PLATO PLAnetary Transits and Oscillations of stars - Isabella Pagano - INDICO @ INAF
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
19 May 2021 PLATO PLAnetary Transits and Oscillations of stars Isabella Pagano Resp. Scientifica partecipazione Italiana a PLATO PLATO Co-PI AUDIZIONI SCHEDE INAF 17-31 MAY 2021
The EP-RAT Roadmap ESA EXOPLANET ROADMAP ADVISORY TEAM – Oct 2010 Time and difficulty Time and difficulty Rome, 5 Nov 2014
PLATO PLAnetary Transits & Oscillations of Stars • 3° M class mission in ESA’s Cosmic Vision 2015-2025 Programme • Launch: end 2026 – Ariane 6 from Kourou • Operation: 4.25 yr (+2) yrs [satellite built with consumable for 8 yr] Key Science Goals: ✓ Detection of terrestrial exoplanets in the habitable zone of solar-type stars and characterization of their bulk properties needed to determine their habitability. ✓ Understanding of the formation, the architecture, and the evolution (ages) of planetary systems by means of a full inventory of the physical properties of thousands of rocky, icy, and gaseous giant planets.
Large diversity of planetary structure Lacedelli et al. (2020, MNRAS 501, 4148) ü Masses vary by a factor of ~4 (with large errors) ü Radii vary by a factor of ~3 Mp
Planet diversity • Planets of Earth mass and below remain to be Earth 5.5 g/cm3 detected and characterized GJ1214b 1.6 g/cm3 Mini gas planets
A biased view Our knowledge on planet nature is limited to close-in planets so far. All planets Planets with P>80 days
Small planets with both Radius and Mass measured Illustration of PLATO science exoplanet target range in comparison to other missions (Rauer et al. in preparation)
The need for bright stars Known planets from radial velocity and transit surveys ü Why have so few targets been characterized? ü Transit surveys targeted faint and distant stars to maximize detection performance. ü Radial velocity surveys need bright stars (≤11 mag) to keep telescope resources limited. Lessons learned: Future transit missions must target bright stars!
The Telescope Optical Units design concept
Single Telescope FoV ∼1200 sqdeg One Camera Equivalent to a circle of ~38.7 deg diameter ✓ 24 Normal cameras Telescopes ✓fully dioptric, 6 lenses CCDs ✓ pupil 120 mm FPAs & Test House ✓Dynam. range: ~8 ≤ mV ≤ 11 (13) TOU+FPA integration ✓4 x CCD 4510×4510px per camera Test House ✓Pixels size: 18 μm square Test House ✓read-out cadence: 25 sec FSS ✓Band: 500 – 1050 nm ©PLATO @INAF OGSE+ MLI ✓2 Fast cameras Transport Container ✓Bright stars (
Payload Concept Instrument field of view is 2200 square degrees (vs 105 deg2 Kepler) ~2 billion pixels (2 000 Mpx vs 98 Mpx for Kepler) ~6 600 cm2 of sensitive area (2x Gaia)
The PLATO sky T h e f in al w i l l b e o b s e r v in g s t f ix e d ~ ra te g y la u n c h 2 yrs b a nd ca e fo d u r in g n b e a d re the m i a pted Observing strategy s s io n . • Baseline 2 long pointings of 2 years • Alternative 3 years + 1 year step-and-stare phase
Methods and goals PHOTOMETRY FROM SPACE SPECTROSCOPY FROM THE GROUND Transit Method Asteroseismology Radial velocity method → Rp/R* → R* → Mp/M* sin i → Orbital inclination → M* → Orbit parameters → Stellar age Mean Densities, Age Evolution of planets & planetary systems, Habitability
How PLATO is organised Steering About Committee PLATO Mission 750 Consortium members PM PI & co-PI PS PSWT PMC PMC Science Board Team MISSION Man SATELLITE PAYLOAD LAUNCH PMC Man Ground Segment LAUNCHER SOC Science Preparation PLATO Data Center MOC
