Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...

 
CONTINUE READING
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Physics Based and Data Driven
 Algorithms for the Simulation
 of the Heart Functio
 Alfio Quarteron
 Politecnico di Milano, Ital
 EPFL Lausanne, Switzerlan
i

 y

 d

 n
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Physics-based vs Data-driven modeling

 Model
 M(u,d) = 0

 Data First principles Solution Output
 d E(w,d) = 0 u y(u)
 +
 Constitutive relations
 C(u,w,d) = 0 Physics-based modeling
 (white box)
 a separation line ?

 training Data-driven modeling
 Training data (black box)
 {di , yi }

 Artificial Neural Network
 Data Output
 d y

Alfio Quarteroni Politecnico di Milano - EPFL
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
The Pumping Function - The Heart and the Circulation

 https://www.stanfordchildrens.org

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Cardiac Electrical Activity

 Purkinje fibers

 https://www.stanfordchildrens.org

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
The Mathematical Heart - Conceptual Design
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
The Mathematical Heart - The Equations

 Al o Quarteroni EPFL Lausanne
fi
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
The core cardiac models

 1. Electrophysiolog
 2. Active mechanic
 3. Passive mechanic
 4. Fluid dynamic
 5. Valves motio
 6. Myocardium perfusio

 … and their integratio

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 n

 s

 s

 y

 s

 n

 n

 …
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Whole Heart electrophysiology simulation (R.Piersanti)
 Time evolution of the ventricular and atrial transmembrane potential

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Whole Heart electrophysiology simulation (R.Piersanti)

 Activation Map Wave front propagation

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Physics Based and Data Driven Algorithms for the Simulation of the Heart Function - Alfio Quarteroni Politecnico di Milano, Italy EPFL Lausanne ...
Identifying possible targets of ablation for ventricle arrhythmias (S.Pagani)
 Entry: lines of block at
 slow-conduction isthmus boundaries

 Exit:
 slow-conduction
 late activation

 possible targets of ablation
 A. Frontera, S. Pagani et al (2020) Heart Rhythm
 Al o Quarteroni MOX - Politecnico di Milano - EPFL
fi
The coupled
 electromechanical model

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Electro-mechanical simulation (R.Piersanti, F.Regazzoni, M.Salvador)

 12

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Fluid Dynamics

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Fluid dynamics of the left heart (A.Zingaro)
 Blood velocity Blood pressure Vortex formation

 Q-criterion and velocity magnitude:
 • when the mitral valve opens, high speed jets coming from the LA ll the LV.
 • This produces the formation of a O-ring shaped vortex, a coherent structure rolling through the lea ets of the
 mitral valve.
 • This big vortex breaks into smaller coherent structures lling the LV and moving towards the apex
 • As the systole begins, marked by the opening of the aortic valve, the structures are ushed out in the aorta.
 • At the same time, new jets are entering in the LA, but weaker with respect to the ones observed in diastole
 •
 Al o Quarteroni Politecnico di Milano - EPFL
fi
  
 fi
 fi
  
 fl
 fl
 .
3D-0D multiscale model

 0D 3D←0
 0D D 3D←0
 D 3D 3D

 3D
 3D 3D 3D 3D 3D

[F. Regazzoni, M. Salvador, P. Africa, M. Fedele, L. Dede’, A. Quarteroni 2021 (submitted)]

 iHeart Project
Fluid dynamics of the whole heart (A.Zingaro)

 - 1.34 M DOFs, havg = 2 mm
 - Δt = 2 ⋅ 10−4s
 - Computational cost: more
 than 5 days on 48 cores for
 a single heartbeat

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 ,
Simulation of a pathological scenario: mitral regurgitation

 Healthy Mitra
 regurgitation

 regurgitan
 flow

 A. Zingaro et al. MOX Report, 2021

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 l

 t
Modeling the cardiac response to COVID-19

Goal: Investigate the
effects of COVID-19 on
the cardiovascular system.

