Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...

Page created by Julio Salazar
 
CONTINUE READING
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Roboterlernen & ethische Fragen
Wie werden
    wollen wir assistiert arbeiten ?
Jochen Steil, Technische Universität Braunschweig,
Institut für Robotik & Prozessinformatik
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
www.robotik-bs.de

     Institut für Robotik und Prozessinformatik                                                                                                                                                                                                                                                                                                        2
                                                                                                                                                                                                                                                             human-robot collaboration
                                       humanoid                                                                                                                                                                                                                                                                                       digital, flexible
                                        robots                                                                                                                                                                                                                                                                                      production systems

                                                                                                                                                                                                                                                                                   … with application in
     Supervised learning
 Daten,
 Demonstrationen
                                                                                                                                                   Target
                                                                                                                                                   Demonstrations
                                                                                                                                                   Lyapunov Candidate
                                                                                                                                                                                                                                                                                Industrie 4.0, digital society,
  Position (x,y)
      Target
      Demonstrations
                                                                                                                                                     Target
                                                                                                                                                     Demonstrations
                                                                                                                                                     Lyapunov Candidate

                                                                                                                                              Sollausgabe
                                                                                                                                                   Target
                                                                                                                                                   Demonstrations
                                                                                                                                                   Reproductions
                                                                                                                                                   Dynamic Flow
                                                                                                                                                                                                                                                                                       future of work
      Lyapunov Candidate
                                                               Lernalgorithmus                                                                                            Fehler

                                                                 Parameteranpassung                                                            Istausgabe
                                                                                                                                                     Target
                                                                                                                                                     Demonstrations
                                                                                                                                                     Reproductions
                                                                                                                                                     Dynamic Flow

                                                                 Datenmodell                                                                  Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization (first column), with Lq
                                                                                                                                              (second column), LP (third column), LELM as Lyapunov candidate (fourth column). The SEDS estimate (fifth column, first row). The stability conditions

   Eingabe
      Target
      Demonstrations                                           (parametrisierte                                                               in SEDS are derived based on a quadratic energy function [13] (fifth column, second row).

                                                                  Funktion)
      Reproductions
      Dynamic Flow

                                                                                                                                       due the high flexibility of the candidate function. Fig. 5 ELMs need an ex-post verification which is computationally
                                                                                                                                       shows the estimations of the J-2-shape and their respective expensive. The experiments support the hypothesis that the
 Neurally imprinted stable vector fields, A. Lemme, F. Reinhart, J. Steil, ESANN 2013, best paper award.        Lyapunov candidates                                           in addition to the second tabular of flexibility of the Lyapunov candidate become more important
 Neural Learning of Stable Dynamical Systems based on Data-Driven Lyapunov Candidates, A. Lemme, F. Reinhart, J. Steil, IROS, 2013
                                                                                                                                       Tab. I. The left column of the figure contains the estimation if the demonstrations are of higher complexity.
                                                                                                                                        Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization (first column), with Lq
                                                                                                                                       result    obtained for an ELM without regards to stability. The
                                                                                                                                        (second column), LP (third column), LELM as Lyapunov candidate (fourth column).V.The                              SEDS estimateT(fifth
                                                                                                                                                                                                                                                        K INESTHETIC               column,
                                                                                                                                                                                                                                                                              EACHING     OFfirst  row). The stability conditions
                                                                                                                                                                                                                                                                                               I C UB
                            24.05.2017 | © Prof. J. Steil 2017 | Antrittsvorlesung | Roboterlernen: Science & Fiction                  data    is  accurately         approximated
                                                                                                                                        in SEDS are derived based on a quadratic             but theenergy
                                                                                                                                                                                                       targetfunction
                                                                                                                                                                                                               is not reached
                                                                                                                                                                                                                        [13] (fifth column, second row).
                                                                                                                                                                                                                                         We analyze the methods in a real world scenario involving

    robot learning,
                                                                                                                                       at the end of the reproduced trajectories. The plot also em-
                                                                                                                                       phasizes that even reproductions starting in the vicinity of the the humanoid robot iCub [7] in addition to the experiments
Fig. 5. Estimates of the J-2-shape and respective Lyapunov candidates. The J-2-shape approximated without explicit stabilization       demonstrations   (first column),
                                                                                                                                                                   are  prone  with
                                                                                                                                                                                  to  Ldivergence.
                                                                                                                                                                                        q               The  second     column       discussed in the previous section. Such robots are typically
(second column), LP (third column), LELM as Lyapunov candidate (fourth column). The SEDS estimate (fifth column, first                  duerow).theThe    high flexibility             of the candidate function. Fig. 5 ELMs need an ex-post verification which is computationally
                                                                                                                                       illustrates       thestability
                                                                                                                                                                results conditions
                                                                                                                                                                           for networks trained with respect to Lq . designed to solve service tasks in environments where a
in SEDS are derived based on a quadratic energy function [13] (fifth column, second row).                                               shows the estimations of the J-2-shape and their respective                                           expensive. The experiments support the hypothesis that the
                                                                                                                                       It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust adaptability by means
                                                                                                                                        Lyapunov candidates in addition to the second tabular of flexibility of the Lyapunov candidate become more important
                                                                                                                                       strict form of stability, without respect to the demonstrations. of learning is thus a prerequisite for such systems. The
                                                                                                                                       The reproductions are directly the
                                                                                                                                        Tab.     I.  The       left   column        of         figure contains
                                                                                                                                                                                          converging     towards the  theattrac-
                                                                                                                                                                                                                           estimation         if the setting
                                                                                                                                                                                                                                     experimental      demonstrations         are inofFig.
                                                                                                                                                                                                                                                                  is illustrated        higher
                                                                                                                                                                                                                                                                                             6. Acomplexity.
                                                                                                                                                                                                                                                                                                    human tutor
due the high flexibility of the candidate function. Fig. 5 ELMs need an ex-post verificationtor.                                           which
                                                                                                                                        result         is
                                                                                                                                             Thisobtained    computationally
                                                                                                                                                      is due to for         an ELM
                                                                                                                                                                     the high              without
                                                                                                                                                                                   violation     of theregards     to stability.
                                                                                                                                                                                                          demonstrations      by The                          V. K INESTHETIC T EACHING OF I C UB
shows the estimations of the J-2-shape and their respective expensive. The experiments support                                         Ldata  the
                                                                                                                                          q close     hypothesis
                                                                                                                                                is accurately              ofthat
                                                                                                                                                      to the start approximatedthe the           but theColumn
                                                                                                                                                                                     demonstrations.        target isthree
                                                                                                                                                                                                                         not ofreached