Il Team INAF (and associated) ü INAF • OA Catania Science, Payload • OA Padova Science, Payload • OA Brera Science, Payload • IAPS Roma Science, Payload • OAS Payload • FGG Payload • OA Palermo Science • OA Torino Science • 114 people (95 INAF/ 19 associated) • OA Capodimonte Science • In the period 2021-2023 • OA Roma Science • 15 FTE/yr INAF • OAAB Science • 4.5 FTE/yr associated • OA Arcetri Science • Distribution ü UNIPD, UNIBO, UNIPI Science • 40 è Payload ü SSDC PDC • 72 è PSM • 4 è PDC (SSDC)
What we do for PLATO: PAYLOAD TOUs Cameras System Management ICU
Payload: Payload Team CAMERAs TEAM Jose Lorenzo Alvarez Payload Project Manager OAS, IAPS, OACT, OAPD F. Borsa P. Battaglia G. Dinuzzi TBD F. Calderone N. Auricchio A. Meoli TBD F. Sortino M. Munari TBD R. Ragazzoni Y. ZImmer P. Apollonio D. Dobrea M. Fürmetz G. Tropea
OACT, OAPD, OAB Telescope Optical Units Team PROJECT SYSTEM ANALYSIS & DESIGN PERFORMANCE AIV & GSE OFFICE ENGINEERING TOU Project Manager TOU Instrument Scientist TOU System Engineer Chief Optical Engineer Optical Engineer, Chief AIV Engineer Straylight Analysis Isabella Pagano Roberto Ragazzoni Valentina Viotto Demetrio Magrin §Matteo Munari Jacopo Farinato INAF-OACT INAF-OAPD INAF-OAPD INAF-OAPD INAF-OACT INAF-OAPD TOU Mechanical Structure TOU Mechanical Structure Mechanical Structure Optical Engineer, Project Manager Scientist System Engineer Chief Mechanical Engineer Radiation analysis AIV Engineer Virginie Cessa Willy Benz Timothy Bandy Daniele Piazza Mauro Ghigo Maria Bergomi UBE INAF-OAPD UBE UBE UBE INAF-OAB F-TOU Filter Project TOU Product Assurance TOU Interface Engineer Mechanical Engineer Optical Engineer, AIV Engineer Manager Manager Radiation analysis Alexis Brandeker Simonetta Chinellato Maria Bergomi Timothy Bandy Francesco Borsa Gabriele Umbriaco INAF-OAPD UBE INAF-OAPD UST INAF-OAPD INAF-OAB TOU Document TOU Project Office Visualization and Mechanical Engineer, AIV Engineer Configuration Man Assistant Rendering Thermal Analysis Flavia Calderone Flavia Calderone Marco Dima Stefano Basso Daniela Vassallo INAF-OACT INAF-OAPD INAF-OACT INAF-OAPD INAF-OAB STM è F-TOU Filters Product Thermal Engineer, Structural Tests Engineer TOU Mechanical Structure Assurance Manager Thermal Analysis Product Assurance TBD Sebastian Wolf Daniel Schaedeli Manager UBE UST UBE Configuration Control and Mechanical Engineer, Chief GSE Engineer ction Quality Control Structural Analysis Serial Produ Virginie Cessa Martin Rieder Luca Marafatto INAF-OAPD UBE UBE ted already star Optical Engineer, Optical , 5 FS Material Parts & Process Performance AIV support 1 PFM 2 5 FM Timothy Bandy Demetrio Magrin Florian Hostettler UBE UBE INAF-OAPD Optical Engineer, F-TOU Filter Performance Göran Olofsson UST ç EM
OAA, IAPS, TNG Payload: ICU Team ç ICU EM#1
Science Preparation 100 000 PSM Coordination D. Pollacco 110 000 120 000 130 000 140 000 160 000 Target / Field Follow-up Complementary Exoplanet Science Stellar Science Characterization Coordination Science D. Pollacco M.-J. Goupil and Selection S. Udry C. Aerts G. Piotto RSN2 EXO-Arch EXO-Stars RSN3 EXO-Young RSN4 EXO-SPI
PLATO Input Catalog PLATO INPUT CATALOG UNIPD, OAPD, OAPA, OACT e SSDC The all sky PLATO Input Catalogue PLATO AA/2021/40717 Data Center
