras, T. Morato, J. N. Gomes-Pereira, A. Purser, H. Stewart, I. Tojeira, X. Tubau, D. Van Rooij, P. A. Tyler, Marine litter distribution and First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 3
density in European seas, from the shelves to deep basins. PLOS ONE 9, e95839 38. A. Sanchez-Vidal, R. C. Thompson, M. Canals, W. P. de Haan, The imprint of (2014). doi:10.1371/journal.pone.0095839 Medline microfibres in southern European deep seas. PLOS ONE 13, e0207033 (2018). 20. L. C. Woodall, A. Sanchez-Vidal, M. Canals, G. L. Paterson, R. Coppock, V. Sleight, doi:10.1371/journal.pone.0207033 Medline A. Calafat, A. D. Rogers, B. E. Narayanaswamy, R. C. Thompson, The deep sea is a 39. I. A. Kane, M. A. Clare, Dispersion, accumulation, and the ultimate fate of major sink for microplastic debris. R. Soc. Open Sci. 1, 140317 (2014). microplastics in deep-marine environments: A review and future directions. Front. doi:10.1098/rsos.140317 Medline Earth Sci. 7, 80 (2019). doi:10.3389/feart.2019.00080 21. V. Fischer, N. O. Elsner, N. Brenke, E. Schwabe, A. Brandt, Plastic pollution of the 40. D. J. Piper, P. Cochonat, M. L. Morrison, The sequence of events around the Kuril–Kamchatka Trench area (NW pacific). Deep Sea Res. Part II Top. Stud. epicentre of the 1929 Grand Banks earthquake: Initiation of debris flows and Oceanogr. 111, 399–405 (2015). doi:10.1016/j.dsr2.2014.08.012 turbidity current inferred from sidescan sonar. Sedimentology 46, 79–97 (1999). 22. W. Courtene-Jones, B. Quinn, S. F. Gary, A. O. M. Mogg, B. E. Narayanaswamy, doi:10.1046/j.1365-3091.1999.00204.x Microplastic pollution identified in deep-sea water and ingested by benthic 41. M. Azpiroz-Zabala, M. J. B. Cartigny, P. J. Talling, D. R. Parsons, E. J. Sumner, M. A. invertebrates in the Rockall Trough, North Atlantic Ocean. Environ. Pollut. 231, Clare, S. M. Simmons, C. Cooper, E. L. Pope, Newly recognized turbidity current 271–280 (2017). doi:10.1016/j.envpol.2017.08.026 Medline structure can explain prolonged flushing of submarine canyons. Sci. Adv. 3, 23. A. J. Underwood, M. G. Chapman, M. A. Browne, Some problems and practicalities e1700200 (2017). doi:10.1126/sciadv.1700200 Medline in design and interpretation of samples of microplastic waste. Anal. Methods 9, 42. J. J. Mountjoy, J. D. Howarth, A. R. Orpin, P. M. Barnes, D. A. Bowden, A. A. Rowden, 1332–1345 (2017). doi:10.1039/C6AY02641A A. C. G. Schimel, C. Holden, H. J. Horgan, S. D. Nodder, J. R. Patton, G. Lamarche, 24. A. R. Thurber, A. K. Sweetman, B. E. Narayanaswamy, D. O. B. Jones, J. Ingels, R. M. Gerstenberger, A. Micallef, A. Pallentin, T. Kane, Earthquakes drive large-scale L. Hansman, Ecosystem function and services provided by the deep sea. submarine canyon development and sediment supply to deep-ocean basins. Sci. Downloaded from http://science.sciencemag.org/ on December 23, 2020 Biogeosciences 11, 3941–3963 (2014). doi:10.5194/bg-11-3941-2014 Adv. 4, eaar3748 (2018). doi:10.1126/sciadv.aar3748 Medline 25. D. K. Barnes, F. Galgani, R. C. Thompson, M. Barlaz, Accumulation and 43. F. Pohl, J. T. Eggenhuisen, I. A. Kane, M. A. Clare, Transport and burial of fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. microplastics in deep-marine sediments by turbidity currents. Environ. Sci. London Ser. B 364, 1985–1998 (2009). doi:10.1098/rstb.2008.0205 Medline Technol. 54, 4180–4189 (2020). doi:10.1021/acs.est.9b07527 Medline 26. A. Ballent, S. Pando, A. Purser, M. F. Juliano, L. Thomsen, Modelled transport of 44. V. Galy, C. France-Lanord, O. Beyssac, P. Faure, H. Kudrass, F. Palhol, Efficient benthic marine microplastic pollution in the Nazaré Canyon. Biogeosciences 10, organic carbon burial in the Bengal fan sustained by the Himalayan erosional 7957–7970 (2013). doi:10.5194/bg-10-7957-2013 system. Nature 450, 407–410 (2007). doi:10.1038/nature06273 Medline 27. X. Peng, M. Chen, S. Chen, S. Dasgupta, H. Xu, K. Ta, M. Du, J. Li, Z. Guo, S. Bai, 45. M. Canals, P. Puig, X. D. de Madron, S. Heussner, A. Palanques, J. Fabres, Flushing Microplastics contaminate the deepest part of the world’s ocean. Geochem. submarine canyons. Nature 444, 354–357 (2006). doi:10.1038/nature05271 Perspect. Lett. 9, 1–5 (2018). doi:10.7185/geochemlet.1829 Medline 28. I. E. Chubarenko, I. E. Esiukova, A. Bagaev, I. Isachenko, N. Demchenko, M. Zobkov, 46. R. Hurley, J. Woodward, J. J. Rothwell, Microplastic contamination of river beds I. Efimova, M. Bagaeva, L. Khatmullina, “Behavior of microplastics in coastal significantly reduced by catchment-wide flooding. Nat. Geosci. 