   neural networks
Lyapunov candidates in addition to the second tabular of flexibility of the Lyapunov candidate                                         Fig.  become
                                                                                                                                        at the      end of
                                                                                                                                               5 shows         more
                                                                                                                                                                 the    important
                                                                                                                                                                   theresults
                                                                                                                                                                         reproducedfor LP .trajectories.
                                                                                                                                                                                               This Lyapunov    Thecandidate
                                                                                                                                                                                                                       plot also em-              We analyze the methods in a real world scenario involving

                                                                                                                                                                                                                                                                                                                                     soft robotics
Tab. I. The left column of the figure contains the estimation if the demonstrations are of higher                                      isphasizes
                                                                                                                                            data-dependent
                                                                                                                                            complexity.  that evenbut          still too limited
                                                                                                                                                                           reproductions                to capture
                                                                                                                                                                                                 starting              the full of the
                                                                                                                                                                                                             in the vicinity                  the humanoid robot iCub [7] in addition to the experiments
result obtained for an ELM without regards to stability. The                                                                           structure
                                                                                                                                        demonstrations of the J-2    aredemonstrations.
                                                                                                                                                                              prone to divergence.  The fourth
                                                                                                                                                                                                             The column
                                                                                                                                                                                                                     second of  column discussed in the previous section. Such robots are typically
                                                                                                             V. K INESTHETIC T EACHING the   figureOF
                                                                                                                                        illustrates          I C UB the performance of the networks trained
                                                                                                                                                                   results for networks trained with respect to Lq . designed to solve service tasks in environments where a
                                                                                                                                                         illustrates
                                                                                                                                                            the
data is accurately approximated but the target is not reached
                                                                                                 We    analyze      the methods in a   by
                                                                                                                                     real    L
                                                                                                                                            world
                                                                                                                                               ELM    .    The
                                                                                                                                                        scenario    Lyapunov
                                                                                                                                                                         involving   candidate      is  strongly     curved    to
                                                                                                                                        It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust adaptability by means
at the end of the reproduced trajectories. The plot also em-
                                                                                                                                       follow thetodemonstrations                   closely (first row, fourth column).
phasizes that even reproductions starting in the vicinity of the the humanoid robot iCub [7] in addition                                strict form the             experiments
                                                                                                                                                             of stability,        without respect to the demonstrations. of learning is thus a prerequisite for such systems. The
                                                                                                                                       The estimate leads to very accurate reproductions and also
demonstrations are prone to divergence. The second column discussed in the previous section.shows                                         Such
                                                                                                                                        The          robots are typically
                                                                                                                                                reproductions
                                                                                                                                                  a good generalization    are directly        converging
                                                                                                                                                                                       capability.              towards
                                                                                                                                                                                                      The results           the attrac- experimental setting is illustrated in Fig. 6. A human tutor
                                                                                                                                                                                                                     for SEDS