Exoplanets Science preparation 110 000 Exoplanet Science D. Pollacco 111 000 112 000 113 000 114 000 115 000 116 000 117 000 Coordination of Specification of Planet Candidate PLATO Transit Fitting PLATO Data Interfaces to Other Tools for Planet Detection Ranking Interpretation Tools Specific Science PSM WPs & PDC Lightcurve Filtering Tools Procedures Specific Science J. Cabrera Sz. Csizmadia D. Pollacco N. Santos I. Pagano M. Deleuil H. Rauer 111 100 112 100 113 100 114 100 115 100 116 100 117 100 Composition & Planet Host Tools for Lightcurve Transit Detection Rank Planet Transit Curve Astrophysical Noise Formation of Gas & Characterisation Filtering Tools Candidates Modelling Tools Source Ice Giants Requirements S. Aigrain J. Cabrera A. Collier Cameron Sz. Csizmadia C. Watson Adibekyan T. Guillot 111 200 112 200 113 200 114 200 115 200 116 200 117 200 Tools for Detecting Detection of Single False Positive Accurate Orbital Understanding Planetary System Mass-radius & Filtering Residual and Unusual Transit Identification Through Parameter planets through Characterisation Terrestrial Planets Instrumental Noise Events Centroid Analysis Determination their host stars A. Sozzetti F. Sohl D. Pollacco P. A. Strøm A. Santerne A. Santerne Van Eylen 112 300 113 300 114 300 115 300 116 300 Detection of Astrophysical False Rossiter-McLaughlin Planet-Star Planetary Formation Exoplanet Systems Positives Modelling Tools Interactions and Orbital Evolution via Reflected Light A. Collier Cameron G. Hébrard S. Mathis R. Nelson J.-M. Desert 112 400 115 400 116 400 Atmospheres of Other Detection Transits of Close-In PLATO Terrestrial Methods Objects Planets R. Silvotti C. Haswell J. L. Grenfell 112 500 115 500 116 500 PLATO Habitable Multi-planet Non-Transiting Zone Planets Systems Planets via REBs M. Güdel / S. Desidera D. Barrado H. Lammer 112 600 115 600 116 600 Transit Timing Composition and Dynamical Variations / Transit Interior Evolution of Interactions in Multi- Duration Variations Terrestrial Planets Planet Systems V. Nascimbeni S. Werner J. Laskar 115 700 Planet Occurrence Rates V. Van Eylen
Stellar Science Preparation
Follow-up Preparation 140 000 Follow-up Coordination S. Udry 141 000 142 000 143 000 144 000 145 000 146 000 147 000 148 000 Strategy and Higher Angular Perfomances Time Critical Additional Exoplanet Interfaces to Other Operation RV Follow-Up Resolution Spectroscopy Assessment and Photometry Follow-Up PSM WPs and PDC Preparation F. Bouchy Imaging A. Hatzes Follow-Up Efficiency R. Alonso X. Bonfils S. Udry D. Pollacco S. Desidera S. Udry 141 100 142 100 143 100 144 100 145 100 146 100 Radial Velocity Transmission Activity Indicators and Target Distribution Photometry Specific Imaging Analysis Computation and Spectroscopy Doppler Information Requirements Tools Tools Global Analysis Tools Follow-up on Active Stars I. Ribas H. Deeg A. Vigan D. Segransan D. Ehrenreich C. Lovis 141 200 142 200 143 200 144 200 145 200 146 200 Aids for Optimizing Photometric Follow- Single-Epoch Secondary Eclipse Photometric and First Radial Velocity Tools for Spectral Up with Small Seeing-Limited and Phase Variation Spectroscopic Screening [≥10 m/s] Classification Telescopes Imaging Spectroscopy Measurements E. Guenther L. Buchhave G. Wuchterl V. Nascimbeni R. Alonso J. Colomé 141 300 142 300 143 300 144 300 145 300 146 300 Intermediate Precision Standard Reconnaissance Developing Techniques