PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021

 
CONTINUE READING
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
PERCISTAND
SCIENTIFIC WORKSHOP
JUNE 9TH, 2021

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Economical & ecological assessment
Perovskite-on-chalcogenide tandem PV

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Program of today
PERovskite-on-CIS TANDem PV

12:30 – Welcome & introduction
12:45 – Energy yield modelling
13:00 – Life cycle assessment
13:15 – Techno-economic assessment
13:30 – Industrial perspective
13:45 – Closure

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Program of today
PERovskite-on-CIS TANDem PV

Q&A – Use chat

Moderator Sarallah Hamtaei
• Doctoral researcher
• Topic: CuInSe2 development
 Sarallah
 Hamtaei

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Why tandem PV?
High efficiency

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Status of tandem PV

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Why perovskite-on-CIS?
CuInSe2 (CIS) has 1 eV as bandgap
 2-terminal 4-terminal

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Why perovskite-on-CIS?
Thin film + thin film = thin film

• High efficiency, energy yield and reliability
• Fully vertically integrated, low-cost production on a
 GW scale
• Utility scale, rooftop and BIPV applications, colored,
 patterned and/or flexible products
• Low material consumption, short energy payback
 times, low carbon footprint

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Consortium
10 EU and 2 intercontinental partners

 confidential
PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
Targets
By end of project

 Cell Cell
 Module
 • Stability
 • IEC standards
 20 %
 PER 30 %
 • Manufacturability
 TAND 25 % • Scalable to 20×20 cm2
 TAND
 10 % • Cost and environmental footprint
 CIS • ISO standards

 confidential
Current status
 Joint result with the German CAPITANO project
 100 100 100 100

 • Perovskite
 80 top cell 80 80 80

 • 18.5 %
SC
 EQE (%)

 EQE (%)
 60 60 60 60
 • CI(G)S bottom cell
 • 40
 8.8 % 40 40 40

 • 4T tandem cell
GS • 27.3 %
 20
 CIGS solo - 38.8 mA/cm2
 20 20
 CIGS solo - 38.8 mA/cm2
 20
 CIGS w/ Saba DC ITO r2 - 14.7mA/cm2 CIGS w/ Saba DC IO:H r2 - 16.8mA/cm2
 Saba DC ITO r2 - 18.8mA/cm2 Saba DC IO:H r2 - 19.6mA/cm2
 CIGS + Saba DC ITO r2 - 33.5mA/cm2 CIGS + Saba DC IO:H r2 - 36.4mA/cm2
 0 0 0 0
 400 600 800 1000 1200 400 600 800 1000 1200
 Wavelength (nm) Wavelength (nm)

 Top cell CIGS
 CIGS (filtered) (MPP) Total (unfiltered)
 confidential
Acknowledgements & Social Media
European Union’s Horizon 2020 Progress in PV tandem technology
research and innovation programme,
grant agreement No 850937.

 confidential
Energy yield modelling
Fabrizio Gota
Karlsruhe Institute of Technology

 confidential
Advanced Optics and Materials for Next
Generation Photovoltaics group
 Led by Ulrich W. Paetzold

 The Research University
 in the Helmholtz Association

 CIGS module perovskite module

 confidential
Why energy yield modelling?

 confidential
Why energy yield
modelling?

 2T vs. 4T
Example: What is the superior architecture for perovskite/CIGS tandem PV?
 2T 4T

 PCE under STC (%) 25.7 25.3

 confidential
Why energy yield modelling?

Example: What is the superior architecture for perovskite/CIGS tandem PV?
 2T 4T

 PCE under STC (%) 25.7 25.3
 EY in Phoenix, AZ (kWh ∙ m-2 ∙ a-1) 553 572

 confidential
Why energy yield modelling?
• Compare different architectures under realistic irradiation conditions
• Optimize layer thickness
• Optimize energy gap of bottom and top absorber layers

• Standard test conditions fail to provide correct advice for the design of architectures for
 perovskite-based tandem PV
• Identify trends in the power output of PV devices under realistic conditions depending
 on variations of the device architecture

 confidential
Energy yield modelling platform

Irradiance Module
• Hundreds of location in the USA using TMY3 data set (NREL)
• Accounting for cloud coverage
 confidential
Energy yield modelling platform