11, 251–257 zones” in Microplastic Contamination in Aquatic Environments (Elsevier, 2018), (2018). doi:10.1038/s41561-018-0080-1 pp. 175–223. 47. S. J. Hall, The continental shelf benthic ecosystem: Current status, agents for 29. M. Rebesco, F. J. Hernández-Molina, D. Van Rooij, A. Wåhlin, Contourites and change and future prospects. Environ. Conserv. 29, 350–374 (2002). associated sediments controlled by deep-water circulation processes: State-of- doi:10.1017/S0376892902000243 the-art and future considerations. Mar. Geol. 352, 111–154 (2014). 48. C. Treignier, S. Derenne, A. Saliot, Terrestrial and marine n-alcohol inputs and doi:10.1016/j.margeo.2014.03.011 degradation processes relating to a sudden turbidity current in the Zaire canyon. 30. S. Vignudelli, P. Cipollini, M. Astraldi, G. P. Gasparini, G. Manzella, Integrated use Org. Geochem. 37, 1170–1184 (2006). doi:10.1016/j.orggeochem.2006.03.010 of altimeter and in situ data for understanding the water exchanges between the 49. A. J. Davies, G. C. A. Duineveld, M. S. S. Lavaleye, M. J. N. Bergman, H. van Haren, Tyrrhenian and Ligurian Seas. J. Geophys. Res. Oceans 105, 19649–19663 J. M. Roberts, Downwelling and deep‐water bottom currents as food supply (2000). doi:10.1029/2000JC900083 mechanisms to the cold‐water coral Lophelia pertusa (Scleractinia) at the 31. E. Miramontes, P. Garreau, M. Caillaud, G. Jouet, R. Pellen, F. J. Hernández-Molina, Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009). M. A. Clare, A. Cattaneo, Contourite distribution and bottom currents in the NW doi:10.4319/lo.2009.54.2.0620 Mediterranean Sea: Coupling seafloor geomorphology and hydrodynamic 50. D. Xanthos, T. R. Walker, International policies to reduce plastic marine pollution modeling. Geomorphology 333, 43–60 (2019). from single-use plastics (plastic bags and microbeads): A review. Mar. Pollut. Bull. doi:10.1016/j.geomorph.2019.02.030 118, 17–26 (2017). doi:10.1016/j.marpolbul.2017.02.048 Medline 32. G. Dalla Valle, F. Gamberi, Slope channel formation, evolution and backfilling in a 51. A. Shields, “Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung wide shelf, passive continental margin (Northeastern Sardinia slope, Central auf die Geschiebebewegung,” thesis, Technische Universität Berlin (Preussischen Tyrrhenian Sea). Mar. Geol. 286, 95–105 (2011). Versuchsanstalt für Wasserbau, 1936). doi:10.1016/j.margeo.2011.06.005 52. L. C. van Rijn, Sediment transport, part II: Suspended load transport. J. Hydraul. 33. I. N. McCave, Formation of sediment waves by turbidity currents and geostrophic Eng. 110, 1613–1641 (1984). doi:10.1061/(ASCE)0733-9429(1984)110:11(1613) flows: A discussion. Mar. Geol. 390, 89–93 (2017). 53. Y. Niño, F. Lopez, M. Garcia, Threshold for particle entrainment into suspension. doi:10.1016/j.margeo.2017.05.003 Sedimentology 50, 247–263 (2003). doi:10.1046/j.1365-3091.2003.00551.x 34. S. Liubartseva, G. Coppini, R. Lecci, E. Clementi, Tracking plastics in the 54. I. Kane, M. A. Clare, E. Miramontes, R. Wogelius, J. J. Rothwell, P. Garreau, F. Pohl, Mediterranean: 2D Lagrangian model. Mar. Pollut. Bull. 129, 151–162 (2018). Seafloor microplastic hotspots controlled by deep-sea circulation, Dryad (2020); doi:10.1016/j.marpolbul.2018.02.019 Medline https://doi.org/10.5061/dryad.tht76hdwf. 35. C. Cencini, Physical processes and human activities in the evolution of the Po 55. M. Claessens, S. De Meester, L. Van Landuyt, K. De Clerck, C. R. Janssen, delta, Italy. J. Coast. Res. 14, 774–793 (1998). Occurrence and distribution of microplastics in marine sediments along the 36. D. A. Kroodsma, J. Mayorga, T. Hochberg, N. A. Miller, K. Boerder, F. Ferretti, A. Belgian coast. Mar. Pollut. Bull. 62, 2199–2204 (2011). Wilson, B. Bergman, T. D. White, B. A. Block, P. Woods, B. Sullivan, C. Costello, B. doi:10.1016/j.marpolbul.2011.06.030 Medline Worm, Tracking the global footprint of fisheries. Science 359, 904–908 (2018). 