Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Roboterlernen & ethische Fragen Wie werden wollen wir assistiert arbeiten ? Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & Prozessinformatik
www.robotik-bs.de Institut für Robotik und Prozessinformatik 2 human-robot collaboration humanoid digital, flexible robots production systems … with application in Supervised learning Daten, Demonstrationen Target Demonstrations Lyapunov Candidate Industrie 4.0, digital society, Position (x,y) Target Demonstrations Target Demonstrations Lyapunov Candidate Sollausgabe Target Demonstrations Reproductions Dynamic Flow future of work Lyapunov Candidate Lernalgorithmus Fehler Parameteranpassung Istausgabe Target Demonstrations Reproductions Dynamic Flow Datenmodell Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization (first column), with Lq (second column), LP (third column), LELM as Lyapunov candidate (fourth column). The SEDS estimate (fifth column, first row). The stability conditions Eingabe Target Demonstrations (parametrisierte in SEDS are derived based on a quadratic energy function [13] (fifth column, second row). Funktion) Reproductions Dynamic Flow due the high flexibility of the candidate function. Fig. 5 ELMs need an ex-post verification which is computationally shows the estimations of the J-2-shape and their respective expensive. The experiments support the hypothesis that the Neurally imprinted stable vector fields, A. Lemme, F. Reinhart, J. Steil, ESANN 2013, best paper award. Lyapunov candidates in addition to the second tabular of flexibility of the Lyapunov candidate become more important Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates, A. Lemme, F. Reinhart, J. Steil, IROS, 2013 Tab. I. The left column of the figure contains the estimation if the demonstrations are of higher complexity. Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization (first column), with Lq result obtained for an ELM without regards to stability. The (second column), LP (third column), LELM as Lyapunov candidate (fourth column).V.The SEDS estimateT(fifth K INESTHETIC column, EACHING OFfirst row). The stability conditions I C UB 24.05.2017 | © Prof. J. Steil 2017 | Antrittsvorlesung | Roboterlernen: Science & Fiction data is accurately approximated in SEDS are derived based on a quadratic but theenergy targetfunction is not reached [13] (fifth column, second row). We analyze the methods in a real world scenario involving robot learning, at the end of the reproduced trajectories. The plot also em- phasizes that even reproductions starting in the vicinity of the the humanoid robot iCub [7] in addition to the experiments Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization demonstrations (first column), are prone with to Ldivergence. q The second column discussed in the previous section. Such robots are typically (second column), LP (third column), LELM as Lyapunov candidate (fourth column). The SEDS estimate (fifth column, first duerow).theThe high flexibility of the candidate function. Fig. 5 ELMs need an ex-post verification which is computationally illustrates thestability results conditions for networks trained with respect to Lq . designed to solve service tasks in environments where a in SEDS are derived based on a quadratic energy function [13] (fifth column, second row). shows the estimations of the J-2-shape and their respective expensive. The experiments support the hypothesis that the It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust adaptability by means Lyapunov candidates in addition to the second tabular of flexibility of the Lyapunov candidate become more important strict form of stability, without respect to the demonstrations. of learning is thus a prerequisite for such systems. The The reproductions are directly the Tab. I. The left column of figure contains converging towards the theattrac- estimation if the setting experimental demonstrations are inofFig. is illustrated higher 6. Acomplexity. human tutor due the high flexibility of the candidate function. Fig. 5 ELMs need an ex-post verificationtor. which result is Thisobtained computationally is due to for an ELM the high without violation of theregards to stability. demonstrations by The V. K INESTHETIC T EACHING OF I C UB shows the estimations of the J-2-shape and their respective expensive. The experiments support Ldata the q close hypothesis is accurately ofthat to the start approximatedthe the but theColumn demonstrations. target isthree not ofreached neural networks Lyapunov candidates in addition to the second tabular of flexibility of the Lyapunov candidate Fig. become at the end of 5 shows more the important theresults reproducedfor LP .trajectories. This Lyapunov Thecandidate plot also em- We analyze the methods in a real world scenario involving soft robotics Tab. I. The left column of the figure contains the estimation if the demonstrations are of higher isphasizes data-dependent complexity. that evenbut still too limited reproductions to capture starting the full of the in the vicinity the humanoid robot iCub [7] in addition to the experiments result obtained for an ELM without regards to