         & AI
illustrates the results for networks trained with respect to Lq . designed to solve service tasks are                                    in shown
                                                                                                                                        tor.  environments
                                                                                                                                               This isindue     the to     where
                                                                                                                                                                          the
                                                                                                                                                                      fifth     highaviolation
                                                                                                                                                                               column                  of theAs
                                                                                                                                                                                           of the figure.       demonstrations
                                                                                                                                                                                                                   mentioned,         by
It is shown that this Lyapunov candidate introduces a very high flexibility is required. Robust                                        SEDS   adaptability
                                                                                                                                        Lq close          to the to
                                                                                                                                                  is subject           by
                                                                                                                                                                     start     means
                                                                                                                                                                               of the demonstrations.
                                                                                                                                                                         constraints       corresponding to Column a quadratic three of
strict form of stability, without respect to the demonstrations.                              of   learning      is   thus a prerequisite
                                                                                                                                        Fig. for 5   such
                                                                                                                                                     shows        systems.
                                                                                                                                                                    the
                                                                                                                                       Lyapunov function Lq . The estimate resultsThe   for   L P is very similar to candidate
                                                                                                                                                                                                  .  This   Lyapunov         the
The reproductions are directly converging towards the attrac- experimental setting is illustratedresults                                isin data-dependent
                                                                                                                                              Fig.  for6.the   A networks
                                                                                                                                                                    human   buttutor
                                                                                                                                                                                   still
                                                                                                                                                                                   applying too Llimited
                                                                                                                                                                                                    q or LPtoascapture
                                                                                                                                                                                                                     Lyapunov  the full
tor. This is due to the high violation of the demonstrations by                                                                        candidate.
                                                                                                                                        structure The      of the  thirdJ-2tabular      in Tab. I shows
                                                                                                                                                                                demonstrations.          Thethe               for Fig.
                                                                                                                                                                                                                    resultscolumn
                                                                                                                                                                                                                 fourth               of 6.the right
                                                                                                                                                                                                                                     from
                                                                                                                                                                                                                                               Kinesthetic teaching of iCub. The tutor moves iCub’s right arm
                                                                                                                                                                                                                                                     to the left side of the small colored tower.
                                                                                                                                       the
                                                                                                                                        the whole
                                                                                                                                              figuredata           set. Thethe
                                                                                                                                                           illustrates           method       using LELM
                                                                                                                                                                                    performance               hasnetworks
                                                                                                                                                                                                         of the     the lowesttrained
Lq close to the start of the demonstrations. Column three of
                                                                                                                                       trajectory
                                                                                                                                        by LELMerror      . Thevalues Lyapunovwhich iscandidate
                                                                                                                                                                                            due to the is high   flexibility
                                                                                                                                                                                                              strongly         of physically
                                                                                                                                                                                                                            curved     to          guides iCubs right arm in the sense of kinesthetic
Fig. 5 shows the results for LP . This Lyapunov candidate                                                                              the   candidate          function. SEDSclosely      performs     in the   range   of column).
                                                                                                                                                                                                                             the teaching using a recently established force control on the
is data-dependent but still too limited to capture the full                                                                             follow       the     demonstrations                          (first row,    fourth
                                                                                                                                       quadratic functions due the conservative stability constraints. robot. The tutor can thereby actively move all joints of
structure of the J-2 demonstrations. The fourth column of                                                                               The estimate leads to very accurate reproductions and also
                                                                                                                                       However, SEDS has the appealing feature that the stability the arm to place the end-effector at the desired position.
the figure illustrates the performance of the networks trained                                                                         isshows      a goodby
                                                                                                                                            guaranteed             generalization
                                                                                                                                                                       construction capability.
                                                                                                                                                                                             of the model   Thewhereas
                                                                                                                                                                                                                  results fortheSEDS Beginning on the right side of the workspace, the tutor first
by LELM . The Lyapunov candidate is strongly curved to                                                                                   are shown in the fifth column of the figure. As mentioned,

                                                                                                                                                                                                                         hard- und software architectures
follow the demonstrations closely (first row, fourth column).                                                                            SEDS is subject to constraints corresponding to a quadratic
The estimate leads to very accurate reproductions and also                                                                               Lyapunov function Lq . The estimate is very similar to the
shows a good generalization capability. The results for SEDS                                                                             results for the networks applying Lq or LP as Lyapunov
                                                                                                                                                                                                                                          Fig. 6. Kinesthetic teaching of iCub. The tutor moves iCub’s right arm
are shown in the fifth column of the figure. As mentioned,                                                                               candidate. The third tabular in Tab. I shows the results for                                     from the right to the left side of the small colored tower.
                                                                                                                                         the whole data set. The method using LELM has the lowest
SEDS is subject to constraints corresponding to a quadratic
                                                                                                                                         trajectory error values which is due to the high flexibility of                                  physically guides iCubs right arm in the sense of kinesthetic
Lyapunov function Lq . The estimate is very similar to the
                                                                                                                                         the candidate function. SEDS performs in the range of the                                        teaching using a recently established force control on the
results for the networks applying Lq or LP as Lyapunov
                                                                                             Fig. 6. Kinesthetic teaching of iCub. The   quadratic  functions
                                                                                                                                            tutor moves          due arm
                                                                                                                                                         iCub’s right the conservative stability constraints.                             robot. The tutor can thereby actively move all joints of
candidate. The third tabular in Tab. I shows the results for
                                                                                                                                                                    17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
                                                                                             from the right to the left side of the smallHowever,    SEDS has the appealing feature that the stability
                                                                                                                                          colored tower.
the whole data set. The method using LELM has the lowest                                                                                                                                                                                  the arm to place the end-effector at the desired position.
                                                                                                                                         is guaranteed by construction of the model whereas the                                           Beginning on the right side of the workspace, the tutor first
trajectory error values which is due to the high flexibility of                              physically guides iCubs right arm in the sense of kinesthetic
the candidate function. SEDS performs in the range of the                                    teaching using a recently established force control on the
quadratic functions due the conservative stability constraints.                              robot. The tutor can thereby actively move all joints of
However, SEDS has the appealing feature that the stability                                   the arm to place the end-effector at the desired position.
is guaranteed by construction of the model whereas the                                       Beginning on the right side of the workspace, the tutor first
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

KI-Hype
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Was treibt die Veränderungen ?
    ▪ Robotik
    ▪ künstliche Intelligenz, Datenverarbeitung
    ▪ Vernetzung                 Robotik

 Quelle: Universität Bielefeld

                                             Künstliche
                                             Intelligenz

Quelle: Facebook research
                                                                                    Vernetzung

                        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Vernetzung

▪ keine technische Grenze !

▪ Internet ist mobil !