Optics Module
• Transfer-matrix method (TMM) for thin film layers
• Series expansion of Beer-Lambert for incoherent layers
 confidential
Energy yield modelling platform

Energy Yield Core Module
• Monofacial and bifacial solar modules
• Possibility to set tilt, rotation and sun tracking
 confidential
Energy yield modelling platform

Electrics Module
• Calculates maximum power point (MPP)
• 2T, 4T and 3T architectures possible
 confidential
Result highlights

 confidential
Perovskite/CIGS: perovskite bandgap
 • CIGS bandgap = 1.2 eV
 600 • Optimum perovskite bandgap ~ 1.80 -
Energy Yield / kWh × m-2 × a-1

 1.85 eV
 Phoenix AZ 2T Phoenix AZ 4T
 • With 4T architecture lower losses for
 not optimal perovskite bandgap
 500
 + 52%
 CIGS Reference
 Phoenix

 400
 1.6 1.8 2.0
 Bandgap / eV
 *adapted from Langenhorst et al., Progress in Photovoltaics 2018

 confidential
*adapted
 Energy Yield / kWh × m-2 × a-1

 0
 200
 300
 400
 500
 600
 700

 M
 ia
 H mi
 on , F
 ol L
 Ph ulu
 Tropical

 oe , H
 n I
 El ix,
 Pa AZ
 D so,
 e T
 Sa nve X
 r,
 Arid

 Sa n
 n D C
 Perovskite/CIGS

 Fr ieg O
 an o,
 ci CA
 s
 Po co,
 rt C

 from Langenhorst et al., Progress in Photovoltaics 2018
 N land A
 ew ,O
 Yo R
 rk
 N D ,N
 ew all Y
 O a s
 rle , T
 X
 Temperate

 M ans
 M emp , LA
 4T Perovskite/CIGS
 2T Perovskite/CIGS

 in
 ne his
 ap , T
 ol N
 is
 Sa C ,M
 lt h N
 La icag
 ke o,
 I
 Bi City L
 sm ,
 U
 An arc T
 Boreal

 ch k,
 or ND
 ag
 e,
 AK
 2T vs. 4T: comparable energy yield for optimal perovskite bandgap!

confidential
Reference layer stack for Percistand
2T tandem 4T tandem
Material Thickness Material Thickness
MgF2 100 nm MgF2 100 nm
Glass 3 mm Glass 3 mm
EVA 0.5 mm ITO 120 nm
IZO 120 nm NiOx/SAM 10 nm/1 nm
SnO2/C60 20 nm/12 nm Perovskite 530 nm
Perovskite 530 nm C60/SnO2 12 nm/20 nm
SAM/NiOx 1 nm/10 nm
 IZO 120 nm
ITO 20 nm EVA 0.5 mm
Al-doped Zinc Oxide 50 nm Al-doped Zinc Oxide 500 nm
Zinc Oxide 75 nm Zinc Oxide 75 nm
Cadmium Sulfide 60 nm Cadmium Sulfide 60 nm
CIGS (1.13 eV) 2.5 µm CIGS (1.13 eV) 2.5 µm
Molybdenum 800 nm Molybdenum 800 nm
Glass 3 mm Glass 3 mm

 confidential
Layer resolved absorptance
 2T tandem 4T tandem

 Jsc,total Jsc,parasitic Jsc,reflection Jsc,total Jsc,parasitic Jsc,reflection
37.6 mA/cm2 7.2 mA/cm2 1.7 mA/cm2 37.1 mA/cm2 6.5 mA/cm2 2.9 mA/cm2

 confidential
Perovskite thickness and energy gap optimization
 2T tandem

 Phoenix, AZ

 confidential
Thickness and energy gap optimization
 4T tandem

 Phoenix, AZ

 confidential
Energy Yield simulations are essential
 Layer
 stack • Energy yield module results are input
 to Techno-Economic Assessment
 (TEA) and Life-Cycle Assessment (LCA)
 modules
TEA EY LCA • The 3 modules allow us to deliver a
 final economical and ecological
 assessment