 Methods: In silico study of
 the interplay between
 hemodynamic alterations
 associated with COVID-19
 (increased pulmonary
 resistance, decreased
 oxygen saturation, altered
 heart rate) and the cardiac DIGITAL
 function. TWIN

 Clinical Partners

 Dede’, Regazzoni, Vergara, …, Cogliati, Pontone, Quarteroni; Math. Bio. Eng. (2021)

Alfio Quarteroni Politecnico di Milano - EPFL
 :
A broader picture: from myocardial perfusion to cell contractility

 Coronary blood flow
 Fluid
 dynamics stress
 strain
 stress
 strain Mechanics
 strain
 Blood
 perfusion Electro
 Active
 force physiology
 u

 calcium
 Blood
 Oxygen
 velocity/flux
 transport [Ca2+]i

 ΦO2
 SO2

 Blood O2 flux
 Metabolism
 saturation

 [ATP]

 Gas exchange
 (pulmonary ATP
 Cardiomyocytes
 respiration) (adenosine
 contraction
 triphosphate)
 concentration
 Al o Quarteroni Politecnico di Milano - EPFL
fi

 ,

 ,

 -
On Problem’s Data

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Where data come from : Clinical Images… and how we use them

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Mesh generation tools for cardiac geometries

 join disconnected tag different regions generate the generate the
 surfaces through a in order to treat surface mesh volumetric mesh
 connecting them independently
 triangulation

 M. Fedele, A. Quarteroni (2021), Int J Numer Method Biomed Eng

 Al o Quarteroni Politecnico di Milano - EPFL
fi
Preprocessing: from medical images to shapes and grids

 the computational mesh of the computational mesh of
 the myocardium the internal cavities

 Zygote Media Group (2014), Technical repor
 M. Fedele, A. Quarteroni (2021), Int J Numer Method Biomed Eng

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 t
Anatomy of cardiac Muscle Fibers
 Illustrative representation of multiscale cardiac musculature anatomy

 (b)

 (d)

 (c)

 Myofibers orientation
 the results of clustered
 cardiomyocytes

 R. Chabiniok, M. Sermesant, E. Kuhl, P. Moireau, D. Chapelle, D. Nordsletten (2016), Interface Focus

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 :
The role of Cardiac Muscle Fibers (Myofibers)

 EP M
 Myofibers (Cardiac Muscle fibers
 determine the electric wave propagation (EP
 and the muscle contraction (M)

 Cardiac Muscle
 Fiber

 Conductivity Tenso Piola-Kirchhoff Tenso

 Fiber field can be obtained by:
 • Imaging techniques (DT-MRI) usually too nois
 • Mapped from atla complex registration algo
 • Rule-Based Methods (RBM) Surrogate of myofibers

 Example: Laplace-Dirichlet-Rule-Based-Methods (LDRBMs)

 Al o Quarteroni Politecnico di Milano - EPFL
fi
 s

 y

 r

 s

 r

 .

 )

 )
LDRBM whole heart fibers

 Anterior view Posterior view

 R. Piersanti, P.C. Africa, M. Fedele, C. Vergara, L. Dede', A.F. Corno, A. Quarteroni (2021), CMAME

 Al o Quarteroni Politecnico di Milano - EPFL
fi
From Math to War

 A Few Clinical “Postcards”

Alfio Quarteroni Politecnico di Milano - EPFL
 d
Electromechanical Modeling of Ischemic Cardiomyopathy
 Modeling of post-infarction hearts with reduced ejection fraction (EF) taken from magnetic resonance
 imaging. Application of the virtual-heart arrhythmia risk predictor (VARP)
 Goal: computational simulations of patient-specific
 ventricular tachycardia by combining DIGITAL
 electrophysiology, mechanics and hemodynamics TWIN

 Salvador, Fedele, Africa, …, Trayanova, Quarteroni; Computers in Biology and Medicine (2021)

Alfio Quarteroni Politecnico di Milano - EPFL
Outer Loop and Isthmus in Ventricular Tachycardia Circuits
 Conduction velocity
 Goal: characterize the
 vector approximation
 electrophysiological
 substrate of ventricular
 tachycardia (VT)
 reentrant circuits.

 Methods: numerical
 approximation of
 conduction velocities
 during sinus rhythm and
 ventricular tachycardia in
 six postmyocardial outer-loop isthmus
 infarction patients.

 POPULATION
 Clinical Partners

 A. Frontera, S. Pagani,…, A. Quarteroni, P. Della Bella, Heart-Rhythm (2020)

Alfio Quarteroni Politecnico di Milano - EPFL
 :
Systolic Obstruction in Hypertrophic Cardiomyopathy

 Goal Clinical Partner
 - computational assessment of
 haemodynamical effects of
 Hypertrophic Cardiomyopathy
 (HCM DIGITAL
 TWIN
 - indication on surgical treatment
 (septal myectomy)

 non-obstructive obstructive
 HCM HCM +
 SAM of the MV

 suggested region for
 surgical treatment

 Fumagalli, Fedele, Vergara, Dede’ et al.; Computers in Biology and Medicine (2020)
 Fumagalli, Vitullo, Vergara, Fedele et al.; Frontiers in Physiology (2021, under review)
Alfio Quarteroni Politecnico di Milano - EPFL
 s