56. L. Van Cauwenberghe, A. Vanreusel, J. Mees, C. R. Janssen, Microplastic pollution doi:10.1126/science.aao5646 Medline in deep-sea sediments. Environ. Pollut. 182, 495–499 (2013). 37. M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M. B. Tekman, G. doi:10.1016/j.envpol.2013.08.013 Medline Gerdts, High quantities of microplastic in arctic deep-sea sediments from the 57. J. H. Dekiff, D. Remy, J. Klasmeier, E. Fries, Occurrence and spatial distribution of HAUSGARTEN observatory. Environ. Sci. Technol. 51, 11000–11010 (2017). microplastics in sediments from Norderney. Environ. Pollut. 186, 248–256 doi:10.1021/acs.est.7b03331 Medline (2014). doi:10.1016/j.envpol.2013.11.019 Medline First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 4
58. V. Hidalgo-Ruz, L. Gutow, R. C. Thompson, M. Thiel, Microplastics in the marine seafloor circulation patterns. F.P. integrated microplastic and sediment environment: A review of the methods used for identification and quantification. transport modeling work, R.W. analyzed FT-IR spectra. All authors contributed to Environ. Sci. Technol. 46, 3060–3075 (2012). doi:10.1021/es2031505 Medline writing the manuscript. Competing interests: The authors declare no competing 59. R. L. Coppock, M. Cole, P. K. Lindeque, A. M. Queirós, T. S. Galloway, A small-scale, interests. Data and materials availability: The data that support the findings of portable method for extracting microplastics from marine sediments. Environ. this study are available from https://doi.org/10.5061/dryad.tht76hdwf (54). Pollut. 230, 829–837 (2017). doi:10.1016/j.envpol.2017.07.017 Medline 60. B. De Witte, L. Devriese, K. Bekaert, S. Hoffman, G. Vandermeersch, K. Cooreman, SUPPLEMENTARY MATERIALS J. Robbens, Quality assessment of the blue mussel (Mytilus edulis): Comparison science.sciencemag.org/cgi/content/full/science.aba5899/DC1 between commercial and wild types. Mar. Pollut. Bull. 85, 146–155 (2014). Materials and Methods doi:10.1016/j.marpolbul.2014.06.006 Medline Figs. S1 to S5 61. P. L. Corcoran, M. C. Biesinger, M. Grifi, Plastics and beaches: A degrading Table S1 relationship. Mar. Pollut. Bull. 58, 80–84 (2009). References (55–72) doi:10.1016/j.marpolbul.2008.08.022 Medline Data S1 62. M. R. Jung, F. D. Horgen, S. V. Orski, V. Rodriguez C., K. L. Beers, G. H. Balazs, T. T. Jones, T. M. Work, K. C. Brignac, S.-J. Royer, K. D. Hyrenbach, B. A. Jensen, J. 16 December 2019; accepted 9 April 2020 M. Lynch, Validation of ATR FT-IR to identify polymers of plastic marine debris, Published online 30 April 2020 including those ingested by marine organisms. Mar. Pollut. Bull. 127, 704–716 10.1126/science.aba5899 (2018). doi:10.1016/j.marpolbul.2017.12.061 Medline Downloaded from http://science.sciencemag.org/ on December 23, 2020 63. N. P. Edwards, H. E. Barden, B. E. van Dongen, P. L. Manning, P. L. Larson, U. Bergmann, W. I. Sellers, R. A. Wogelius, Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin. Proc. Biol. Sci. 278, 3209–3218 (2011). doi:10.1098/rspb.2011.0135 Medline 64. I. N. McCave, B. Manighetti, S. G. Robinson, Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanograpy. Paleoceanography 10, 593–610 (1995). doi:10.1029/94PA03039 65. B. Graca, K. Szewc, D. Zakrzewska, A. Dołęga, M. Szczerbowska-Boruchowska, Sources and fate of microplastics in marine and beach sediments of the Southern Baltic Sea—a preliminary study. Environ. Sci. Pollut. Res. Int. 24, 7650–7661 (2017). doi:10.1007/s11356-017-8419-5 Medline 66. H. A. Leslie, S. H. Brandsma, M. J. M. van Velzen, A. D. Vethaak, Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environ. Int. 101, 133–142 (2017). doi:10.1016/j.envint.2017.01.018 Medline 67. J. Martin, A. Lusher, R. C. Thompson, A. Morley, The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 7, 10772 (2017). doi:10.1038/s41598-017-11079-2 Medline 68. L. D. K. Kanhai, C. Johansson, J. P. G. L. Frias, K. Gardfeldt, R. C. Thompson, I. O’Connor, Deep sea sediments of the Arctic Central Basin: A potential sink for microplastics. Deep Sea Res. Part I Oceanogr. Res. Pap. 145, 137–142 (2019). doi:10.1016/j.dsr.2019.03.003 69. P. Lazure, F. Dumas, An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv. Water Resour. 31, 233–250 (2008). doi:10.1016/j.advwatres.2007.06.010 70. T. Duhaut, M. Honnorat, L. Debreu, Développements numériques pour le modele MARS. Contrat Prévimer–Ref 9, 211 (2008). 71. F. Léger, C. Lebeaupin Brossier, H. Giordani, T. Arsouze, J. Beuvier, M.-N. Bouin, É. Bresson, V. Ducrocq, N. Fourrié, M. Nuret, Dense water formation in the north‐ western Mediterranean area during HyMeX‐SOP2 in 1/36° ocean simulations: Sensitivity to initial conditions. J. Geophys. Res. Oceans 121, 5549–5569 (2016). doi:10.1002/2015JC011542 72. H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, 2016). ACKNOWLEDGMENTS We sincerely thank Thomas Bishop and John Moore in the Department of Geography at The University of Manchester for their help with a range of analyses. We thank the staff at the British Ocean Sediment Core Research Facility (BOSCORF) for access to sediment cores. We thank GALSI PROJECT for access to survey data. The constructive comments of David Piper and two anonymous reviewers, and the editorial work of Jesse Smith, are gratefully acknowledged. Funding: M.A.C. was supported by the CLASS program (NERC Grant No. NE/R015953/1). Author contributions: I.A.K. and M.A.C. conceived and designed the study, and sub-sampled core samples. I.A.K. carried out the microplastic extraction and analysis. M.A.C. and I.A.K. analyzed seafloor, subsurface data and integrated microplastics concentrations with modeling outputs. E.M. and P.G. modeled the First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 5
Downloaded from http://science.sciencemag.org/ on December 23, 2020 First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 6
Fig. 1. Plastic sources and ocean circulation affecting the Tyrrhenian Sea. (A) Location of study area in the Tyrrhenian Sea, annotated with published terrestrial (~80%) and maritime (fishing and shipping; ~20%) plastic sources (34). Terrestrial input sources shown as circles and diamonds. Vessel traffic and shipping lanes shown as dashed black lines. Modeled (and hence inferred) plastic debris fluxes on the Mediterranean seafloor illustrated as a blue- green-red backdrop. The period modeled was for 2013–2017, assuming vertical settling from surface distributions using a 2D Lagrangian model (34). Inferred values in the North Tyrrhenian Sea are
Downloaded from http://science.sciencemag.org/ on December 23, 2020 Fig. 2. Global and local abundance of seafloor microplastics. (A) Comparison of microfiber abundance in different deep-sea settings worldwide (see references in supplementary material), demonstrating the high concentrations observed in the contourite drift deposits in the Tyrrhenian Sea. Results from the Tyrrhenian sea illustrating: (B) how microplastic abundance does not decrease with distance from terrestrial input sources; (C) microplastics appear to be concentrated within a depth range of c. 600 to 900 m; (D) microplastic concentration is biased toward physiographic domains, in particular enhanced within mounded drifts, and depleted within moats. (E) A 3D rendering (perspective view looking toward the south-west) of the regional EMODNet bathymetry (greyscale) and AUV bathymetry (colored) shows the relationship of sediment samples to the local seafloor currents (10 × vertical exaggeration). Horizontal distance from bottom left core (red) to top left (green) is approximately 100 km, compare to map view in Fig. 1C. Inset microscope photographs show representative examples of fibers and fragments extracted from the sediment. First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 8