 Economical and
 ecological
 assessment

 confidential
Many thanks to…
… Ulrich Paetzold.
... the Perovskite Taskforce at KIT.
... the fantastic technical support.
... all collaboration partners.
... the funding organizations.
partners: funding:

 confidential
Contact
 Fabrizio Gota
Thank You for your attention fabrizio.gota@kit.edu

 confidential
Prospective Life Cycle
Assessment of Tandem PV- A
Preliminary Analysis
Neethi Rajagopalan
VITO/Energyville

 confidential
VITO/Energyville- Research Theme
Sustainable Energy

 EnergyVille

 confidential
Life Cycle Assessment
 ISO 14040/44 2006: Framework for life cycle
 assessment

 Goal and Scope
 Raw Materials Definition
 Extraction

 Inventory
 Interpretation
 Analysis

 Recycle/Reuse of Manufacturing of PV
panels or materials panels Impact
 Assessment

 Adapted from Rajagopalan et al.
 Use of panels (under review)

 confidential
Goal & Scope of LCA
TRL 3 in 2020 TRL 4 in 2024 TRL 2 in 2020 TRL 3 in 2024

 Full scale manufacturing of perovskite panels in 2050

Functional unit = 1 kWh of electricity production

 confidential
Identifying Causal Loops
 Key contributor to performance

 Key performance indicator for LCA

 confidential
Product System Boundary Full Scale manufacturing in 2050
 Physical vapor
 Module front
 deposition Material parametrization
 Front TCO
 • Changes in deposition methods
 ETL Sputtering • Layer thickness
 Absorber layer • Material properties
 HTL
 Chemical bath
 Recombination junction x2 deposition Factory & Equipment sizing
 • Size scaling
 Window layer
 Buffer layer Slot die coating External factors
 Absorber layer • Increased recycling of glass
 Rear contact • Increased use of renewables in
 Co-evaporation electricity mix of future
 Substrate
 • Energy yield modelling in various
 Raw materials extraction & Manufacturing of 1 kWh locations
 processing 2T/4T perovskite

 End of life Electricity generation

 confidential
LCA Process
 Life Cycle Impact Assessment

 • Impacts to environment
 • Impacts to human health
 • Resource use

 Background data from Source: Tate 2012
Activity data provided by Ecoinvent database uploaded
manufacturer Solaronix for to LCA tool Brightway-Activity
carbon-based perovskite solar Browser
cells
 confidential
Future Research Focus
• Combining LCA and TEA
• Parametrizing panel properties till 2050
 • Eg: efficiency, lifetime, degradation rate
• Complete environmental profile of emerging 2T/4T technology
• Identify potential improvements for emerging technology

 confidential
Thanks for your attention!

 Contact
 Neethi Rajagopalan
 VITO/Energyville
 Neethi.Rajagopalan@vito.be

 Questions & Comments?

 confidential
Techno-economic assessment of
tandem perovskite/CIGS solar cells
Alessandro Martulli – PhD Student
Environmental Economics - Centre for Environmental Sciences
Faculty of Business Economics, Hasselt University

 confidential
Who we are
• Environmental Economics Research group
• Within the Centre for Environmental
 Sciences at Hasselt University (Belgium)
• Research group focuses:
 • Techno-economic, environmental and social
 assessments of clean technologies
 • Monetary valuation of ecosystem services
 and nature’s contribution to people

 confidential
Techno-economic assessment (TEA)
• Generally, TEA combines process modeling and economic evaluation

 GOAL
 Economy Technology
 Analyzing the impact of changes in
 technical and economic parameters
 on the financial viability

• Answer two questions: Techno- Technology development
 Economic
1. How does the technology work? Analysis

2. Is the technology profitable?
 Van Dael, M., et al. (2015). Techno-economic Assessment Methodology for Ultrasonic Production
 of Biofuels.

 confidential
Techno-economic assessment (TEA) - Steps
• Methodology consists in four steps
1. Market study
2. Process flow diagram/ Mass and Energy Balance
 definition
3. Economic analysis (can be expanded to economic-
 environmental analysis)
4. Uncertainty analysis
Link mass-energy balance with:
▪ Environmental analysis
▪ Economic analysis
→ Key parameters identification