 )

 s
Cardiac Resynchronisation Therapy

Clinical Partner: Cardiology Division,
Ospedale S. Maria del Carmine, Rovereto

 Goal 1: predict the Latest Electrically Activated
 Segment (LEAS) on the epicardial veins with a
 reduced, less impactful mapping (limited to the
 coronary sinus)
 Goal 2: optimize CRT, evaluating
 mechanical indices for selecting:
 - best position for left electrode
 - best delay between stimuli
 Left pacing: endocardial veins

 Right pacing: At the apex/septum

Alfio Quarteroni Politecnico di Milano - EPFL
Main numerical challenges
 ✦ Capturing Multiple Scale
 ✦ Lack of Data (IC,BC, Coef cients)
 ✦ Geometric
 Patient-specific Nonconformit
 femoropopliteal bypass
 ✦ Simulation
 Splitting of aAlgorithm
 patient-specific femoropopliteal bypass [Marchandise et al, 2011].
 Fluid Structure Coupling Geometry Total
 ✦ Mesh
 Scalable
 #1 Preconditioner
 9’029’128 2’376’720 338’295 8’674’950 20’419’093
 Mesh # 2 71’480’725 9’481’350 1’352’020 68’711’934 151’026’029
 ✦ Model Order Reductio 100
 Mesh # 1
 90 Mesh # 2

 ✦ Accounting for Variability and Uncertaint

 Iterations GMRES [-]
 80
 70
 60

 ✦Sensitivity Analysi 50
 40
 30
 20
 128 256 512 1024 2048 4096 8192 16384
 Number of cores
 1000
 Vh Vh Vh
 Mesh # 1 Vh
 Time step computation [s]

 Mesh # 2 Mh
 Mh Mh
 Mh
 A. Manzoni, A. Quarteroni, An Overview on Optimal uh(µ1)
 Control of PDEs 2
 uh(µ1) u (µ1)
 h 1
 100 N uh(µ ) uh(µ )
 uh(µN )
 uh(µN )
 µ1 µ2 uNu(µ)
 2
 h (µ )
 uN (µ) uh(µN )
 uN (µ) ⇣1
 1 ⇣1
 Definition of optimal control problems uN (µ)
 10 ⇣N
 128 256 512 1024 2048 4096 8192 16384
 ⇣N
 ⇣1
 In abstract
 Numberterms, ⇣1 1.
 of coresa control problem can be expressed by the paradigm illustrated in Fig.
 There is a system expressed by a state problem that can be⇣Neither an algebraic problem, an
 Al o Quarteroni initial-value problem for ordinary differential equations, Politecnico di Milano
 or a boundary-value ⇣-N for
 problem EPFL
 Left: post-processing of the solution at times t = 1.8 s, 1.9 s and 2.0 s, respectively. partial differential equations. Its solution, that will generically be denoted by y, depends
fi
 s

 s

 n

 s

 s

 y

 fi

 y
Physics Base
 Meet
 Data-Driven
 Modeling

Alfio Quarteroni Politecnico di Milano - EPFL
 s

 d
Artificial Neural Networks

 Number of hidden layers (nL):
 • nL = 1 : shallow network
 ANN
 • nL ≫ 1 : deep network

 input layer output layer
 hidden layers

 Definition
 Definition
 An Artificial Neural Network (ANN) is a function

 where Tj are affine functions ( ( )= − ) and is a nonlinear activation function acting componentwise.

 Examples of activation functions
 
 Alfio Quarteroni Politecnico di Milano - EPFL
 
 
ANNs as functions approximators (see also Joan Bruna’s lecture)

 Theorem (Cybenko 1989) – Density of ANNs
 Consider a sigmoidal continuous activation function, that is

 {1,
 0, →−∞
 ( )→
 →+∞
 0
 Then, given a continuous function ∈ ( ), (where is the hypercube in ℝ ), for any ε > 0, there exists a
 single-layer (i.e. nL = 1) ANN such that

 ( ) − ( ) < ε for any ∈

 Theorem (Mhaksar 1996) – Approximation rate
 ∞ ,
 Consider a sigmoidal activation function ∈ (ℝ). Then, given a function ∈ ( ), for any ε > 0 there
 exists a single-layer (i.e. nL = 1) ANN such that
 ( ) − ( ) < ε for any ∈
 with space dimension
 = (ε− ) regularity