▪ > 23 Milliarden Dinge vernetzt

▪ z.B. 400 Produkte von Miele

▪ Wertschöpfung wandert in Service

▪ Wertschöpfung durch Software                                                              !
                                                                                    Chi n a
                                                                                +
            17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
KI - immer schon breit definiert
                AI Magazine Volume 27 Number 4 (2006) (© AAAI)

        A Proposal for thekte von
                                                 p e
      Dartmouth              r  e :Summer
                                    a l l e A  s
                                                 M  e r k m   a l e
                      c t u                  r e                 a l
       Research
         .. c o n j e
                       o  d Project
                              e  r  a n  d e
                                              n non
                                                  e n   f o r m
                                                                  …
                 e  n                     k ö                n
      Artificial
          Lern teIntelligence
                    n     l l i g e n z
                                           b e n  w  e r d e
                         o n   I
                        v August                h  r  i e                                             u  n d
                                     b e   s
                                         31, c 1955                                          i n e n
                          e n a  u                                                   a s c h            r v e d
                        g                                                 m   i t M          “  r e s e
                                                                  l l e s             o c h
                          John McCarthy, Marvin L. Minsky,… a                   z t n
                                                  K    I :            a s j e t           i s t  …
                                 Nathaniel Rochester,
                                                            e n , w               a n s ”
                               and Claude E. Shannon
                                                  D   a   t              h u m
                                                                  for

■ The 1956 Dartmouth summer research project on                guage, form abstractions and concepts, solve
  artificial intelligence was initiated 17.01.2019
                                         by this August        kinds ofJochen
                                                   | Berlin | ©2017-19   problems     now reserved
                                                                              Steil | Seminar         for humans,
                                                                                              Philosophie
  31, 1955 proposal, authored by John McCarthy,                and improve themselves. We think that a sig-
  Marvin Minsky, Nathaniel Rochester, and Claude               nificant advance can be made in one or more
  Shannon. The original typescript consisted of 17
                                                               of these problems if a carefully selected group
  pages plus a title page. Copies of the typescript are
                                                               of scientists work on it together for a summer.
  housed in the archives at Dartmouth College and
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
“7 Todsünden der KI Vorhersagen”
Rodney Brooks (in Technology Review, 2017):

1. Über- & Unterschätzen
2. Magie
3. Leistung vs. Kompetenz
4. Kofferwörter (Lernen, Intelligenz)
5. Exponentiell
6. Hollywood
7. Geschwindigkeit der Verbreitung

https://www.heise.de/tr/artikel/Essay-Die-sieben-Todsuenden-der-KI-Vorhersagen-4003150.html

                  17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Robotik und Roboterlernen
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Robotik heute
▪ Lösungen für viele spezielle Probleme
                                                                                             Franka Emika: 19kg
▪ neue “kleine Roboter”: Drohnen,
                                                                                              http://www.franka.de
  Staubsauger, Transportwagen
                                                                               iRobot.com
▪ Greifen & Manipulieren:
   je feinfühliger, desto schwieriger,
  aber Fortschritte

▪ großer “Baukasten” an Methoden
                                                                                                   FANUC M-2000: 8
                                                                                                   www.fanuc.eu

▪ profitieren von künstlicher Intelligenz                                                                 Magazine

▪ (aber: Rethink Robotics
  insolvent)
                                                                                       Miele RX1
           17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen & ethische Fragen Wie werden wir assistiert arbeiten ? - Jochen Steil, Technische Universität Braunschweig, Institut für Robotik & ...
Robotik vs. Science Fiction                                                    Roboterethik
                                                                               Sie sind stark, klug, selbstständig.
                                                                               Und was wird aus uns?

▪ der humanoide Roboter                                                        Öffentliche Tagung | 24.11.2015
                                                                               Karl Storz Besucher- und
                                                                               Schulungszentrum Berlin

▪ “alter Traum”
                                                                                                 A t l a s
                            z e i l e :            o t                                        er
                    h l a g               r R o  b
                S c
▪ ständiges SF-Thema
                              n o   i d e           !  ”
                   H  u m  a              c o u r s
                 “
▪ appelliert an unsere
                              n    P  a
                              1940-1950 r
  Vorstellungen von ka      n                                                     ceres
                                                                                  cologne center for
                                                                                  ethics, rights, economics, and social sciences
                                                                                  of health

  uns selbst !

▪ schwierig:
  Unterscheide SF
  von Realität !
           17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterethik
Apell an (soziale) Interaktion:                                                                   11
       Sie sind stark, klug, selbstständig.
       Und was wird aus uns?

Gedächtnis
       Öffentliche Tagung | 24.11.2015
       Karl Storz Besucher- und
       Schulungszentrum Berlin                                                       Motivation
     Vorlieben
                                                                                   Intention
 Fähigkeiten
                                                                                         Kontext

  Aufgabe
                                                                                  Assoziationen
          ceres
          cologne center for

Sprache
          ethics, rights, economics, and social sciences
          of health

                                                …
                        Beware the Anthropomorphism !
              17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
”Kofferwort” Lernen
British researchers found                  Belohnungslernen
that electrical stimulation
of the brain sped
up learning.                                        überwachtes Lernen
               Assoziation
                                                    Konditionierung
unüberwachtes Lernen
                                                                               Exploration
                                                Imitation
   Soziales Lernen
                                                 Induktion & Deduktion
Konzeptlernen
      http://abcnews.go.com/Health/electrical-stimulation-speed-learning-stroke-recovery/story?id=14570429
                17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
                                                                                                             ...
Arbeitsdefinition Lernen

 Erfahrung auf neue Situationen generalisieren

 mehr als: Erfahrung speichern und reproduzieren

       17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario

                                              Lernaufgabe(n)

                                                                              Ereignis
                                                Wahrnehmung
                                                Motorik
Subjekt                                         Sprache
                                                Weltwissen
                                                …
                                                                                 Gehirn
kognitive
Fähigkeiten
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario                                                                                       !15

                                 Lernaufgabe(n)                                          Kontext
                                    Lernaufgabe(n)
                                                                                         Situation
                                                                              Ereignis

                              Wahrnehmung
Subjekt                       Motorik
                           Ziele
                              Sprache
                              Weltwissen
                           Motivation
                              …
                           Verhaltens-                                          Gehirn    Gehirn
                           steuerung
                           Präferenzen