Iterative approach
• As more data become available, accuracy improves

 confidential
TEA Steps - detail
1. Market study
• Identify market size, trends, competitors, customers, legislation
• Gather input data
2. Process flow diagram (PFD) / Mass and Energy Balance (M&E) definition
• PFD gives overview of main process steps with inputs/outputs
• M&E balance contains mass and energy data of the process
3. Economic Analysis
• Capital (CAPEX) and operational costs (OPEX) calculations
• Feasibility assessment through relevant indicators (e.g., LCOE for PV applications)
4. Uncertainty Analysis
• Determine parameters with highest impact

 confidential
TEA – Economic feasibility indicators - PV
1. Manufacturing cost (MC – EUR/m2) :
 = ෍ + + + 
 
 Cost per unit area of:
• = Material
• = Equipment
• = Utilities, Insurance and Labor
• = Repair and maintenance
2. Minimum Sustainable Price (MSP – EUR/Wp):

 + + 
 =
 0
• = overheads (14% of MC)
• = weighted average cost of capital (15% of MC)
• = Module power conversion efficiency
• 0 = Irradiance power density at standard test conditions (1000 W/m²)

 confidential
TEA – Economic feasibility indicators - PV
3. Levelized cost of electricity (LCOE – EUR/kWh) :

 σ 
 =0
 (1 + ) 
 =
 σ 
 =0 
• = system cost
• = energy generated in the i-th year
• = discount rate
• = total lifetime of PV system

Energy yield data input:
• Realistic irradiation conditions
• Meteorological data from NREL

 confidential
PERCISTAND – TEA structure
• Bottom-up model construction
 • Manufacturing process divided in smallest parts and product cost is sum of all the costs incurred in the
 production cycle of the product
 • Accurate, intuitive, aligns with LCA (environmental impact assessment)

• PFD and M&E balance linked to:
 • Operating scale: throughput → industrial scale production (0.9 m²/min)
 • Inputs (e.g., kg of material, kWh) → PERCISTAND module size = 20x20 cm²
 • Manufacturing techniques (e.g., sputtering, coating)

• Capex and Opex calculations for different scenarios
 • Manufacturing cost and Minimum Sustainable Price (MSP)

• LCOE calculation
 • Energy yield input

 confidential
PERCISTAND – TEA scenarios
Several scenarios have been constructed, corresponding to PERCISTAND technologies:
• Carbon-based perovskite single-junction (Solaronix) – used as benchmark for LCA/TEA
 model construction
• CIGS single- junction (preliminary data)
• 2T tandem (preliminary data)
• 4T tandem (preliminary data)

Every scenario contains:
• Process flow diagram
• Mass and energy balance
 o Process step
 o Inputs for each step
• Economic calculations
 o CAPEX
 o OPEX
• LCOE calculation (so far, only Solaronix case)
 o Energy yield calculation for carbon-based perovskite single junction

 confidential
Next steps – Indicator estimates
• Accurately estimate 2T/4T configuration PV technology MSP LCOE Source
 manufacturing cost (€/ m²) (US$/W) (US$/kW
 h)
• Calculate 2T/4T configuration Minimum Perovskite SJ 0.21 – 0.25 3.5 – 4.9 Cai et al. (2017)
 Sustainable Price (MSP) (€/ W)
• Estimate 2T/4T configuration LCOE with Perovskite SJ 0.41 4.9 – 7.9 Song et al. (2017)
 energy yield input data (€/kWh):
 Perovskite SJ 0.17 4.34 Li et al. (2018)
 • PERCISTAND target: 5 EUR
 cents/kWh Perovskite/Silicon tandem 0.48 5.22 Li et al. (2018)
 • Southern Europe conditions
 Perovskite/Perovskite 0.21 4.22 Li et al. (2018)
• Compare indicators with alternative PV tandem
 technologies Silicon SJ 0.20-0.30 Solar price index,
 • Perovskite/perovskite or pVexchange (2021)
 Perovskite/Silicon tandems CIGS SJ 0.33 Wang et al. (2021)
 • Silicon, perovskite and CIGS single
 junction (SJ)

 confidential
Next steps – Research gaps
• Focus on main techno-economic challenges:
 • Upscaling
 • Performance (efficiency, lifetime, cost)
 • Toxicity

• Address the on-going research questions within the community of PV technology developers

• Define a roadmap towards commercially viable Perovskite/CI(G)S tandem

 confidential
Thank you for your attention
 Contact
 Alessandro Martulli – PhD student
 Questions?
 Environmental Economics - Centre
 for Environmental Sciences
 Hasselt University

 alessandro.martulli@uhasselt.be

 confidential
Full thin-film tandems
solar cells
Industry Perspective

Cesar Omar Ramirez Quiroz

 confidential
Perovskite single-junction time evolution.
Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved
fast from 3.8% to 25.73% in 2021.