stability. The structure demonstrations of the J-2 aredemonstrations. prone to divergence. The fourth The column second of column discussed in the previous section. Such robots are typically V. K INESTHETIC T EACHING the figureOF illustrates I C UB the performance of the networks trained results for networks trained with respect to Lq . designed to solve service tasks in environments where a illustrates the data is accurately approximated but the target is not reached We analyze the methods in a by real L world ELM . The scenario Lyapunov involving candidate is strongly curved to It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust adaptability by means at the end of the reproduced trajectories. The plot also em- follow thetodemonstrations closely (first row, fourth column). phasizes that even reproductions starting in the vicinity of the the humanoid robot iCub [7] in addition strict form the experiments of stability, without respect to the demonstrations. of learning is thus a prerequisite for such systems. The The estimate leads to very accurate reproductions and also demonstrations are prone to divergence. The second column discussed in the previous section.shows Such The robots are typically reproductions a good generalization are directly converging capability. towards The results the attrac- experimental setting is illustrated in Fig. 6. A human tutor for SEDS & AI illustrates the results for networks trained with respect to Lq . designed to solve service tasks are in shown tor. environments This isindue the to where the fifth highaviolation column of theAs of the figure. demonstrations mentioned, by It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust SEDS adaptability Lq close to the to is subject by start means of the demonstrations. constraints corresponding to Column a quadratic three of strict form of stability, without respect to the demonstrations. of learning is thus a prerequisite Fig. for 5 such shows systems. the Lyapunov function Lq . The estimate resultsThe for L P is very similar to candidate . This Lyapunov the The reproductions are directly converging towards the attrac- experimental setting is illustratedresults isin data-dependent Fig. for6.the A networks human buttutor still applying too Llimited q or LPtoascapture Lyapunov the full tor. This is due to the high violation of the demonstrations by candidate. structure The of the thirdJ-2tabular in Tab. I shows demonstrations. Thethe for Fig. resultscolumn fourth of 6.the right from Kinesthetic teaching of iCub. The tutor moves iCub’s right arm to the left side of the small colored tower. the the whole figuredata set. Thethe illustrates method using LELM performance hasnetworks of the the lowesttrained Lq close to the start of the demonstrations. Column three of trajectory by LELMerror . Thevalues Lyapunovwhich iscandidate due to the is high flexibility strongly of physically curved to guides iCubs right arm in the sense of kinesthetic Fig. 5 shows the results for LP . This Lyapunov candidate the candidate function. SEDSclosely performs in the range of column). the teaching using a recently established force control on the is data-dependent but still too limited to capture the full follow the demonstrations (first row, fourth quadratic functions due the conservative stability constraints. robot. The tutor can thereby actively move all joints of structure of the J-2 demonstrations. The fourth column of The estimate leads to very accurate reproductions and also However, SEDS has the appealing feature that the stability the arm to place the end-effector at the desired position. the figure illustrates the performance of the networks trained isshows a goodby guaranteed generalization construction capability. of the model Thewhereas results fortheSEDS Beginning on the right side of the workspace, the tutor first by LELM . The Lyapunov candidate is strongly curved to are shown in the fifth column of the figure. As mentioned, hard- und software architectures follow the demonstrations closely (first row, fourth column). SEDS is subject to constraints corresponding to a quadratic The estimate leads to very accurate reproductions and also Lyapunov function Lq . The estimate is very similar to the shows a good generalization capability. The results for SEDS results for the networks applying Lq or LP as Lyapunov Fig. 6. Kinesthetic teaching of iCub. The tutor moves iCub’s right arm are shown in the fifth column of the figure. As mentioned, candidate. The third tabular in Tab. I shows the results for from the right to the left side of the small colored tower. the whole data set. The method using LELM has the lowest SEDS is subject to constraints corresponding to a quadratic trajectory error values which is due to the high flexibility of physically guides iCubs right arm in the sense of kinesthetic Lyapunov function Lq . The estimate is very similar to the the candidate function. SEDS performs in the range of the teaching using a recently established force control on the results for the networks applying Lq or LP as Lyapunov Fig. 6. Kinesthetic teaching of iCub. The quadratic functions tutor moves due arm iCub’s right the conservative