PERCISTAND SCIENTIFIC WORKSHOP - JUNE 9TH, 2021
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Program of today PERovskite-on-CIS TANDem PV 12:30 – Welcome & introduction 12:45 – Energy yield modelling 13:00 – Life cycle assessment 13:15 – Techno-economic assessment 13:30 – Industrial perspective 13:45 – Closure confidential
Program of today PERovskite-on-CIS TANDem PV Q&A – Use chat Moderator Sarallah Hamtaei • Doctoral researcher • Topic: CuInSe2 development Sarallah Hamtaei confidential
Why perovskite-on-CIS? Thin film + thin film = thin film • High efficiency, energy yield and reliability • Fully vertically integrated, low-cost production on a GW scale • Utility scale, rooftop and BIPV applications, colored, patterned and/or flexible products • Low material consumption, short energy payback times, low carbon footprint confidential
Targets By end of project Cell Cell Module • Stability • IEC standards 20 % PER 30 % • Manufacturability TAND 25 % • Scalable to 20×20 cm2 TAND 10 % • Cost and environmental footprint CIS • ISO standards confidential
Current status Joint result with the German CAPITANO project 100 100 100 100 • Perovskite 80 top cell 80 80 80 • 18.5 % SC EQE (%) EQE (%) 60 60 60 60 • CI(G)S bottom cell • 40 8.8 % 40 40 40 • 4T tandem cell GS • 27.3 % 20 CIGS solo - 38.8 mA/cm2 20 20 CIGS solo - 38.8 mA/cm2 20 CIGS w/ Saba DC ITO r2 - 14.7mA/cm2 CIGS w/ Saba DC IO:H r2 - 16.8mA/cm2 Saba DC ITO r2 - 18.8mA/cm2 Saba DC IO:H r2 - 19.6mA/cm2 CIGS + Saba DC ITO r2 - 33.5mA/cm2 CIGS + Saba DC IO:H r2 - 36.4mA/cm2 0 0 0 0 400 600 800 1000 1200 400 600 800 1000 1200 Wavelength (nm) Wavelength (nm) Top cell CIGS CIGS (filtered) (MPP) Total (unfiltered) confidential
Acknowledgements & Social Media European Union’s Horizon 2020 Progress in PV tandem technology research and innovation programme, grant agreement No 850937. confidential
Energy yield modelling Fabrizio Gota Karlsruhe Institute of Technology confidential
Advanced Optics and Materials for Next Generation Photovoltaics group Led by Ulrich W. Paetzold The Research University in the Helmholtz Association CIGS module perovskite module confidential
Why energy yield modelling? confidential
Why energy yield modelling? 2T vs. 4T Example: What is the superior architecture for perovskite/CIGS tandem PV? 2T 4T PCE under STC (%) 25.7 25.3 confidential
Why energy yield modelling? Example: What is the superior architecture for perovskite/CIGS tandem PV? 2T 4T PCE under STC (%) 25.7 25.3 EY in Phoenix, AZ (kWh ∙ m-2 ∙ a-1) 553 572 confidential
Why energy yield modelling? • Compare different architectures under realistic irradiation conditions • Optimize layer thickness • Optimize energy gap of bottom and top absorber layers • Standard test conditions fail to provide correct advice for the design of architectures for perovskite-based tandem PV • Identify trends in the power output of PV devices under realistic conditions depending on variations of the device architecture confidential
Energy yield modelling platform Irradiance Module • Hundreds of location in the USA using TMY3 data set (NREL) • Accounting for cloud coverage confidential
Energy yield modelling platform Optics Module • Transfer-matrix method (TMM) for thin film layers • Series expansion of Beer-Lambert for incoherent layers confidential
Energy yield modelling platform Energy Yield Core Module • Monofacial and bifacial solar modules • Possibility to set tilt, rotation and sun tracking confidential