 UNIST/EPFL, 25.73%, Perovskite solar cell
 26 spin-coating (PSC) single junction
 KIER (SJ), opaque.
 UNIST-gil/KRICT MIT
 23 KRICT
 UCAS UNIST

 20
PCE (%)

 17

 14

 11

 8

 5
 U. Tokio,
 3.8%, Drop-casting.
 2
 2012 2014 2016 2018 2020 2022
 First published

 Yoo, J.J. et al. Nature . 590, 587–593 (2021).
 Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009).
 confidential
Perovskite single-junction time evolution.
Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast
from 3.8% to 25.73% in 2021.
 non-scalable deposition methods
 UNIST/EPFL, 25.73%, Perovskite solar cell
 26 spin-coating (PSC) single junction
 KIER (SJ), opaque.
 UNIST-gil/KRICT MIT
 23 KRICT
 C.O. Ramírez. et. al.
 UCAS UNIST PSC-SJ semi-transparent
 FAU PSU/iChEM (ST)
 20 U. Toledo KRICT/UNSW
 *18.3 % reversed
PCE (%)

 17

 14
 NREL/U. Toledo

 11

 8

 5
 U. Tokio,
 3.8%, Drop-casting.
 2
 2012 2014 2016 2018 2020 2022
 First published

 Yoo, J.J. et al. Nature . 590, 587–593 (2021).
 Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009).
 confidential
Perovskite single-junction time evolution.
Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast
from 3.8% to 25.73% in 2021.
 non-scalable deposition methods
 UNIST/EPFL, 25.73%, Perovskite solar cell
 26 spin-coating (PSC) single junction
 KIER (SJ), opaque.
 UNIST-gil/KRICT MIT
 23 KRICT
 C.O. Ramírez. et. al.
 UCAS UNIST PSC-SJ semi-transparent
 FAU PSU/iChEM (ST)
 20 U. Toledo KRICT/UNSW
 *18.3 % reversed
 PSC-SJ large area (> 10 cm2)
PCE (%)

 17

 14
 NREL/U. Toledo
 NEDO/Panasonic
 11 Co., 804 cm2
 Microquanta Semiconductor
 8 Co., 17 cm2
 NTU, 21 cm2
 5
 U. Tokio, Wuxi UtmoLight Co.,
 3.8%, Drop-casting. 64 cm2, 20.2%
 2
 2012 2014 2016 2018 2020 2022
 First published

 Yoo, J.J. et al. Nature . 590, 587–593 (2021).
 Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009).
 confidential
Perovskite single-junction time evolution.
Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast
from 3.8% to 25.73% in 2021.
 non-scalable deposition methods scalable deposition methods
 UNIST/EPFL, 25.73%, Perovskite solar cell
 26 spin-coating (PSC) single junction 26
 KIER (SJ), opaque. HZB , 22.43%,
 UNIST-gil/KRICT MIT UNC, 21.7%,
 KRICT co-evap.
 23 UCAS UNIST PSC-SJ semi-transparent doctor-blading. 23
 C.O. Ramírez. et. al.
 ICMol, 20.03%,
 FAU PSU/iChEM (ST) co-evap.
 20 U. Toledo KRICT/UNSW 20
 *18.3 % reversed
 PSC-SJ large area (> 10 cm2) EMPA/Solliance, 17.2%,
PCE (%)

 PCE (%)
 evap./Spin-coating
 17 17

 14 14
 NREL/U. Toledo
 NEDO/Panasonic NEDO/Panasonic
 11 Co., 804 cm2 PSC-SJ, scalable methods Co., 804 cm2 11
 Microquanta Semiconductor for perovskite deposition. Microquanta Semiconductor
 8 Co., 17 cm2 Co., 17 cm2 8
 NTU, 21 cm2 NTU, 21 cm2
 5 PSC-SJ ST, scalable methods 5
 U. Tokio,
 3.8%, Drop-casting.
 Wuxi UtmoLight Co., for perovskite deposition. Wuxi UtmoLight Co., 64 cm 2
 64 cm2, 20.2%
 2 2
 2012 2014 2016 2018 2020 2022 2012 2014 2016 2018 2020 2022
 First published First published

 Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020).
 Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019).
 confidential
Perovskite single-junction time evolution.
 Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap.

