Proposition de sujet de thèse 2021
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Proposition de sujet de thèse 2021 (A remplir par les équipes d'accueil et à retourner à Isabelle HAMMAD : hammad@cerege.fr *à renseigner obligatoirement pour la validation du sujet, (1) : A remplir lors de la campagne d'attribution des allocations, à l'issue de la session de juin des Masters Sujet de doctorat proposé *: Encadrant(s) *: Doelsch Emmanuel, doelsch@cerege.fr Laboratoire *: CEREGE, Equipe Environnement Durable Tableau récapitulatif du sujet Candidat(e)(1) Nom - Prénom : Date de naissance : Licence (origine, années, mention) : Mention et classement au Master 1 année (Xème sur Y) Mention et classement au S3 du Master 2 (Xème sur Y) Mention et classement au S4 du Master 2 (Xème sur Y) Mention et classement au M2 (année) (Xème sur Y) MASTER (nom, université) Sujet de doctorat proposé* Encadrants (2 max, indiquer si HDR ou pas)* Doelsch Emmanuel (HDR) Laboratoire* CEREGE, Equipe Environnement Durable Programme finançant la recherche (indiqué si obtenu ou Projet ACV–Ecoto(Mi)x : envisagé) (1) Adaptation des méthodes utilisées en Analyse de Cycle de Vie pour évaluer l'impact écotoxicologique des mélanges de contaminants chimiques apportés par les produits résiduaires organiques dans les sols agricoles Appel à projets ADEME IMPACTS Pré-projet sélectionné pour la seconde phase – date de soumission du projet final 31 mars Sujet de doctorat proposé* Intitulé* : Revisiting methods used in Life Cycle Assessment to assess the ecotoxicological impact of trace elements in agricultural soils amended with organic waste / Adaptation des méthodes utilisés en Analyse de Cycle de Vie pour évaluer l’impact écotoxicologique des éléments traces dans les sols agricoles amendés avec des résidus organiques
Descriptif *: Agricultural recycling of organic waste (OW) derived from urban, agricultural, and agro-industrial sources constitutes a key strategy for sustainable development (Avadí 2020). Nonetheless, repeated application of nutrients-laden OW in crop fields can also drastically boost levels of contaminants in soil. Several national monitoring programs point out that trace elements are, quantitatively, the main type of contaminants added to agricultural soils and OW remains a major, if not the main source of trace elements (Cd, Cu, Zn, Pb, etc.) in agricultural soils (Belon et al. 2012). The large emissions of trace elements in the environment associated with their specific behaviour led most of risk assessment methodologies to point out trace elements as the type of contaminants that dominates the impacts on human health and, even more so, on aquatic and terrestrial ecotoxicity (Pettersen and Hertwich 2008; Pizzol et al. 2011a, b; Tarpani et al. 2020). Toxicity is thus a key area of research in environmental assessment (Verones et al. 2017). Only life cycle assessment (LCA) consider contaminants explicitly in terms of their impacts on human and both aquatic and terrestrial ecosystems health by using toxicity models such USEtox (Rosenbaum et al., 2008). USEtox is a fate, exposure and toxicity model that has gained importance in the last years thanks to continuous development and refinement. For instance, recent works have attempted to include the characterisation of terrestrial ecotoxicity of trace elements in USEtox. This approach proposed by Owsianiak et al. (2013) includes a fate factor (FF) calculated as the total concentration of trace elements remaining in soil following their emission, an accessibility factor (ACF) defined as the available fraction of the total concentration of a trace element in soil, a bioavailability factor (BF) defined as the free ion fraction in soil solution, and a terrestrial ecotoxicity effect factor (EF). The combination of these factors is known as characterisation factors. We took advantage of the the ANR DIGESTATE (coordination: E. Doelsch) to review the state of the art in the fields of environmental assessment and empirical research on biophysical processes governing the fate of contaminants following application of OW to agricultural soils (Avadi et al. to be published in Advances in Agronomy). First, we identified several limitations in existing environmental assessment frameworks for the agricultural recycling of organic waste, regarding the absence or inadequate consideration of some biophysical processes governing the fate of contaminants; and then, we proposed suitable approaches for a better consideration of contaminants in LCA, such as complementary analytics, methods, and models. The establishment of robust environmental assessment methodologies more particularly related to the input of trace elements from OW to agricultural soils thus seems of a primary importance to ensure the sustainability of the agricultural recycling of OW. Research