Energy yield modelling platform Electrics Module • Calculates maximum power point (MPP) • 2T, 4T and 3T architectures possible confidential
Result highlights confidential
Perovskite/CIGS: perovskite bandgap • CIGS bandgap = 1.2 eV 600 • Optimum perovskite bandgap ~ 1.80 - Energy Yield / kWh × m-2 × a-1 1.85 eV Phoenix AZ 2T Phoenix AZ 4T • With 4T architecture lower losses for not optimal perovskite bandgap 500 + 52% CIGS Reference Phoenix 400 1.6 1.8 2.0 Bandgap / eV *adapted from Langenhorst et al., Progress in Photovoltaics 2018 confidential
*adapted Energy Yield / kWh × m-2 × a-1 0 200 300 400 500 600 700 M ia H mi on , F ol L Ph ulu Tropical oe , H n I El ix, Pa AZ D so, e T Sa nve X r, Arid Sa n n D C Perovskite/CIGS Fr ieg O an o, ci CA s Po co, rt C from Langenhorst et al., Progress in Photovoltaics 2018 N land A ew ,O Yo R rk N D ,N ew all Y O a s rle , T X Temperate M ans M emp , LA 4T Perovskite/CIGS 2T Perovskite/CIGS in ne his ap , T ol N is Sa C ,M lt h N La icag ke o, I Bi City L sm , U An arc T Boreal ch k, or ND ag e, AK 2T vs. 4T: comparable energy yield for optimal perovskite bandgap! confidential
Reference layer stack for Percistand 2T tandem 4T tandem Material Thickness Material Thickness MgF2 100 nm MgF2 100 nm Glass 3 mm Glass 3 mm EVA 0.5 mm ITO 120 nm IZO 120 nm NiOx/SAM 10 nm/1 nm SnO2/C60 20 nm/12 nm Perovskite 530 nm Perovskite 530 nm C60/SnO2 12 nm/20 nm SAM/NiOx 1 nm/10 nm IZO 120 nm ITO 20 nm EVA 0.5 mm Al-doped Zinc Oxide 50 nm Al-doped Zinc Oxide 500 nm Zinc Oxide 75 nm Zinc Oxide 75 nm Cadmium Sulfide 60 nm Cadmium Sulfide 60 nm CIGS (1.13 eV) 2.5 µm CIGS (1.13 eV) 2.5 µm Molybdenum 800 nm Molybdenum 800 nm Glass 3 mm Glass 3 mm confidential
Layer resolved absorptance 2T tandem 4T tandem Jsc,total Jsc,parasitic Jsc,reflection Jsc,total Jsc,parasitic Jsc,reflection 37.6 mA/cm2 7.2 mA/cm2 1.7 mA/cm2 37.1 mA/cm2 6.5 mA/cm2 2.9 mA/cm2 confidential
Perovskite thickness and energy gap optimization 2T tandem Phoenix, AZ confidential
Thickness and energy gap optimization 4T tandem Phoenix, AZ confidential
Energy Yield simulations are essential Layer stack • Energy yield module results are input to Techno-Economic Assessment (TEA) and Life-Cycle Assessment (LCA) modules TEA EY LCA • The 3 modules allow us to deliver a final economical and ecological assessment Economical and ecological assessment confidential
Many thanks to… … Ulrich Paetzold. ... the Perovskite Taskforce at KIT. ... the fantastic technical support. ... all collaboration partners. ... the funding organizations. partners: funding: confidential
Contact Fabrizio Gota Thank You for your attention fabrizio.gota@kit.edu confidential
Prospective Life Cycle Assessment of Tandem PV- A Preliminary Analysis Neethi Rajagopalan VITO/Energyville confidential
VITO/Energyville- Research Theme Sustainable Energy EnergyVille confidential
Life Cycle Assessment ISO 14040/44 2006: Framework for life cycle assessment Goal and Scope Raw Materials Definition Extraction Inventory Interpretation Analysis Recycle/Reuse of Manufacturing of PV panels or materials panels Impact Assessment Adapted from Rajagopalan et al. Use of panels (under review) confidential
Goal & Scope of LCA TRL 3 in 2020 TRL 4 in 2024 TRL 2 in 2020 TRL 3 in 2024 Full scale manufacturing of perovskite panels in 2050 Functional unit = 1 kWh of electricity production confidential
Identifying Causal Loops Key contributor to performance Key performance indicator for LCA confidential