Metakognition: Reflektion, Handlungssteuerung
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Lernszenario                                                                                                !16

                                      Lernaufgabe(n)                                               Gesellschaft

                                  Lernaufgabe(n)                                                     Familie,
                                                                                        Kontext      Moral,
                                     Lernaufgabe(n)
                                                                              Ereig
                                                                                       Situation      Ethik
                                    Wahrnehmung
Subjekt                             Motorik
                                    Sprache
                               ZieleWeltwissen
                              Werte
                               Motivation
                                    …
                              Verhaltens-
                              Normen
                              steuerung
                              …
                              Präferenzen                                     Gehirn   Gehirn      Gehirn

          Verantwortung: “Ich kann auch anders !“
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen

• Maschinelles Lernen: Statistik
 — Kontext: Datenwelt —

• Roboterlernen: Fähigkeiten
  — Kontext: physikalische Welt —

• Roboterlernen: soziale Fähigkeiten?
  — Kontext: soziale Welt —

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Maschinelles Lernen                                                                                                                                                !18

                                                                                                  (Big) Data
                                               Lernaufgabe(n)
                                                                                                        Ereignis
                                                 Spracherkennung
                                                 Wahrnehmung
                                                 Gesichtserkennung
                                                 Motorik
Software
Subjekt                                          Ontologien
                                                 Sprache
                                                 Vorhersagen
Agent                                                                      Neuronale Netze,
                                                 Weltwissen
                                                 …                          “Deep learning”
                                                 …                                          S1
                                                                                                      C1
                                                                                                              S2
                                                                                                                    C2

                                                                                                                                Gehirn
                                                                              Input

                                                                                                                         R
                                                                                                                         G     High−dimensional C2 Feature Space
                                                                                                                         B              Object Memory

                                                                           Figure 3: Hierarchical object representation and object memory. Based on a
                                                                           ROI with additional segmentation mask, the input is processed in a sequence of
                                                                           topographically organized feature detection (S1,S2) and pooling stages (C1,C2).
                                                                           The object memory provides an exemplar-based representation of views embed-
                                                                           ded in the high-dimensional C2-feature space.

   von Programmierung per Design vorgegeben
                                                                           to avoid the occurence of spurious edges at wrong segmentation borders. In a
                                                                           second step, a soft Winner-Takes-Most (WTM) mechanism is performed with
                                                                                                                       ql (x,y)
                                                                                                     !
                                                                                                       0           if 1 M < γ1 or M = 0,
                                                                                         r1l (x, y) = ql (x,y)−Mγ1                                  (2)
                                                                                                        1
                                                                                                           1−γ1    else,

                                                                           where M = maxk q1k (x, y) and r1l (x, y) is the response after the WTM mech-
                                                                           anism which suppresses sub-maximal responses. The parameter 0 < γ1 < 1
                                                                           controls the strength of the competition. The activity is then passed through a
                                                                           simple threshold function with a common threshold θ1 for all cells in layer S1:
       17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
                                                                                                      hl1 (x, y) = H r1l (x, y) − θ1 ,
                                                                                                                    "               #
                                                                                                                                                        (3)

                                                                           where H(x) = 1 if x ≥ 0 and H(x) = 0 else and hl1 (x, y) is the final activity of
                                                                           the neuron sensitive to feature l at position (x, y) in the S1 layer. The activities
                                                                           of the first layer of pooling C1-cells are given by
KI: Bsp Deep Face Gesichtserkennung

DeepFace: “Closing the Gap to Human-Level Performance in Face Verification”,
Facebook AI Research, CVPR, 2014

▪   “klassische Bildverarbeitung” notwendig
▪   besser als Menschen auf trainierten Gesichtern
▪   erkennt aber nichts, außer den trainierten Gesichtern
▪   (noch) hohe Kosten für Konfiguration & Training
▪   Daten allein (Bilder) beantworten keine Fragen !

               17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning
                                                  and Large-Scale Data Collection
       We describe a learning-based approach to hand-
      eye coordination for robotic grasping from
        Robotik:
      monocular         End-to-End
                    images.    To learn hand-eye     Deep         Reinforcement Learning
                                                              coordi-                                                                   20
      nation for grasping,     weLevine
                           Sergey    trained a large convo-                                                        SLEVINE @ GOOGLE . COM
                           Peter Pastor
      lutional neural network      to predict the probabil-                                                   PETERPASTOR @ GOOGLE . COM