program Considering the limitations underlined in our recent literature review, we hypothesized that the variability of characterisation factors calculated in the most advanced LCA framework (USEtox) assessing the terrestrial ecotoxicity of trace elements would be not only affected by the variability of the physical- chemical properties of the soils, but also strongly affected by the the type of organic wastes added to soils. This assumption is supported by very recent experimental and modelling results acquired during the Suminapp project (Eurostars 2016-2020) They showed indeed that the variability of characterisation factors induced by the application of only four types of livestock wastes on a single soil was similar to the variability previously calculated for several hundreds of soils all around the world (Owsianiak et al. 2013). Building on these results, the present PhD work will first aim at extending the validation of this hypothesis to a larger range of organic wastes commonly spread on agricultural soils. Based on this latter dataset, the PhD work will secondly aim at revisiting the computational methodologies and the consequent characterisation factors used in LCA to assess the ecotoxicological impact of organic wastes-borne trace elements spread on cultivated soils. To achieve these two objectifs, the PhD work will be sub-divided in three steps. Task 1. Revisiting the exposure characterisation factors: This task will aim at producing (i) a typology of organic waste based on the trace element speciation and (ii) an experimental dataset designed to assess the impact of the nature (urban vs. agricultural, raw vs. anaerobically and/or aerobically digested) of organic wastes on the availability of trace element in a set of amended soils representative of temperate and tropical areas (see Fig. 1 below). These two achievements will be then used to revisite the formalism of the three characterisation
factors (i.e. the fate, accessibility and bioavailability factors) allowing to calculate in LCA the exposure of soil organisms to trace elements in amended soils. Task 2. Revisiting the hazard characterisation factor: Based on the exposure dataset obtained in the task 1, the task 2 will aim at revisiting the effect factor allowing to calculate in LCA the toxic effect (i.e. the hazard) of trace elements accumulated in amended soils. According to the review paper we recently written (Avadi et al. in prep), two formalisms will be compared. The first one will be based on the combination of the geochemical WHAM model with a toxicity function (Tipping and Lofts 2015), while the second one will be based on the free tool produced by Arche consulting (Oorts 2018). The choice between the two formalims will be done according to the relevance of the toxicity assessment produced and to their practibility to be used routinely in LCA procedure. Task 3. Application to the assessment of realistic territorial scenarios of organic wastes recycling on agricultural soils: In agreement with the integrative objective of our research unit, the task 3 will aim at applying the newly developped methodology on two realistic case studies of agricultural recycling of organic wastes implemented historically by our group. Each case study will combine data from recycling scenarios made at a territorial scale (i.e. from ANR Isard in Senegal and CASDAR Girovar in La Reunion) with data from long-term field trials (notably those in La Reunion and Senegal belonging to the SOERE PRO international network). This last step is crucial to ensure the applicability of the method developped in tasks 1 and 2 for further operational LCA implementation adapted to the assessment of organic wastes recycling scenarios. Fig. 1. Experimental and modelling approach proposed for the tasks 1 and 2 References Avadí A (2020) Screening LCA of French organic amendments and fertilisers. Int J Life Cycle Assess 25:698–718. https://doi.org/10.1007/s11367- 020-01732-w Belon E, Boisson M, Deportes IZ, et al (2012) An inventory of trace elements inputs to French agricultural soils. Sci Total Environ 439:87–95. https://doi.org/10.1016/j.scitotenv.2012.09.011 Fantke P, Bijster M, Guignard C, et al (2017) USEtox® 2.0 Documentation (Version 1) Oorts K (2018) Threshold calculator for metals in soil A global tool for terrestrial risk assessment. ARCHE Consulting Owsianiak M, Rosenbaum RK, Huijbregts MAJ, Hauschild MZ (2013) Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils. Environ Sci Technol 47:3241–3250. https://doi.org/10.1021/es3037324 Pettersen J, Hertwich EG (2008) Critical review: Life-cycle inventory procedures for long-term release of metals. Environ Sci Technol 42:4639– 4647. https://doi.org/10.1021/es702170v Pizzol M, Christensen P, Schmidt J, Thomsen M (2011a) Impacts of “metals” on human health: A