 G. Cybenko. Math. Control Signals Systems (1989)
 H. N. Mhaskar, Neural Comput. (1996)
 Similar results are available: Pinkus, Acta Numer. (1999)
 • For in (ℝ ), in Lipschitz spaces, in Sobolev spaces, … S. Liang, R. Srikant arXiv (2016)
 T. Poggio et al. Internat. J. Automation Comput. (2017)
 • For other types of activation function (e.g. ReLU)
 D. Yarotsky, Neural Netw. (2017)
 I. Gühring, M. Raslan, G. Kutyniok, arXiv (2020)
 
 Alfio Quarteroni Politecnico di Milano - EPFL
 
 
Two Kinds of ANNs
 Fully connected ANNs

 Usage:
 • Regression
 input output • Classification
 • Approximation of functions

 Autoencoders

 Usage:
 «code»
 • Dimensionality reduction
 • Anomaly detection

 The ANN is trained to reproduce outputs as close as possible
 to the inputs (i.e. approximating the identity function)
 input output

 Input/output: high-dimensional representation of the datum
 Code: low-dimensional representation of the datum

 Encoder: from high dimension to low dimension
 encoder decoder Decoder: from low dimension to high dimension

Alfio Quarteroni Politecnico di Milano - EPFL
Physics Based & Data Driven: a cooperative game

 Knowledge incorporated into a mathematical model is essential to

 - make predictions outside the range of the training data se

 - account for variations of the system
 (what happens if the rules of the game change?

 - account for data variability, missing data and errors

 “Models based on first principles are essential
 components of systems that extract valuable
 insights from massive data, insights that tend to go
 far beyond what can be recovered by black-box
 statistical modeling alone”

 (Rüde et al., 2016, arXiv:1610.02608, SIAM Review)

Alfio Quarteroni Politecnico di Milano - EPFL
 )

 t

 :
Dictionary

 Partial/ordinary differential equations describing problems in Engineering,
 PDE Life sciences, Natural Sciences, and Finance.

 High-fidelity numerical solvers (e.g. based on Finite Elements, Finite
 HF Volumes) that approximate the solution of partial differential equations.

 Artificial neural networks are architectures made of interconnected nodes
 (neurons) which can learn arbitrary complex input-output functions by
 ANN
 processing paired input and output samples (training data).

 Reduced-order models based on Machine Learning dimensionality reduction
 techniques:
 ROM ● Proper Orthogonal Decomposition;
 ● Randomized SVD;
 ● (Discrete) Empirical Interpolation Method (DEIM).

Alfio Quarteroni Politecnico di Milano - EPFL
Physics-informed neural networks (PINN): general framework
 Objective: identify the solution and the unknown parameters given:

 ANN where:

 with noisy observations:

 PINN approach: PDE enforced as a penalization term
 ROM
 Find the weights and biases of an ANN and the unknown parameters s.t.

 where:
 HF
 data

 model (PDE)

 PDE
 model (BC)

Alfio Quarteroni Politecnico di Milano - EPFL
Physics-informed neural networks: general framework

 Find the weights and biases of an ANN and the unknown parameters s.t.

 ANN

 ROM

 HF

 automatic differentiation

 PDE
 M. Raissi, P. Perdikaris, G. E. Karniadakis, J. of Comp. Physics (2019)

Alfio Quarteroni Politecnico di Milano - EPFL
Multifidelity PINN, I
 Objective: solve parameter estimation problems in presence of either
 ● low data
 ● high noise
 ANN Method: PDE solution can be expressed as a combination of a low fidelity guess
 and a high-fidelity correction

 Find the the weights and biases of an ANN and the unknown parameters s.t.

 ROM
 where:

 data

 HF model (PDE)

 model (BC)

 surrogate or correction
 PDE reduced-order model
 F. Regazzoni, S. Pagani, A. Cosenza, A. Lombardi, A. Quarteroni, Rend. Lincei Mat. Appl. (2021)

Alfio Quarteroni Politecnico di Milano - EPFL
Multifidelity PINN, II

 Method:
 ANN
 - PDE solution can
 be expressed as a
 combination of a
 low fidelity guess
 and a high-fidelity
 correction;
 ROM
 - the low-fidelity
 solution acts as
 an a priori
 information;

 HF - the correction is
 enforced by
 regularizing the
 mathematical
 equation in the
 loss function.