Information Infrared Radial Velocity Follow- Photometric High Resolution for Atmosphere Transfer Spectroscopy Up [3-5 m/s] Observations Imaging Characterisation F. Villardell P. Figueira C. Moutou R. Alonso M. Janson X. Bonfils 141 400 142 400 143 400 144 400 145 400 146 400 Very High-Precision RV Very High Precision Planet Yield High Contrast Rossiter-McLaughlin Spectropolarimetric Measurements Photometric Determination Imaging Effect Follow-up [≤1 m/s] Observations Y. Alibert D. Mesa G. Hébrard P. Petit F. Pepe E. Palle 142 500 144 500 145 500 Infrared Radial Additional Long Term Candidate Velocity Follow-Up Classification Measurements (RV and Transit Timing) M. Bonavita T. Forveille F. Bouchy
Complementary Science
Programmazione TOU è CDR going on ICU è CDR ready to start Critical Milestone è KOM July 2021
Leadership Steering About Committee PLATO Mission 750 Consortium members PM PI & co-PI PSWT PMC PMC Science 12 members including: Board Team I. Pagano, INAF G. Piotto, UNIPD PI: H. Rauer, DLR R. Ragazzoni, INAF Co-PI: I. Pagano, INAF Co-Is (TBD) Co-PI: M. Mass-Hesse, INTA PAYLOAD 20 members including: Camera Team I. Pagano, INAF L. Valenziano G. Piotto, UNIPD F. Santoli N. Gorius D. Brienza
CHEOPS Isabella Pagano e Valerio Nascimbeni
S-class mission: S is not for “Simple” “Small” Budget Short time Several countries milestone when D A E B I call issued Mar 2012 call answered Jun 2012 C ES mission selected Nov 2012 H A mission adopted Feb 2014 instrument delivered Feb 2019 launch Dec 2019 • 4–5 years development • total budget: ~105 M€ • 11 countries & ESA time • ESA: 50 M€ • ~30 institutions Top Science was expected and is actually done!
Il Satellite CHEOPS
From Europe to Kourou
Il Telescopio Progetto ottico Costruzione delle ottiche Integrazione dello strumento Test funzionamento e prestazioni 300 m m Diametro dello specchio: 33 cm Peso strumento: 60 kg
Isabella Pagano Roberto Ragazzoni Giampaolo Piotto Valerio Nascimbeni Gaetano Scandariato Luca Borsato Giuseppe Leto Giovanni Bruno INAF Catania INAF Padova Univ. Padova INAF Padova INAF Catania INAF Padova INAF Catania INAF Catania Resp. Nazionale Instrument Scientist Membro dello Membro dello Membro dello Team Scientifico Team Scientifico Team Scientifico Project Manager del del Telescopio Science Team Science Team Science Team Telescopio Membro del Board Membro del Board Vikash Singh Elisabetta Tommasi Univ. Catania ASI INAF Catania Resp. Accordo Team Scientifico Scientifico Mario Salatti Daniela Sicilia ASI Univ. Padova Project Manager INAF Catania Contratto Industriale Team Scientifico Steering Committee Marco Dima Davide Greggio Luca Marafatto Valentina Viotto Demetrio Magrin Matteo Munari Jacopo Farinato Maria Bergomi Federico Biondi INAF Padova INAF Padova INAF Padova INAF Padova INAF Padova INAF Catania INAF Padova INAF Padova INAF Padova Rendering Progetto Ottico Progetto Ottico System Engineer del Progetto Ottico del Analisi Luce Diffusa Interfacce del AIV del Telescopio AIV del Telescopio Telescopio Telescopio Telescopio
The Team INAF • OACT • OAPD • 28 people (23 INAF/ 5 associated) • OAPA • In the period 2021-2023 • 5 FTE/yr INAF • OATO • 1.5 FTE/yr associated • FGG UNIPD SSDC
2012-2013 2013-2018 Improving Ancillary radii 16% 6% Characterising atmospheres Finding Improving 26% transits radii 50% 50% Exploring new planets Uncovering 29% new features 6% Finding transits 17%