comparison between nine different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:646–656. https://doi.org/10.1016/j.jclepro.2010.05.007 Pizzol M, Christensen P, Schmidt J, Thomsen M (2011b) Eco-toxicological impact of “metals” on the aquatic and terrestrial ecosystem: A comparison between eight different methodologies for Life Cycle Impact Assessment (LCIA). J Clean Prod 19:687–698. Rosenbaum RK, Bachmann TM, Gold LS, et al (2008) USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess 13:532–546. Tarpani RRZ, Alfonsín C, Hospido A, Azapagic A (2020) Life cycle environmental impacts of sewage sludge treatment methods for resource recovery considering ecotoxicity of heavy metals and pharmaceutical and personal care products. J Environ Manage 260:109643. Tipping E, Lofts S (2015) Testing WHAM-FTOX with laboratory toxicity data for mixtures of metals (Cu, Zn, Cd, Ag, Pb). Environ Toxicol Chem 34:788–798. https://doi.org/10.1002/etc.2773 Verones F, Bare J, Bulle C, et al (2017) LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. J Clean Prod 161:957–967. https://doi.org/10.1016/j.jclepro.2017.05.206
Détail du Programme finançant la recherche* : Projet ACV–Ecoto(Mi)x : Adaptation des méthodes utilisées en Analyse de Cycle de Vie pour évaluer l'impact écotoxicologique des mélanges de contaminants chimiques apportés par les produits résiduaires organiques dans les sols agricoles Appel à projets ADEME IMPACTS Pré-projet sélectionné pour la seconde phase – date de soumission du projet final 31 mars Directeur(s) de thèse proposé(s)* (limiter au plus à deux personnes principales, dont au moins une titulaire de l'HDR) Directeur HDR proposé* Nom - Prénom : DOELSCH Emmanuel Corps : DR Laboratoire : CEREGE, Equipe Environnement Durable Adresse mail : doelsch@cerege.fr Choix de cinq publications récentes (souligner éventuellement les étudiants dirigés co-signataires) : Le Bars M., Legros S., Levard C., Chevassus-Rosset C., Montes M., Tella M., Borschneck D., Guihou A., Angeletti B., Doelsch E. Counterintuitive fate of zinc sulfide nanoparticles in soil: dissolution does not mean availability. Submitted to Environmental Science: Nano. Formentini T. A., Basile Doelsch I., Borschneck D., Venzon J., Pinheiro A., Fernandes C. V. S., Mallmann F. J. K., da Veiga M., Doelsch E. 2021 Redistribution of Zn towards light-density fractions and potentially mobile phases in a long-term manure-amended clayey soil. In Press Geoderma. Hodomihou R.N., Feder F., Legros S., Formentini T. A., Lombi E., Doelsch E. 2020 Zinc speciation in organic waste drives its fate in amended soils. Environment Science & Technology, 54, 12034−12041. Layet C., Santaella C., Auffan M., Chevassus-Rosset C., Montes M., Levard C., Ortet P., Barakat M., Doelsch E., 2019 Phytoavailability of silver at predicted environmental concentrations: does the ionic or nanoparticulate form matter? Environmental Science: Nano, 6, 127–135. Le Bars M., Legros S., Levard C., Chaurand P., Tella M., Rovezzi M., Browne P., Rose J., Doelsch E. 2018 Drastic change in zinc speciation during anaerobic digestion and composting: instability of nano-sized zinc sulfide. Environmental Science & Technology, 52, 12987-12996. Thèses encadrées ou co-encadrées au cours des quatre dernières années* Nom : Abraham Pappoe Intitulé : Using a combined approach stable isotopes – speciation to understand the impact of long-term spreading of organic effluents on agricultural soils Type d'allocation : Co-financement INRAe - CIRAD Date de début de l'allocation de doctorat : 1er octobre 2020 Date de soutenance (si la thèse est soutenue) : Programme finançant la recherche : EC2CO DECODE Situation actuelle du docteur (si la thèse est soutenue) : Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 50 % Nom : Maureen Le Bars –2015-2019. Intitulé : Devenir du zinc des produits résiduaires organiques après méthanisation et recyclage agricole : rôle des nanoparticules de sulfure de zinc Type d'allocation : Co-financement ADEME - CIRAD Date de début de l'allocation de doctorat : 1er octobre 2015 Date de soutenance (si la thèse est soutenue) : 25 février 2019 Programme finançant la recherche : ANR DIGESTATE Situation actuelle du docteur (si la thèse est soutenue) : Postdoctorante ETH Zurich Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 33 % Nom : Clément Layet
Intitulé : Phytodisponibilité des nanomatériaux, et impact sur le prélèvement d’éléments traces métalliques Type d'allocation : Co-financement ADEME – LABEX Serenade Date de début de l'allocation de doctorat : 1er octobre 2013 Date de soutenance (si la thèse est soutenue) : 11 décembre 2017 Programme finançant la recherche : EC2CO Situation actuelle du docteur (si la thèse est soutenue) : - Pourcentage de participation du directeur à l'encadrement en cas de co-direction : 33 %
You can also read