     Learning         Hand-Eye
      ity that task-space
                           Alex Krizhevsky
                            motion     of
                           Deirdre Quillen
                                           Coordination
                                           the   gripper     will   re- for    Robotic    Grasping        with    Deep Learning
                                                                                                              AKRIZHEVSKY @ GOOGLE . COM
                                                                                                                DEQUILLEN @ GOOGLE . COM
                           grasps, usingand
      sult in successful Google                 only Large-Scale
                                                        monocular               Data Collection
                       rXiv:1603.02199v2 [cs.LG] 24 Mar 2016
      camera images and independently of camera cal-
      ibration or the current robot pose. This requires
      the network to observe the spatial Abstract      relationship
      between
   Sergey        the gripper We
            Levine             anddescribe
                                       objects      in the scene,
                                               a learning-based    approach to hand-                           SLEVINE @ GOOGLE . COM
                               eye coordination for robotic grasping from
      thusPastor
   Peter     learning hand-eye     coordination. We then
                               monocular images. To learn hand-eye coordi-
                                                                                                         PETERPASTOR @ GOOGLE . COM
   Alex
      useKrizhevsky
           this network to servo
                               nationtheforgripper
                                             grasping,inwereal    timea large convo-
                                                             trained                                    AKRIZHEVSKY @ GOOGLE . COM
   Deirdre   Quillen
      to achieve   successful lutional
                                grasps.neural Tonetwork
                                                    train our      net- the probabil-
                                                            to predict                                     DEQUILLEN @ GOOGLE . COM
                               ity that task-space motion of the gripper will re-
      work, we collected over
   Google                           800,000 grasp attempts
                               sult in successful grasps, using only monocular
      over the course of twocamera
                                 months, imagesusing     between 6of camera cal-
                                                  and independently
      and 14 robotic manipulators
                               ibration orat theany    given
                                                 current  robot time,
                                                                 pose. This requires
                               the network to observe the spatial relationship
      with differences in Abstract
                             camera      placement and hard-
                               between the gripper and objects in the scene,
      ware. Our experimental   thusevaluation        demonstrates
                                      learning hand-eye     coordination. We then
        We   describe a learning-based
      that our method achieves              approach
                                    effective
                               use this   network real-timeto  hand-
                                                    to servo the  con- in real time
                                                                  gripper
        eye coordination for achieve
                                   roboticsuccessful
                                                 grasping       from
      trol, can successfullyto   grasp     novel          grasps.
                                                      objects,      To train our net-
                                                                   and
        monocular images. To   work,learn     hand-eye
                                        we collected   over coordi-
                                                             800,000 grasp attempts
      corrects mistakes by continuous
                               over the course  servoing.
                                                   of two months, using between 6Figure 1. Our large-scale data collection setup, consisting
      nation for grasping, we trained a large convo-
                                 and 14 robotic manipulators at any given time,robotic manipulators. We collected over 800,000 grasp att
      lutional neural network    withtodifferences
                                              predict in   thecamera
                                                                  probabil-placement and hard-
      ity that task-space motion ware. Our  of the      gripper will
                                                   experimental                re- demonstratesto train the CNN grasp prediction model.
                                                                      evaluation
1. Introduction  from Levine et al, 2016
      sult in successful grasps, that our  using
                                               method  only   monocular
                                                          achieves     effective real-time con-
                                 trol, can successfully
      camera images and independently                    of camera  grasp cal-novel objects, anda feedback controller is exceedingly challenging.
When humans and animals            engage
                                 corrects           in object
                                                mistakes              manipulation
                                                            by continuous         servoing.              Figure 1. Our large-scale data collection setup, consisting of 14
      ibration or the current
                         17.01.2019robot        pose.Jochen
                                    | Berlin | ©2017-19    This      requires
                                                             Steil | Seminar Philosophie
                                                                                                niques such     as visual servoing (Siciliano & Khatib, 2
behaviors,  the interaction     inherently
      the network to observe the spatial relationship   involves         a   fast    feed-               robotic manipulators. We collected over 800,000 grasp attempts
                                                                                                performtocontinuous         feedback
                                                                                                           train the CNN grasp  prediction on   visual features, but
                                                                                                                                           model.
Robotik: End-to-End Deep Reinforcement Learning                                                                             21
        Random Bin Picking – Approach
                                                                                     heute einfach !
                          State
                                                                 r o b  o  t
                                                    o - e n  d       [Levine et al. 2016]

                                         e  n d - t              r n i n g
                              c  h e  s              n  t l e  a
                  t i s t i s              c e m   e              b e  l
       …    s t a                i n f o r              k t i k a
                   i n g   / r e            m   p   r a
         le a r n                h   k a  u                                        )
                      k t i s  c                                   G   o  ,  …
              pra                     Action Schac
                                                               h ,  „Reward“

                                     o  h l i n
                        e   h  r  w
           ! b
data=teuer(a    e r   s         Stochastic   search
                                (Sampling), e.g. CMA-ES

        © Dr. Felix Reinhart                                                 Machine Learning in Robotics
                                                                                                            schwierig !   17

                        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen

• Maschinelles Lernen: Statistik
 — Kontext: Datenwelt —

• Roboterlernen: Fähigkeiten
  — Kontext: physikalische Welt —

• Roboterlernen: soziale Fähigkeiten?
  — Kontext: soziale Welt —

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten

                                          Lernaufgabe(n)                       (Small) Data

                                             Spracherkennung
                                             Gesichtserkennung
                                             Ontologien
                                             Vorhersagen
Roboter                                      …                                Lernverfahren
                                             Objekt nehmen
Regelung
Sensorik
Echtzeit
Sicherheit
Energie
Kräfte
Bewegung
…
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten

      Interactive Imitation Learning of Object Movement Skills,
      M. Mühlig, J. Steil, M. Gienger, Autonomous Robots, 2012
      17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten
                                            Lernaufgabe(n)                     Vormachen

                                                                              Lernverfahren
Roboter
 Regelung
 Sensorik                                                                      “Objekte
 Echtzeit                                    Objekte stapeln
                                                                                 präparieren”
 Sicherheit                                                                    “ Interaktions-
 Energie                                                                         design”
 Kräfte                                                                        “neu starten”
 Bewegung                                                                      …
 …
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: Fähigkeiten
                  Perception & Learning
                  per Design vorgegeben
                                        Movement Generation
                                                                                                                                                      Sequence
                                                                                                                                                                                                                          !26

                                                               Sequence
                                                                                   Perception   & Learning
                                                                                         Procedural Memory
                                                                                                                                                      Selection        Movement Generation
                                                                                                                                                                            Movement Sequencing
                                                                                                                                                  Sequence

                                                           Sequence
                                                                                                                                                  Selection
                                                                                          Procedural Memory                                                                    Movement Sequencing