 All deposition methods
 PSC-SJ, opaque.
 HZB , 22.43%,
 26 co-evap. PSC-S, semi-transparent
 UNC, 21.7%,
 doctor-blading. PSC-SJ large area (> 10 cm2)
 23
 ICMol, 20.03%, PSC-SJ, scalable
 co-evap.
 20 methods for perovskite
 EMPA/Solliance, 17.2%,
 evap./Spin-coating deposition.
PCE (%)

 17 PSC-SJ ST, scalable methods
 for perovskite deposition.
 14

 11
 NEDO/Panasonic
 Co., 804 cm2
 8 Microquanta Semiconductor
 Co., 17 cm2
 NTU, 21 cm2
 5
 Wuxi UtmoLight Co., 64 cm 2
 2
 2012 2014 2016 2018 2020 2022

 First published

 Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020).
 Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019).
 confidential
Perovskite single-junction time evolution.
 Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap.

 All deposition methods Present time
 PSC-SJ. 30
 HZB , 22.43%, SJ Shockley-Queisser Limit SJ Eg > 1.7 eV
 26 co-evap. PSC-S, semi-transparent
 UNC, 21.7%,
 doctor-blading. PSC-SJ large area (> 10 cm2)
 23 25
 ICMol, 20.03%, PSC-SJ, scalable
 co-evap.
 20 methods for perovskite
 EMPA/Solliance, 17.2%,
 evap./Spin-coating deposition.
PCE (%)

 PCE (%)
 17 20
 PSC-SJ ST, scalable methods
 for perovskite deposition.
 14
 15
 11
 NEDO/Panasonic
 Co., 804 cm2
 8 Microquanta Semiconductor
 Co., 17 cm2 PSC-SJ, Opaque, non- 10
 NTU, 21 cm2 scalable, lab-scale.
 5
 Wuxi UtmoLight Co., 64 cm 2 PSC-SJ, with module
 2 active area > 10 cm2 5
 2012 2014 2016 2018 2020 2022 2012 2016 2020 2024 2028
 First published First published

 Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020).
 Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019).
 confidential
Perovskite-based tandems time evolution.
Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at
a laboratory scale.
 2T tandems
 32 C-silicon/perovskite
 Oxford PV,
 HZB tandem solar cells.
 Oxford PV 29.52%
 29
 All-perovskite tandems.
 UNL/UNC- Nanjin U./U.
 26 CH/ASU Toronto, 24.8%
 CIGS/perovskite tandems
 Nanjing U./
 U. Toronto, 24.2%
 23
PCE (%)

 HZB/KUT
 UCLA/
 Solar Frontier NREL/U.
 20 Colorado
 NREL/U. Toledo
 17 U. Toledo

 14
 KIST
 11

 8
 2014 2016 2018 2020 2022 2024

 First published

 Chen, B. et al. Joule 4, 850–864 (2020).
 Al-Ashouri, A. et al. Energy Environ. Sci. 12, 3356–3369 (2019).
 confidential
Perovskite-based tandems time evolution.
Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at
a laboratory scale.
 2T tandems 4T tandems
 32 C-silicon/perovskite 32
 Solliance/
 Oxford PV, U. Toronto/
 HZB tandem solar cells. Panasonic,
 Oxford PV 29.52% KAUST
 29 C.O. Ramírez. et.al. 28.7% 29
 All-perovskite tandems. FAU/UNSW/Trina Solar IMEC
 KIT/ZSW-
 UNL/UNC- Nanjin U./U. PERCISTAND
 26 CH/ASU Toronto, 24.8%
 CIGS/perovskite tandems 27.3% 26
 Nanjing U./ NREL Solliance
 U. Toronto, 24.2% NREL/
 23 23
PCE (%)

 HZB/KUT U. Toledo, 25%

 PCE (%)
 UCLA/ U. Toledo
 Solar Frontier NREL/U. U. Toledo
 20 Colorado 20
 NREL/U. Toledo
 17 U. Toledo 17