Product System Boundary Full Scale manufacturing in 2050 Physical vapor Module front deposition Material parametrization Front TCO • Changes in deposition methods ETL Sputtering • Layer thickness Absorber layer • Material properties HTL Chemical bath Recombination junction x2 deposition Factory & Equipment sizing • Size scaling Window layer Buffer layer Slot die coating External factors Absorber layer • Increased recycling of glass Rear contact • Increased use of renewables in Co-evaporation electricity mix of future Substrate • Energy yield modelling in various Raw materials extraction & Manufacturing of 1 kWh locations processing 2T/4T perovskite End of life Electricity generation confidential
LCA Process Life Cycle Impact Assessment • Impacts to environment • Impacts to human health • Resource use Background data from Source: Tate 2012 Activity data provided by Ecoinvent database uploaded manufacturer Solaronix for to LCA tool Brightway-Activity carbon-based perovskite solar Browser cells confidential
Future Research Focus • Combining LCA and TEA • Parametrizing panel properties till 2050 • Eg: efficiency, lifetime, degradation rate • Complete environmental profile of emerging 2T/4T technology • Identify potential improvements for emerging technology confidential
Thanks for your attention! Contact Neethi Rajagopalan VITO/Energyville Neethi.Rajagopalan@vito.be Questions & Comments? confidential
Techno-economic assessment of tandem perovskite/CIGS solar cells Alessandro Martulli – PhD Student Environmental Economics - Centre for Environmental Sciences Faculty of Business Economics, Hasselt University confidential
Who we are • Environmental Economics Research group • Within the Centre for Environmental Sciences at Hasselt University (Belgium) • Research group focuses: • Techno-economic, environmental and social assessments of clean technologies • Monetary valuation of ecosystem services and nature’s contribution to people confidential
Techno-economic assessment (TEA) • Generally, TEA combines process modeling and economic evaluation GOAL Economy Technology Analyzing the impact of changes in technical and economic parameters on the financial viability • Answer two questions: Techno- Technology development Economic 1. How does the technology work? Analysis 2. Is the technology profitable? Van Dael, M., et al. (2015). Techno-economic Assessment Methodology for Ultrasonic Production of Biofuels. confidential
Techno-economic assessment (TEA) - Steps • Methodology consists in four steps 1. Market study 2. Process flow diagram/ Mass and Energy Balance definition 3. Economic analysis (can be expanded to economic- environmental analysis) 4. Uncertainty analysis Link mass-energy balance with: ▪ Environmental analysis ▪ Economic analysis → Key parameters identification Iterative approach • As more data become available, accuracy improves confidential
TEA Steps - detail 1. Market study • Identify market size, trends, competitors, customers, legislation • Gather input data 2. Process flow diagram (PFD) / Mass and Energy Balance (M&E) definition • PFD gives overview of main process steps with inputs/outputs • M&E balance contains mass and energy data of the process 3. Economic Analysis • Capital (CAPEX) and operational costs (OPEX) calculations • Feasibility assessment through relevant indicators (e.g., LCOE for PV applications) 4. Uncertainty Analysis • Determine parameters with highest impact confidential