 PDE
 F. Regazzoni, S. Pagani, A. Cosenza, A. Lombardi, A. Quarteroni, Rend. Lincei Mat. Appl. (2021)

Alfio Quarteroni Politecnico di Milano - EPFL
ANN-based emulators
 Consider a PDE whose solution depends on a set of parameters

 where
 ANN

 Goal: build a computationally inexpensive surrogate of the high-fidelity solvers (e.g. a
 FEM-based solver), able to approximate the solution given the parameters

 Through a high-fidelity solver, generate a database of solutions
 = ( ; )
 ROM
 Train an ANN surrogating the parameter-to-solution map (Reduced Order Model, ROM):

 ( ; )
 HF

 (+ possibly suitable regularization terms)

 where − ( ; )
 PDE
 F. Regazzoni, S. Pagani, A. Cosenza, A. Lombardi, A. Quarteroni, Rend. Lincei Mat. Appl. (2021)
 
 Alfio Quarteroni Politecnico di Milano - EPFL
 
 
ANN-based emulators: issues
 Issue 1: large number of high-fidelity simulations (that are typically computationally
 demanding might be required)

 regularize through the PDE residual (in similar manner to PINNs)

 Issue 2: how to deal with time-dependent problems?

 Possible solution: treat time as a further space variable

 ( ; )

 We cannot consider time-dependent inputs
 We loose physical soundness (no “arrow of time”)

 Model Learning: learn a time-dependent differential equation rather
 than a static map

 Alfio Quarteroni Politecnico di Milano - EPFL
 
 
Application 1: ANN-enhanced multiscale simulations

 Objective: reducing the computational cost associated with the numerical
 approximation of microscale models (HF model) in multiscale simulations

 ANN Method:
 - Through the HF microscale model, we generate a collection of simulations
 (input-output pairs);
 - We construct a ROM that surrogates the dynamics of the HF model, built in a
 data-driven manner from the HF model results;
 - The ROM consists of a system of ODEs, whose right-hand side is represented
 ROM by an ANN;
 - Once trained, the ANN-based ROM is used to surrogate the dynamics of the
 HF model at the microscale level, within multiscale simulations.

 Set of
 input-output pairs Data-driven
 MOR
 HF

 PDE F. Regazzoni, L. Dede’, A. Quarteroni Jour. Comp. Phys. (2019)
 F. Regazzoni, L. Dede’, A. Quarteroni CMAME (2020)

 Alfio Quarteroni Politecnico di Milano - EPFL
Application 1: ANN-enhanced multiscale simulations

 validation
 ANN
 High-fidelity model Reduced-order
 of force generation model
 actin filament
 upscaling

 downscaling
 myosin filament
 ROM

 a priori
 knowledge
 + Model
 Learning

 HF
 Collection of 3D FEM
 simulations electromechanic
 {ui(t), yi(t)} al model

 PDE
 F. Regazzoni, L. Dede’, A. Quarteroni CMAME (2020)

Alfio Quarteroni Politecnico di Milano - EPFL
Application 1: ANN-enhanced multiscale simulations
 Results
 Accuracy
 Calcium wave Tissue deformation
 Indicator HF-EM ANN-EM Relative error propagation
 ANN
 Stroke volume (mL) 58.45 58.42 5.64 · 10-4

 Ejection fraction (%) 43.03 43.01 5.65 · 10-4

 Max pressure (mmHg) 112.5 112.3 2.18 · 10-3

 Work (mJ) 739.2 737.2 1.71 ∙ 10-3
 ROM
 Computational time (20 cores)
 Force Mechanic
 Ionic Potential Total
 gen. s Cardiac fibers Pressure-volume
 HF-EM 3.13 % 0.47 % 83.07 % 13.33 % 20h 18’ loop
 HF model
 ANN model
 ANN-EM 41.21 % 4.80 % 2.54 % 51.45 % 2h’ 03’
 HF
 400 x speedup (force generation model)
 10 x speedup (overall)

 Memory usage
 from 2198 (HF-EM) to 24 (ANN-EM) variables per nodal point
 PDE
 100 x memory saving
 F. Regazzoni, L. Dede’, A. Quarteroni CMAME (2020)

Alfio Quarteroni Politecnico di Milano - EPFL
A look ahead - How will AI shape computational medicine

 MACHINE
 learning from data LEARNING

 statistical improved
 shapes and
 learning imaging diagnosis
 morphologies

 optimal
 catheter-based
 surgery or
 POPULATION measurements
 biomarkers DIGITAL device PATIENT
 and clinical TWIN
 indicators clinical history
 and therapy
 comorbidities planning

Databases

 learning from physics MATHEMATICAL
 MODELS

 VIRTUAL in-silico clinical trial
 POPULATION
Alfio Quarteroni Politecnico di Milano - EPFL
THANK YOU

The iHEART Team @ PoliMi
You can also read