stability constraints. robot. The tutor can thereby actively move all joints of candidate. The third tabular in Tab. I shows the results for 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie from the right to the left side of the smallHowever, SEDS has the appealing feature that the stability colored tower. the whole data set. The method using LELM has the lowest the arm to place the end-effector at the desired position. is guaranteed by construction of the model whereas the Beginning on the right side of the workspace, the tutor first trajectory error values which is due to the high flexibility of physically guides iCubs right arm in the sense of kinesthetic the candidate function. SEDS performs in the range of the teaching using a recently established force control on the quadratic functions due the conservative stability constraints. robot. The tutor can thereby actively move all joints of However, SEDS has the appealing feature that the stability the arm to place the end-effector at the desired position. is guaranteed by construction of the model whereas the Beginning on the right side of the workspace, the tutor first
Was treibt die Veränderungen ? ▪ Robotik ▪ künstliche Intelligenz, Datenverarbeitung ▪ Vernetzung Robotik Quelle: Universität Bielefeld Künstliche Intelligenz Quelle: Facebook research Vernetzung 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Vernetzung ▪ keine technische Grenze ! ▪ Internet ist mobil ! ▪ > 23 Milliarden Dinge vernetzt ▪ z.B. 400 Produkte von Miele ▪ Wertschöpfung wandert in Service ▪ Wertschöpfung durch Software ! Chi n a + 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
KI - immer schon breit definiert AI Magazine Volume 27 Number 4 (2006) (© AAAI) A Proposal for thekte von p e Dartmouth r e :Summer a l l e A s M e r k m a l e c t u r e a l Research .. c o n j e o d Project e r a n d e n non e n f o r m … e n k ö n Artificial Lern teIntelligence n l l i g e n z b e n w e r d e o n I v August h r i e u n d b e s 31, c 1955 i n e n e n a u a s c h r v e d g m i t M “ r e s e l l e s o c h John McCarthy, Marvin L. Minsky,… a z t n K I : a s j e t i s t … Nathaniel Rochester, e n , w a n s ” and Claude E. Shannon D a t h u m for ■ The 1956 Dartmouth summer research project on guage, form abstractions and concepts, solve artificial intelligence was initiated 17.01.2019 by this August kinds ofJochen | Berlin | ©2017-19 problems now reserved Steil | Seminar for humans, Philosophie 31, 1955 proposal, authored by John McCarthy, and improve themselves. We think that a sig- Marvin Minsky, Nathaniel Rochester, and Claude nificant advance can be made in one or more Shannon. The original typescript consisted of 17 of these problems if a carefully selected group pages plus a title page. Copies of the typescript are of scientists work on it together for a summer. housed in the archives at Dartmouth College and
“7 Todsünden der KI Vorhersagen” Rodney Brooks (in Technology Review, 2017): 1. Über- & Unterschätzen 2. Magie 3. Leistung vs. Kompetenz 4. Kofferwörter (Lernen, Intelligenz) 5. Exponentiell 6. Hollywood 7. Geschwindigkeit der Verbreitung https://www.heise.de/tr/artikel/Essay-Die-sieben-Todsuenden-der-KI-Vorhersagen-4003150.html 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Robotik heute ▪ Lösungen für viele spezielle Probleme Franka Emika: 19kg ▪ neue “kleine Roboter”: Drohnen, http://www.franka.de Staubsauger, Transportwagen iRobot.com ▪ Greifen & Manipulieren: je feinfühliger, desto schwieriger, aber Fortschritte ▪ großer “Baukasten” an Methoden FANUC M-2000: 8 www.fanuc.eu ▪ profitieren von künstlicher Intelligenz Magazine ▪ (aber: Rethink Robotics insolvent) Miele RX1 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Robotik vs. Science Fiction Roboterethik Sie sind stark, klug, selbstständig. Und was wird aus uns? ▪ der humanoide Roboter Öffentliche Tagung | 24.11.2015 Karl Storz Besucher- und Schulungszentrum Berlin ▪ “alter Traum” A t l a s z e i l e : o t er h l a g r R o b S c ▪ ständiges SF-Thema n o i d e ! ” H u m a c o u r s “ ▪ appelliert an unsere n P a 1940-1950 r Vorstellungen von ka n ceres cologne center for ethics, rights, economics, and social sciences of health uns selbst ! ▪ schwierig: Unterscheide SF von Realität ! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterethik Apell an (soziale) Interaktion: 11 Sie sind stark, klug, selbstständig. Und was wird aus uns? Gedächtnis Öffentliche Tagung | 24.11.2015 Karl Storz Besucher- und Schulungszentrum Berlin Motivation Vorlieben Intention Fähigkeiten Kontext Aufgabe Assoziationen ceres cologne center for Sprache ethics, rights, economics, and social sciences of health … Beware the Anthropomorphism ! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
”Kofferwort” Lernen British researchers found Belohnungslernen that electrical stimulation of the brain sped up learning. überwachtes Lernen Assoziation Konditionierung unüberwachtes Lernen Exploration Imitation Soziales Lernen Induktion & Deduktion Konzeptlernen http://abcnews.go.com/Health/electrical-stimulation-speed-learning-stroke-recovery/story?id=14570429 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie ...