TEA – Economic feasibility indicators - PV 1. Manufacturing cost (MC – EUR/m2) : = + + + Cost per unit area of: • = Material • = Equipment • = Utilities, Insurance and Labor • = Repair and maintenance 2. Minimum Sustainable Price (MSP – EUR/Wp): + + = 0 • = overheads (14% of MC) • = weighted average cost of capital (15% of MC) • = Module power conversion efficiency • 0 = Irradiance power density at standard test conditions (1000 W/m²) confidential
TEA – Economic feasibility indicators - PV 3. Levelized cost of electricity (LCOE – EUR/kWh) : σ =0 (1 + ) = σ =0 • = system cost • = energy generated in the i-th year • = discount rate • = total lifetime of PV system Energy yield data input: • Realistic irradiation conditions • Meteorological data from NREL confidential
PERCISTAND – TEA structure • Bottom-up model construction • Manufacturing process divided in smallest parts and product cost is sum of all the costs incurred in the production cycle of the product • Accurate, intuitive, aligns with LCA (environmental impact assessment) • PFD and M&E balance linked to: • Operating scale: throughput → industrial scale production (0.9 m²/min) • Inputs (e.g., kg of material, kWh) → PERCISTAND module size = 20x20 cm² • Manufacturing techniques (e.g., sputtering, coating) • Capex and Opex calculations for different scenarios • Manufacturing cost and Minimum Sustainable Price (MSP) • LCOE calculation • Energy yield input confidential
PERCISTAND – TEA scenarios Several scenarios have been constructed, corresponding to PERCISTAND technologies: • Carbon-based perovskite single-junction (Solaronix) – used as benchmark for LCA/TEA model construction • CIGS single- junction (preliminary data) • 2T tandem (preliminary data) • 4T tandem (preliminary data) Every scenario contains: • Process flow diagram • Mass and energy balance o Process step o Inputs for each step • Economic calculations o CAPEX o OPEX • LCOE calculation (so far, only Solaronix case) o Energy yield calculation for carbon-based perovskite single junction confidential
Next steps – Indicator estimates • Accurately estimate 2T/4T configuration PV technology MSP LCOE Source manufacturing cost (€/ m²) (US$/W) (US$/kW h) • Calculate 2T/4T configuration Minimum Perovskite SJ 0.21 – 0.25 3.5 – 4.9 Cai et al. (2017) Sustainable Price (MSP) (€/ W) • Estimate 2T/4T configuration LCOE with Perovskite SJ 0.41 4.9 – 7.9 Song et al. (2017) energy yield input data (€/kWh): Perovskite SJ 0.17 4.34 Li et al. (2018) • PERCISTAND target: 5 EUR cents/kWh Perovskite/Silicon tandem 0.48 5.22 Li et al. (2018) • Southern Europe conditions Perovskite/Perovskite 0.21 4.22 Li et al. (2018) • Compare indicators with alternative PV tandem technologies Silicon SJ 0.20-0.30 Solar price index, • Perovskite/perovskite or pVexchange (2021) Perovskite/Silicon tandems CIGS SJ 0.33 Wang et al. (2021) • Silicon, perovskite and CIGS single junction (SJ) confidential
Next steps – Research gaps • Focus on main techno-economic challenges: • Upscaling • Performance (efficiency, lifetime, cost) • Toxicity • Address the on-going research questions within the community of PV technology developers • Define a roadmap towards commercially viable Perovskite/CI(G)S tandem confidential
Thank you for your attention Contact Alessandro Martulli – PhD student Questions? Environmental Economics - Centre for Environmental Sciences Hasselt University alessandro.martulli@uhasselt.be confidential
Full thin-film tandems solar cells Industry Perspective Cesar Omar Ramirez Quiroz confidential