 14 14
 KIST
 11 11

 8 8
 2014 2016 2018 2020 2022 2024 2014 2016 2018 2020 2022 2024

 First published First published

 Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz,
 C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018).
 confidential
Perovskite-based tandems time evolution.
Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at
a laboratory scale.
 2T and 4T tandems
 32 C-silicon/perovskite
 Oxford PV,
 HZB tandem solar cells.
 Oxford PV 29.52%
 29 UNL/UNC-
 CH/ASU
 All-perovskite tandems.
 26
 CIGS/perovskite tandems
 Nanjin U./U.
 UCLA/ Toronto, 24.8%
 Solar Frontier
 23
PCE (%)

 Nanjing U./
 U. Toronto, 24.2%

 20 HZB/KUT
 NREL/U.
 Colorado
 17 NREL/U. Toledo
 U. Toledo
 14
 KIST
 11

 8
 2014 2016 2018 2020 2022 2024

 First published

 Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz,
 C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018).
 confidential
Perovskite-based tandems time evolution.
Academia and industry interest on perovskite-based tandem devices is reflected on time
evolution
 2T and 4T tandems Present time
 32 C-silicon/perovskite 35
 Oxford PV, Tandem SQ Limit (various Eg)
 HZB tandem solar cells.
 Oxford PV 29.52%
 29 UNL/UNC-
 CH/ASU
 All-perovskite tandems. 30
 SJ SQ Limit SJ Eg > 1.7 eV
 26
 CIGS/perovskite tandems
 Nanjin U./U.
 UCLA/ Toronto, 24.8%
 Solar Frontier
 25
 23

 PCE (%)
PCE (%)

 Nanjing U./
 U. Toronto, 24.2%

 20 HZB/KUT 20
 NREL/U.
 Colorado
 17 NREL/U. Toledo
 Perovskite-based solar 15
 U. Toledo
 14 cells 4T and 2T.
 KIST
 Opaque PSC-SJ non-
 10
 11 scalable, lab-scale.
 Semi-transparent PSC-SJ
 8 5
 2014 2016 2018 2020 2022 2024 2012 2016 2020 2024 2028
 First published First published

 Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz,
 C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018).
 confidential
Perovskite-based PV scale evolution.
 Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including
 the International Technology Roadmap for PV (ITRPV)
 Present time
 Perovskite solar cell (PSC)
 1000
 804 cm2, 17.9%, NEDO single junction with
 & Panasonic. module active area > 10
 800 cm2, 14.24%,
 Microquanta. cm2
 outliers
Active area (cm2)

 100

 64 cm2, 20.5%,
 Wuxi UtmoLight
 10
 20 cm2, 20.2%,
 Microquanta.

 1
 2015 2018 2021 2024 2027 2030
 First published

 confidential
Perovskite-based PV scale evolution.
 Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including
 the International Technology Roadmap for PV (ITRPV)
 Present time
 Perovskite solar cell (PSC) 25
 1000
 804 cm2, 17.9%, NEDO single junction with
 & Panasonic. module active area > 10
 800 cm2, 14.24%,
 Microquanta. cm2 20
 outliers
Active area (cm2)

 100

 PCE (%)
 15

 64 cm2, 20.5%, 10
 Wuxi UtmoLight
 10
 20 cm2, 20.2%,
 Microquanta.
 5

 1 0
 2015 2018 2021 2024 2027 2030 10 100 1000 10000
 First published Active area (cm2)

 confidential
Perovskite-based PV scale evolution.
 Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including
 the International Technology Roadmap for PV (ITRPV)
 Present time
 Perovskite solar cell (PSC) 25
 1000
 804 cm2, 17.9%, NEDO single junction with
 & Panasonic. module active area > 10
 800 cm2, 14.24%,
 Microquanta. cm2 20
 outliers
Active area (cm2)