Arbeitsdefinition Lernen Erfahrung auf neue Situationen generalisieren mehr als: Erfahrung speichern und reproduzieren 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario Lernaufgabe(n) Ereignis Wahrnehmung Motorik Subjekt Sprache Weltwissen … Gehirn kognitive Fähigkeiten 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario !15 Lernaufgabe(n) Kontext Lernaufgabe(n) Situation Ereignis Wahrnehmung Subjekt Motorik Ziele Sprache Weltwissen Motivation … Verhaltens- Gehirn Gehirn steuerung Präferenzen Metakognition: Reflektion, Handlungssteuerung 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario !16 Lernaufgabe(n) Gesellschaft Lernaufgabe(n) Familie, Kontext Moral, Lernaufgabe(n) Ereig Situation Ethik Wahrnehmung Subjekt Motorik Sprache ZieleWeltwissen Werte Motivation … Verhaltens- Normen steuerung … Präferenzen Gehirn Gehirn Gehirn Verantwortung: “Ich kann auch anders !“ 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen • Maschinelles Lernen: Statistik — Kontext: Datenwelt — • Roboterlernen: Fähigkeiten — Kontext: physikalische Welt — • Roboterlernen: soziale Fähigkeiten? — Kontext: soziale Welt — 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Maschinelles Lernen !18 (Big) Data Lernaufgabe(n) Ereignis Spracherkennung Wahrnehmung Gesichtserkennung Motorik Software Subjekt Ontologien Sprache Vorhersagen Agent Neuronale Netze, Weltwissen … “Deep learning” … S1 C1 S2 C2 Gehirn Input R G High−dimensional C2 Feature Space B Object Memory Figure 3: Hierarchical object representation and object memory. Based on a ROI with additional segmentation mask, the input is processed in a sequence of topographically organized feature detection (S1,S2) and pooling stages (C1,C2). The object memory provides an exemplar-based representation of views embed- ded in the high-dimensional C2-feature space. von Programmierung per Design vorgegeben to avoid the occurence of spurious edges at wrong segmentation borders. In a second step, a soft Winner-Takes-Most (WTM) mechanism is performed with ql (x,y) ! 0 if 1 M < γ1 or M = 0, r1l (x, y) = ql (x,y)−Mγ1 (2) 1 1−γ1 else, where M = maxk q1k (x, y) and r1l (x, y) is the response after the WTM mech- anism which suppresses sub-maximal responses. The parameter 0 < γ1 < 1 controls the strength of the competition. The activity is then passed through a simple threshold function with a common threshold θ1 for all cells in layer S1: 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie hl1 (x, y) = H r1l (x, y) − θ1 , " # (3) where H(x) = 1 if x ≥ 0 and H(x) = 0 else and hl1 (x, y) is the final activity of the neuron sensitive to feature l at position (x, y) in the S1 layer. The activities of the first layer of pooling C1-cells are given by
KI: Bsp Deep Face Gesichtserkennung DeepFace: “Closing the Gap to Human-Level Performance in Face Verification”, Facebook AI Research, CVPR, 2014 ▪ “klassische Bildverarbeitung” notwendig ▪ besser als Menschen auf trainierten Gesichtern ▪ erkennt aber nichts, außer den trainierten Gesichtern ▪ (noch) hohe Kosten für Konfiguration & Training ▪ Daten allein (Bilder) beantworten keine Fragen ! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection We describe a learning-based approach to hand- eye coordination for robotic grasping from Robotik: monocular End-to-End images. To learn hand-eye Deep Reinforcement Learning coordi- 20 nation for grasping, weLevine Sergey trained a large convo- SLEVINE @ GOOGLE . COM Peter Pastor lutional neural network to predict the probabil- PETERPASTOR @ GOOGLE . COM Learning Hand-Eye ity that task-space Alex Krizhevsky motion of Deirdre Quillen Coordination the gripper will re- for Robotic Grasping with Deep Learning AKRIZHEVSKY @ GOOGLE . COM DEQUILLEN @ GOOGLE . COM grasps, usingand sult in successful Google only Large-Scale monocular Data Collection rXiv:1603.02199v2 [cs.LG] 24 Mar 2016 camera images and independently of camera cal- ibration or the current robot pose. This requires the network to observe the spatial Abstract relationship between Sergey the gripper We Levine anddescribe objects in the scene, a learning-based approach to hand- SLEVINE @ GOOGLE . COM eye coordination for robotic grasping from thusPastor Peter learning hand-eye coordination. We then monocular images. To learn hand-eye coordi- PETERPASTOR @ GOOGLE . COM Alex useKrizhevsky this network to servo nationtheforgripper grasping,inwereal timea large convo- trained AKRIZHEVSKY @ GOOGLE . COM Deirdre Quillen to achieve successful lutional grasps.neural Tonetwork train our net- the probabil- to predict DEQUILLEN @ GOOGLE . COM ity that task-space motion of the gripper will re- work, we collected over Google 800,000 grasp attempts sult in successful grasps, using only monocular over the course of twocamera months, imagesusing between 6of camera cal- and independently and 14 robotic manipulators ibration orat theany given current robot time, pose. This requires the network to observe the spatial relationship with differences in Abstract camera placement and hard- between the gripper and objects in the scene, ware. Our experimental thusevaluation demonstrates learning hand-eye coordination. We then We describe a learning-based that our method achieves approach effective use this network real-timeto hand- to servo the con- in real time gripper eye coordination for achieve roboticsuccessful grasping from trol, can successfullyto grasp novel grasps. objects, To train our net- and monocular images. To work,learn hand-eye we collected over coordi- 800,000 grasp attempts corrects mistakes by continuous over the course servoing. of two months, using between 6Figure 1. Our large-scale data collection setup, consisting nation for grasping, we trained a large convo- and 14 robotic manipulators at any given time,robotic manipulators. We collected over 800,000 grasp att lutional neural network withtodifferences predict in thecamera probabil-placement and hard- ity that task-space motion ware. Our of the gripper will experimental re- demonstratesto train the CNN grasp prediction model. evaluation 1. Introduction from Levine et al, 2016 sult in successful grasps, that our using method only monocular achieves effective real-time con- trol, can successfully camera images and independently of camera grasp cal-novel objects, anda feedback controller is exceedingly challenging. When humans and animals engage corrects in object mistakes manipulation by continuous servoing. Figure 1. Our large-scale data collection setup, consisting of 14 ibration or the current 17.01.2019robot pose.Jochen | Berlin | ©2017-19 This requires Steil | Seminar Philosophie niques such as visual servoing (Siciliano & Khatib, 2 behaviors, the interaction inherently the network to observe the spatial relationship involves a fast feed- robotic manipulators. We collected over 800,000 grasp attempts performtocontinuous feedback train the CNN grasp prediction on visual features, but model.