Downloaded from http://science.sciencemag.org/ on December 23, 2020 Fig. 3. Influence of bottom currents on the distribution of seafloor microplastics. (A) As near bed-shear stresses initially increase, so does the concentration of microplastics; however, when a threshold (c. 0.04 N m−2) is exceeded, there is a sudden reduction in the abundance of microplastics. This corresponds to the modeled threshold of motion based on empirical approaches (Fig. 4 and fig. S6). (B) Hydrodynamic modeling of bottom current circulation shows the formation of seafloor gyres, with corridors of enhanced bed-shear stress along the continental slope and particularly focused within contourite moats and on the flanks of a prominent seamount. 90th percentile for bed shear stress and mean near-bed (bottom current) velocity are shown (see supplementary material). This focusing of bottom current intensity explains the limited abundance of microplastics on the shelf, upper continental slope and within contourite moats (C). Zones of lower shear-stresses adjacent to these corridors of elevated currents (where mounded contourite drifts form) feature the highest concentrations of microplastics. First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 9
Fig. 4. Relating microplastics to seafloor shear stress. Flow regime diagram to show that the critical shear stress required to move particles [i.e., above the dashed grey line (51)] falls between 0.03 and 0.04 N m−2, and that suspension, i.e., within or above the grey filled area (52, 53), may occur >0.1 N m−2. Two densities of microplastics are assumed (nylon and polyethylene) based on the results of FTIR analysis. Three particle sizes for microplastics are shown, to represent the general range observed through visual microscopic examination [0.1 mm (red symbols), 0.5 mm (blue) and 1 mm (green) width]. The upper and lower bound measured grain size (D90) for the host sediment are also shown by grey symbols. Downloaded from http://science.sciencemag.org/ on December 23, 2020 Fig. 5. Bottom currents control the deep-sea fate of microplastics. Schematic diagram illustrating the role of near bed currents in the transfer, concentration and storage of microplastic in the deep sea. Along shelf currents disperse microplastics, powerful gravity flows effectively flush microplastic to the deep sea, while thermohaline-drive bottom currents segregate microplastics into localized hotspots of high concentration; the effectiveness of their long-term sequestration depends upon the intensity of subsequent bottom current activity and rate of burial. First release: 30 April 2020 www.sciencemag.org (Page numbers not final at time of first release) 10
Seafloor microplastic hotspots controlled by deep-sea circulation Ian A. Kane, Michael A. Clare, Elda Miramontes, Roy Wogelius, James J. Rothwell, Pierre Garreau and Florian Pohl published online April 30, 2020 Downloaded from http://science.sciencemag.org/ on December 23, 2020 ARTICLE TOOLS http://science.sciencemag.org/content/early/2020/04/29/science.aba5899 SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2020/04/29/science.aba5899.DC1 MATERIALS RELATED http://science.sciencemag.org/content/sci/368/6495/1055.full CONTENT REFERENCES This article cites 68 articles, 6 of which you can access for free http://science.sciencemag.org/content/early/2020/04/29/science.aba5899#BIBL PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions Use of this article is subject to the Terms of Service Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS. Copyright © 2020, American Association for the Advancement of Science
You can also read