                                                                                                                                                                                          Prediction and Planning
                                                                                                                                                     Interaction
                                                                                                       Labeling
                                                                                                                                                                                 Prediction and Planning
                                                                                      Movement Primitive Memory                                  Interaction                              Movement Primitives
                                                                                                      Labeling                                        Attention
                                                                                                                                                       System

                                                                       Primitive
                                                                                     Movement Primitive Memory                                                                  Movement Primitives                 GMR
                                                                                                                                                  Attention
                                                                                                                                                   System

                                                                    Primitive
                                                                                                                                                                                                           GMR

                                                                                                                                                       Scene
                                                                                                                                                   Interpretation
                                                                                                                                                                                  Optimization
                                                                                                                                                    Scene

                                                            Movement
                                                                                              Movement Learning
                                                                                                                                                Interpretation
                                                                                                                                                                           Optimization
                                                                                           Observation  Memory

                                                           Movement
                                                                                            Movement Learning

                                                                                     Lernen
                                                                                         Observation Memory                                           Posture
                                                                                                                                                    Recognition
                                                                                                                                                  Posture
                                                                                                                                                Recognition
                                                                                                                                                                                            Attractor Command
                                                                                                                                                                                   Attractor Command

                                                                                                                                                 Body Scheme
                                                                                                      Segmentation
                                                                                                                                              BodyAdaptation
                                                                                                                                                  Scheme
                                                                                                 Segmentation
                                                                                       Persistent Object Memory                                Adaptation
                                                                                                                                                      Assign Linked                         Motion Control
                                                                                      Persistent Object Memory                                           Objects
                                                                                                                                                  Assign Linked                     Motion Control
                                                            Reactive

                                                                                                                                                     Objects
                                                           Reactive

                                                                                       Tutor Model
                                                                                      Tutor Model
                                                                                                                                     t
                                                                                                                                 t
                                                                                                                 Short Term
                                                                                       Object Filter         ShortMemory
                                                                                                                   Term
                                                                                      Object Filter           Memory

                                                                                                                                 Perception
                                                                                                                              Perception                              MotorMotor Command
                                                                                                                                                                           Command

                                                                                                                               Environment
                                                                                                                              Environment    / Simulation
                                                                                                                                          / Simulation

                Interactive Imitation Learning of Object Movement Skills,
                M. Mühlig, J. Steil, M. Gienger, Autonomous Robots, 2012
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen

• Maschinelles Lernen: Statistik
 — Kontext: Datenwelt —

• Roboterlernen: Fähigkeiten
  — Kontext: physikalische Welt —

• Roboterlernen: soziale Fähigkeiten?
  — Kontext: soziale Welt —

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?!

      17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?!

Zur Zeit kein umfassender Ansatz …
      17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboterlernen: soziale Fähigkeiten ?!
                                Lernaufgabe(n)                                 Interaktion

                                     Lernaufgabe(n)

                                     Wahrnehmung                              Lernverfahren
                                     Motorik
                                     Sprache
Roboter                              Weltwissen
                                    Ziele
                                     …
Regelung                            Motivation                                 Aufmerksamkeit
                                                                               Turn-Taking

Sensorik                            Verhaltens-                                Sprachverstehen
                                                                               “Namen sagen”
Echtzeit                            steuerung                                  Multi-Personen Tracking
                                                                               Situationsgedächtnis
Sicherheit                          Präferenzen                                Dialog
                                                                               Umgang mit Ambiguität
Energie                                                                        Umgang mit Unsicherheit
                                                                               Umgang mit …
Kräfte                                                                         Gedächtnis
                                                                               Interne Simulation
Bewegung                                                                       Situationsverstehen
…                                                                              …
          17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Robotik und Roboterlernen
Roboter als gefährliche Technologie

          This open letter was announced July 28 at the opening of the IJCAI 2015 conference on July 28.
          Journalists who wish to see the press release may contact Toby Walsh
          [mailto:toby.walsh@nicta.com.au] .
          Hosting, signature verification and list management are supported by FLI; for administrative
          questions about this letter, please contact tegmark@mit.edu [mailto:tegmark@mit.edu] .

                  AUTONOMOUS WEAPONS: AN
                    OPEN LETTER FROM AI &
                    ROBOTICS RESEARCHERS
         12.11.18:        3978 AI/Robotics Researcher Signatories
          Autonomous weapons select and engage targets without human intervention. They might include,
         12.11.18: 22540 Other Endorsers (S. Hawkings et al.)
of 772
         Welche Anwendung wollen wir ?
                      17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter sind unterschätzt

• Roboter sind mächtige Werkzeuge

-   zunehmend low-cost
-   zunehmend leicht
-   zunehmend variabel
-   zunehmend billige Sensorik

         17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
International Journal of Robotics Research
       Beispiel: Assistenz in Medizin
 rg et al.