Robotik: End-to-End Deep Reinforcement Learning 21 Random Bin Picking – Approach heute einfach ! State r o b o t o - e n d [Levine et al. 2016] e n d - t r n i n g c h e s n t l e a t i s t i s c e m e b e l … s t a i n f o r k t i k a i n g / r e m p r a le a r n h k a u ) k t i s c G o , … pra Action Schac h , „Reward“ o h l i n e h r w ! b data=teuer(a e r s Stochastic search (Sampling), e.g. CMA-ES © Dr. Felix Reinhart Machine Learning in Robotics schwierig ! 17 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen • Maschinelles Lernen: Statistik — Kontext: Datenwelt — • Roboterlernen: Fähigkeiten — Kontext: physikalische Welt — • Roboterlernen: soziale Fähigkeiten? — Kontext: soziale Welt — 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten Lernaufgabe(n) (Small) Data Spracherkennung Gesichtserkennung Ontologien Vorhersagen Roboter … Lernverfahren Objekt nehmen Regelung Sensorik Echtzeit Sicherheit Energie Kräfte Bewegung … 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten Interactive Imitation Learning of Object Movement Skills, M. Mühlig, J. Steil, M. Gienger, Autonomous Robots, 2012 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten Lernaufgabe(n) Vormachen Lernverfahren Roboter Regelung Sensorik “Objekte Echtzeit Objekte stapeln präparieren” Sicherheit “ Interaktions- Energie design” Kräfte “neu starten” Bewegung … … 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten Perception & Learning per Design vorgegeben Movement Generation Sequence !26 Sequence Perception & Learning Procedural Memory Selection Movement Generation Movement Sequencing Sequence Sequence Selection Procedural Memory Movement Sequencing Prediction and Planning Interaction Labeling Prediction and Planning Movement Primitive Memory Interaction Movement Primitives Labeling Attention System Primitive Movement Primitive Memory Movement Primitives GMR Attention System Primitive GMR Scene Interpretation Optimization Scene Movement Movement Learning Interpretation Optimization Observation Memory Movement Movement Learning Lernen Observation Memory Posture Recognition Posture Recognition Attractor Command Attractor Command Body Scheme Segmentation BodyAdaptation Scheme Segmentation Persistent Object Memory Adaptation Assign Linked Motion Control Persistent Object Memory Objects Assign Linked Motion Control Reactive Objects Reactive Tutor Model Tutor Model t t Short Term Object Filter ShortMemory Term Object Filter Memory Perception Perception MotorMotor Command Command Environment Environment / Simulation / Simulation Interactive Imitation Learning of Object Movement Skills, M. Mühlig, J. Steil, M. Gienger, Autonomous Robots, 2012 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen • Maschinelles Lernen: Statistik — Kontext: Datenwelt — • Roboterlernen: Fähigkeiten — Kontext: physikalische Welt — • Roboterlernen: soziale Fähigkeiten? — Kontext: soziale Welt — 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?! Zur Zeit kein umfassender Ansatz … 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?! Lernaufgabe(n) Interaktion Lernaufgabe(n) Wahrnehmung Lernverfahren Motorik Sprache Roboter Weltwissen Ziele … Regelung Motivation Aufmerksamkeit Turn-Taking Sensorik Verhaltens- Sprachverstehen “Namen sagen” Echtzeit steuerung Multi-Personen Tracking Situationsgedächtnis Sicherheit Präferenzen Dialog Umgang mit Ambiguität Energie Umgang mit Unsicherheit Umgang mit … Kräfte Gedächtnis Interne Simulation Bewegung Situationsverstehen … … 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Robotik und Roboterlernen
Roboter als gefährliche Technologie This open letter was announced July 28 at the opening of the IJCAI 2015 conference on July 28. Journalists who wish to see the press release may contact Toby Walsh [mailto:toby.walsh@nicta.com.au] . Hosting, signature verification and list management are supported by FLI; for administrative questions about this letter, please contact tegmark@mit.edu [mailto:tegmark@mit.edu] . AUTONOMOUS WEAPONS: AN OPEN LETTER FROM AI & ROBOTICS RESEARCHERS 12.11.18: 3978 AI/Robotics Researcher Signatories Autonomous weapons select and engage targets without human intervention. They might include, 12.11.18: 22540 Other Endorsers (S. Hawkings et al.) of 772 Welche Anwendung wollen wir ? 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter sind unterschätzt • Roboter sind mächtige Werkzeuge - zunehmend low-cost - zunehmend leicht - zunehmend variabel - zunehmend billige Sensorik 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