 100 CIGS module, industrially

 PCE (%)
 fabricated, 7200 cm 2 t.a., 15
 17.6%, NICE solar energy

 64 cm2, 20.5%, 10
 Wuxi UtmoLight
 10
 20 cm2, 20.2%,
 Microquanta.
 5

 1 0
 2015 2018 2021 2024 2027 2030 10 100 1000 10000
 First published Active area (cm2)

 confidential
Perovskite-based PV scale evolution.
 Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including
 the International Technology Roadmap for PV (ITRPV)
 Present time
 Perovskite solar cell (PSC) 25
 1000 ITRPV module size
 804 cm2, 17.9%, NEDO single junction with prediction for residential use.
 & Panasonic. module active area > 10 80% word market share
 800 cm2, 14.24%, > 17000cm2 by 2025
 Microquanta. cm2 20
 outliers
Active area (cm2)

 100 CIGS module, industrially

 PCE (%)
 fabricated, 7200 cm 2 t.a., 15
 17.6%, NICE solar energy

 64 cm2, 20.5%, 10
 Wuxi UtmoLight
 10
 20 cm2, 20.2%,
 Microquanta.
 5

 1 0
 2015 2018 2021 2024 2027 2030 10 100 1000 10000
 First published Active area (cm2)

 ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021).
 confidential
Perovskite-based PV scale evolution.
 Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including
 the International Technology Roadmap for PV (ITRPV)
 Present time
 Perovskite solar cell (PSC) 25
 1000 ITRPV module size
 804 cm2, 17.9%, NEDO single junction with prediction for residential use.
 & Panasonic. module active area > 10 80% word market share
 800 cm2, 14.24%, > 17000cm2 by 2025
 Microquanta. cm2 20
 outliers
Active area (cm2)

 100 CIGS module, industrially

 PCE (%)
 fabricated, 7200 cm 2 t.a., 15
 17.6%, NICE solar energy

 64 cm2, 20.5%, 10
 Wuxi UtmoLight
 10 ITRPV module size
 20 cm2, 20.2%, prediction power plant.
 Microquanta. ~95% word market share
 20000-30000 cm2 by 2025 5

 1 0
 2015 2018 2021 2024 2027 2030 10 100 1000 10000
 First published Active area (cm2)

 ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021).
 confidential
Research development vs ITRPV mass production predictions .
 ITRPV 12th ed., (2021). predicts average stabilized efficiency values for tandem solar cells in mass
 production
 Present time
 35
 Tandem SQ Limit (various Eg) Current and potential future
 development in perovskite-based
 30 SJ SQ Limit SJ Eg > 1.7 eV photovoltaics are aligned with
 industry predictions in terms of
 efficiency.
PCE (%)

 25

 PCE time evolution
 20
 All-perovskite
 tandems, lab-scale.
 Single-junction
 15
 perovskite, lab-scale
 ST PSC, lab-scale
 10 PSC large scale (> 10 cm2)
 2012 2015 2018 2021 2024 2027 2030
 Year

 ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021).
 confidential
Research development vs ITRPV mass production predictions .
 ITRPV 12th ed., (2021). predicts average stabilized efficiency values for tandem solar cells in mass
 production
 Present time
 35
 Tandem SQ Limit (various Eg) ITRPV 12th ed. 2021 Current and potential future
 c-Silicon/perovskite development in perovskite-based
 30 SJ SQ Limit SJ Eg > 1.7 eV
 tandem solar cells. photovoltaics are aligned with
 CIGS/perovskite tandems.
 industry predictions in terms of
 All-perovskite tandems
 efficiency.
PCE (%)

 25

 PCE time evolution
 20
 All-perovskite
 tandems, lab-scale.
 Single-junction
 15
 perovskite, lab-scale
 ST PSC, lab-scale
 10 PSC large scale (> 10 cm2)
 2012 2015 2018 2021 2024 2027 2030
 Year

 ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021).
 confidential
Conclusions
Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap.
Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at
a laboratory scale – Although most record efficiencies use non-scalable deposition techniques.
Reports and publications show challenges for scaling up. Should be prioritized.
ITRPV 2021 ed. predicts average stabilized efficiency values for tandem solar cells in mass production

Other considerations
Size and throughput (TPT) should be ideal. Do the deposition methods meet the general TPT
requirements to compete?
Product size requirements in PV (BOS driven) will define minimum size requirement for thin-film
deposition equipment.

 confidential
Contact
 Dr.-Ing. Cesar Omar Ramirez
Thank you for your attention Quiroz
 CRamirez@nicesolarenergy.com

 confidential
Thank you for watching
Percistand Workshop Team

 confidential
You can also read