                       (a) Circle Cutting                    (b) Needle Passing                              (c) Suturing
                                                                                                                             11. Pull
                                                          7. Handoff               3. Handoff
                                                                                                                9.Handoff
                                            3. 1/2 cut                                                                                  10. Insert
                                                                  6. Pass 3             2.Pass 1             8. Pull
                                            6. Finish
                                                                                                          6.Handoff                7. Insert
                  2. Notch
                                                                                                      5. Pull
                   4. Re-enter                                           4. Pass 2
                                            5. 1/2 Cut                                             3.Handoff                4. Insert
       1. Start
                                                                                   1.Start
                                                          8. Pass 4                             2. Pull
                                                                      5. Handoff                                       1. Insert

 nd annotations of the three tasks: (a) circle cutting, (b) needle passing, and (c) suturing. Right arm actio
 d leftTransition    State
        arm actions are listedClustering:
                              in yellow.       Unsupervised
       Surgical Trajectory Segmentation For Robot Learning
                                                                                                                                   Robotik
       Sanjay Krishnan*1, Animesh Garg*1, Sachin Patil1, Colin Lea2,
ng:    A 5 cm diameter circle drawn on a piece (ignoring
       Gregory Hager2, Pieter Abbeel1, Ken Goldberg1
                                                                                               the orientation). In particular, we sho
e first step is to cut a notch into the circle. (red box) to highlight the benefits of these featu
       (vergl.
  tep is       auch
          to cut    Keynote Jeffrey
                  clockwise       half-way    Hager,       Int. Conf.
                                                      around            the Intelligent    Robots, phase
                                                                                    the cross-over 2015, of theKünstliche
                                                                                                                  task, the robot has to
                                                                                                               Intelligenz
        US patent application on skill evaluation)
 the robot transitions to the other side cutting notch point and adjust to cut the other half of the c
 wise. Finally, the robot finishes the cut at the only using the end-effector kinematic                                          pose, th
                                                                                                                             Vernetzung
                                                                                                                                Daten,
                                                                                                                               Netzwerk
   of the two cuts. As17.01.2019
                         the left| Berlin |arm’s      only
                                           ©2017-19 Jochen Steil | action           where this transition happens is unreliable as op
                                                                   Seminar Philosophie

 n the gauze in tension, we exclude it from approach the entry from slightly different ang
                      F

In Figure 10a, we mark 6 manually identified other hand, the use of a gripper contact binary fea
Roboter & Big Data
Beispiel: Assistenz in Medizin

DaVinci:
• in großer Zahl vorhanden      Da-Vinci Operationsroboter
• zeichnet Operationen auf
• Big-Data Methoden zur Bewertung
=> Liefert quantifizierbaren Maßstab zur Bewertung
    der manuellen Fähigkeit der Chirurgen

(vgl. Keynote Jeffrey Hager, Int. Conf. Intelligent Robots, Hamburg, 2015)

              17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter & Big Data
Beispiel: Assistenz in Medizin

                                                                            Da-Vinci Operationsroboter
(ethische) Fragen:
• Bezahlung von Operationen nach Qualität ?
• Welche “Abweichungen” sind tolerabel ?
• Wie soll das fehlerbehaftete (!)
  Lernen der Ärzte organisiert sein?

  Wollen wir alles vermessen ?
  Wieviel Datengläubigkeit ist sinnvoll ?

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter, Lernen & Personalisierung
Vermessung von Interaktion
Beispiel: Assistenz in Produktion

   Was lernen solche Roboter über Menschen ?
   Interaktionsdaten sind wie Gesundheitsdaten !
        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Roboter, Lernen & Personalisierung

Vermessung von Interaktion
Beispiel: Assistenz in Produktion

(ethische) Fragen:
• Auswertung für Gesundheitsüberwachung ?
• Gerechtigkeitsfragen
  — bekommt jeder gleiche Assistenz ?

Welche Daten wollen wir wie nutzen ?
Assistenz und Überwachung sind janusköpfig.

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

Fragen & Überlegungen
Einordnung Roboterlernen

• Kombination Lernen und Anthropomorphismus
  führt leicht in die Irre

• Maschinelles Lernen und Roboterlernen sind
  sehr erfolgreich für einzelne Fähigkeiten
• Komplexität von Metakognition & Lernen auf der
  Systemebene ist aber zu hoch

Fazit:
— Roboter als “verantwortliche Person” bleibt Fiktion

        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Ehtik in der Anwendung

• (speziellere !) Roboter sind mächtige Technologie

• Roboter “erben” alle Probleme von Big Data

• Roboterlernen verschärft diese Datenprobleme

• Assistenz & Überwachung: 2 Seiten einer Medaille !

Welche Anwendung wollen wir ?
Wollen wir alles vermessen ?
Welche Daten wollen wir wie nutzen ?
        17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Mythen
                                                                                                      e h l e n
▪ Deutschland                                                                               : e  s  f           &
                                                                                       c h                  e n
   ▪ verpasst seine Zukunft                                                      fals tiker/inn
                                                                                   o r m  a             t u r !
   ▪ hat nicht genügend Experten                                               Inf        r a s t r u k
   ▪ hat keine gute Forschung                                                        In f
   ▪ …
                                                                                             sch …
                                                                                          agi
▪ die Singularität, KI übernimmt alles                                                .. m
                                                                                    ……….

                                                                                                   n e K I
▪ Selbst-Lernen                                                                            : k e i           ne
                                                                                       c h              o  h
                                                                                   fals ahmen,
                                                                                    e An n           n g e n
▪ der KI ist inhärent, selbst-…                                                 ohn        h e i d u
                                                                                    Ents c

           17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
Arbeit & Ethik
▪ Prognose: mehr hybride Mensch-Maschine Interaktion

▪ Aber: meist wird viel zu aufgeregt diskutiert

▪ es sind keine Maschinenwesen mit Moral, Ethik in Sicht

▪ Und:

               ist die falsche Diskussion

           17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
now: Brook’s 1. Fallacy

Roboterlernen wird wegen
Vermenschlichung überschätzt !                                                                 f ü r
                                                                                     D  a n k          k
                                                                           i e l e n         r k s a m
Aber gleichzeitig:                                                        V            f m e
                                                                             r e   A u
                                                                          ih
Die Kombination Roboter & Lernen
wird in Anwendungen unterschätzt!

      17.01.2019 | Berlin | ©2017-19 Jochen Steil | Seminar Philosophie
You can also read