International Journal of Robotics Research Beispiel: Assistenz in Medizin rg et al. (a) Circle Cutting (b) Needle Passing (c) Suturing 11. Pull 7. Handoff 3. Handoff 9.Handoff 3. 1/2 cut 10. Insert 6. Pass 3 2.Pass 1 8. Pull 6. Finish 6.Handoff 7. Insert 2. Notch 5. Pull 4. Re-enter 4. Pass 2 5. 1/2 Cut 3.Handoff 4. Insert 1. Start 1.Start 8. Pass 4 2. Pull 5. Handoff 1. Insert nd annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing. Right arm actio d leftTransition State arm actions are listedClustering: in yellow. Unsupervised Surgical Trajectory Segmentation For Robot Learning Robotik Sanjay Krishnan*1, Animesh Garg*1, Sachin Patil1, Colin Lea2, ng: A 5 cm diameter circle drawn on a piece (ignoring Gregory Hager2, Pieter Abbeel1, Ken Goldberg1 the orientation). In particular, we sho e first step is to cut a notch into the circle. (red box) to highlight the benefits of these featu (vergl. tep is auch to cut Keynote Jeffrey clockwise half-way Hager, Int. Conf. around the Intelligent Robots, phase the cross-over 2015, of theKünstliche task, the robot has to Intelligenz US patent application on skill evaluation) the robot transitions to the other side cutting notch point and adjust to cut the other half of the c wise. Finally, the robot finishes the cut at the only using the end-effector kinematic pose, th Vernetzung Daten, Netzwerk of the two cuts. As17.01.2019 the left| Berlin |arm’s only ©2017-19 Jochen Steil | action where this transition happens is unreliable as op Seminar Philosophie n the gauze in tension, we exclude it from approach the entry from slightly different ang F In Figure 10a, we mark 6 manually identified other hand, the use of a gripper contact binary fea
Roboter & Big Data Beispiel: Assistenz in Medizin DaVinci: • in großer Zahl vorhanden Da-Vinci Operationsroboter • zeichnet Operationen auf • Big-Data Methoden zur Bewertung => Liefert quantifizierbaren Maßstab zur Bewertung der manuellen Fähigkeit der Chirurgen (vgl. Keynote Jeffrey Hager, Int. Conf. Intelligent Robots, Hamburg, 2015) 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter & Big Data Beispiel: Assistenz in Medizin Da-Vinci Operationsroboter (ethische) Fragen: • Bezahlung von Operationen nach Qualität ? • Welche “Abweichungen” sind tolerabel ? • Wie soll das fehlerbehaftete (!) Lernen der Ärzte organisiert sein? Wollen wir alles vermessen ? Wieviel Datengläubigkeit ist sinnvoll ? 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter, Lernen & Personalisierung Vermessung von Interaktion Beispiel: Assistenz in Produktion Was lernen solche Roboter über Menschen ? Interaktionsdaten sind wie Gesundheitsdaten ! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter, Lernen & Personalisierung Vermessung von Interaktion Beispiel: Assistenz in Produktion (ethische) Fragen: • Auswertung für Gesundheitsüberwachung ? • Gerechtigkeitsfragen — bekommt jeder gleiche Assistenz ? Welche Daten wollen wir wie nutzen ? Assistenz und Überwachung sind janusköpfig. 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen Fragen & Überlegungen
Einordnung Roboterlernen • Kombination Lernen und Anthropomorphismus führt leicht in die Irre • Maschinelles Lernen und Roboterlernen sind sehr erfolgreich für einzelne Fähigkeiten • Komplexität von Metakognition & Lernen auf der Systemebene ist aber zu hoch Fazit: — Roboter als “verantwortliche Person” bleibt Fiktion 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Ehtik in der Anwendung • (speziellere !) Roboter sind mächtige Technologie • Roboter “erben” alle Probleme von Big Data • Roboterlernen verschärft diese Datenprobleme • Assistenz & Überwachung: 2 Seiten einer Medaille ! Welche Anwendung wollen wir ? Wollen wir alles vermessen ? Welche Daten wollen wir wie nutzen ? 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Mythen e h l e n ▪ Deutschland : e s f & c h e n ▪ verpasst seine Zukunft fals tiker/inn o r m a t u r ! ▪ hat nicht genügend Experten Inf r a s t r u k ▪ hat keine gute Forschung In f ▪ … sch … agi ▪ die Singularität, KI übernimmt alles .. m ………. n e K I ▪ Selbst-Lernen : k e i ne c h o h fals ahmen, e An n n g e n ▪ der KI ist inhärent, selbst-… ohn h e i d u Ents c 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Arbeit & Ethik ▪ Prognose: mehr hybride Mensch-Maschine Interaktion ▪ Aber: meist wird viel zu aufgeregt diskutiert ▪ es sind keine Maschinenwesen mit Moral, Ethik in Sicht ▪ Und: ist die falsche Diskussion 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
now: Brook’s 1. Fallacy Roboterlernen wird wegen Vermenschlichung überschätzt ! f ü r D a n k k i e l e n r k s a m Aber gleichzeitig: V f m e r e A u ih Die Kombination Roboter & Lernen wird in Anwendungen unterschätzt! 17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
You can also read