1 Some early science results 1) Measurement of the dayside temperature (3435±27 K) and true δ = 88 ± 4 ppm orbital obliquity (Ψ=85°±4°) of the hot-Jupiter WASP-189b (Lendl+ 2020) 2 2) Full reconstruction of the dynamical 3 architecture of a six-planet system locked in a chain of Laplace resonances (2:4:6:9:12), including mass and density measurements (Leleu+ 2021) 3) Discovery of an additional 2 R⊕ planet in a multiple system hosted by the bright star HD 108236 (Bonfanti+ 2021)
Some early science results 4 4) Characterization of a planetary system hosted by a naked-eye star (Nu2 Lup), including the discovery of a transiting, mildly-irradiated super-Earth amenable of a detailed atmospheric 0 2 1 e 2 characterization (Delrez+ 2021, Nature Astronomy, u n in press). m i dJ t ill a rgo m b r E de Un 4
Criticità • Ricercatori e ingegneri di altissimo profilo • competenze maturate all'interno e all'esterno dell'ente. • E' fondamentale trattenere all'interno queste competenze spesso difficili da reperire. • Per mettere a frutto un giusto ritorno dell'investimento prodotto dalla nostra nazione nel progetto occorre avere una generazione di ricercatori e ricercatrici pronti all'utilizzo dei dati della missione. • Il campo esopianeti è molto attrattivo per i giovani a inizio di carriera. • Occorre non farli scappare e essere capaci di attrarne da fuori. • Per PLATO un aspetto che farà la differenza durante la fase operativa sarà la capacità di partecipare da leader alla campagna ground based di follow-up, che è parte intrinseca della missione. • L'INAF parte in condizione di vantaggio grazie alla presenza di HARPS-N al TNG. Occorre che esso sia disponibile a INAF quando PLATO sarà operative.
Punti di forza • L’Italia è al top sui sistemi ottici per lo spazio: sinergia da rafforzare tra INAF e aziende • La comunità esoplanetologica italiana, che si è aggregata intorno al 2009 proprio grazie alla selezione di PLATO da parte di ESA per lo studio di fattibilità, e che ha proseguito insieme a crescere con l'opportunità giunta nel 2012 quanto la dirigenza INAF ha chiesto di valutare la proposta di installare HARPS-N al TNG, è oggi numerosa, rilevante a livello internazionale, piena di giovani promettenti, e coinvolta oltre che in PLATO in progetti di punta per lo studio degli esopianeti quali le missioni Cheops e Ariel, gli strumenti Espresso, SHARK-VIR e SHARK-NIR, spaziando dallo studio delle architetture e proprietà fisiche dei sistemi planetari (EXO-Arch), alla formazione ed evoluzione iniziale degli stessi (EXO-Young), alle atmosfere dei pianeti (EXO- Atm), alle caratteristiche dell'interazione stella-pianeta (EXO-SPI), allo studio delle proprietà stellari che servono a vincolare con precisione i parametri planetari (EXO-Stars). • Questa comunità è cresciuta grazie ai finanziamenti ricevuti dai Progetti Premiali WOW (PI. G. Micela) e FRONTIERA (PI I. Pagano) che sono stati gestiti in modo da includere e rafforzare il tema di ricerca e creare massa critica per incidere nell'ambito delle collaborazioni internazionali. • Altri finanziamenti sono stati ottenuti grazie a PRIN INAF, PRIN Universitari e bandi ASI più specificatamente mirati a focalizzare precisi temi di ricerca. • Assicurare continuità nei finanziamenti della ricerca di "oggi" per essere sempre più preparati a quella di "domani" è una delle criticità più rilevanti anche per PLATO.
You can also read