Perovskite single-junction time evolution. Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast from 3.8% to 25.73% in 2021. UNIST/EPFL, 25.73%, Perovskite solar cell 26 spin-coating (PSC) single junction KIER (SJ), opaque. UNIST-gil/KRICT MIT 23 KRICT UCAS UNIST 20 PCE (%) 17 14 11 8 5 U. Tokio, 3.8%, Drop-casting. 2 2012 2014 2016 2018 2020 2022 First published Yoo, J.J. et al. Nature . 590, 587–593 (2021). Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009). confidential
Perovskite single-junction time evolution. Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast from 3.8% to 25.73% in 2021. non-scalable deposition methods UNIST/EPFL, 25.73%, Perovskite solar cell 26 spin-coating (PSC) single junction KIER (SJ), opaque. UNIST-gil/KRICT MIT 23 KRICT C.O. Ramírez. et. al. UCAS UNIST PSC-SJ semi-transparent FAU PSU/iChEM (ST) 20 U. Toledo KRICT/UNSW *18.3 % reversed PCE (%) 17 14 NREL/U. Toledo 11 8 5 U. Tokio, 3.8%, Drop-casting. 2 2012 2014 2016 2018 2020 2022 First published Yoo, J.J. et al. Nature . 590, 587–593 (2021). Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009). confidential
Perovskite single-junction time evolution. Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast from 3.8% to 25.73% in 2021. non-scalable deposition methods UNIST/EPFL, 25.73%, Perovskite solar cell 26 spin-coating (PSC) single junction KIER (SJ), opaque. UNIST-gil/KRICT MIT 23 KRICT C.O. Ramírez. et. al. UCAS UNIST PSC-SJ semi-transparent FAU PSU/iChEM (ST) 20 U. Toledo KRICT/UNSW *18.3 % reversed PSC-SJ large area (> 10 cm2) PCE (%) 17 14 NREL/U. Toledo NEDO/Panasonic 11 Co., 804 cm2 Microquanta Semiconductor 8 Co., 17 cm2 NTU, 21 cm2 5 U. Tokio, Wuxi UtmoLight Co., 3.8%, Drop-casting. 64 cm2, 20.2% 2 2012 2014 2016 2018 2020 2022 First published Yoo, J.J. et al. Nature . 590, 587–593 (2021). Miyasaka, T. et al. J. Am. Chem. Soc. 131, 6050–1 (2009). confidential
Perovskite single-junction time evolution. Since the technology of perovskite solar cell was introduced in 2009, the efficiency has evolved fast from 3.8% to 25.73% in 2021. non-scalable deposition methods scalable deposition methods UNIST/EPFL, 25.73%, Perovskite solar cell 26 spin-coating (PSC) single junction 26 KIER (SJ), opaque. HZB , 22.43%, UNIST-gil/KRICT MIT UNC, 21.7%, KRICT co-evap. 23 UCAS UNIST PSC-SJ semi-transparent doctor-blading. 23 C.O. Ramírez. et. al. ICMol, 20.03%, FAU PSU/iChEM (ST) co-evap. 20 U. Toledo KRICT/UNSW 20 *18.3 % reversed PSC-SJ large area (> 10 cm2) EMPA/Solliance, 17.2%, PCE (%) PCE (%) evap./Spin-coating 17 17 14 14 NREL/U. Toledo NEDO/Panasonic NEDO/Panasonic 11 Co., 804 cm2 PSC-SJ, scalable methods Co., 804 cm2 11 Microquanta Semiconductor for perovskite deposition. Microquanta Semiconductor 8 Co., 17 cm2 Co., 17 cm2 8 NTU, 21 cm2 NTU, 21 cm2 5 PSC-SJ ST, scalable methods 5 U. Tokio, 3.8%, Drop-casting. Wuxi UtmoLight Co., for perovskite deposition. Wuxi UtmoLight Co., 64 cm 2 64 cm2, 20.2% 2 2 2012 2014 2016 2018 2020 2022 2012 2014 2016 2018 2020 2022 First published First published Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020). Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019). confidential
Perovskite single-junction time evolution. Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap. All deposition methods PSC-SJ, opaque. HZB , 22.43%, 26 co-evap. PSC-S, semi-transparent UNC, 21.7%, doctor-blading. PSC-SJ large area (> 10 cm2) 23 ICMol, 20.03%, PSC-SJ, scalable co-evap. 20 methods for perovskite EMPA/Solliance, 17.2%, evap./Spin-coating deposition. PCE (%) 17 PSC-SJ ST, scalable methods for perovskite deposition. 14 11 NEDO/Panasonic Co., 804 cm2 8 Microquanta Semiconductor Co., 17 cm2 NTU, 21 cm2 5 Wuxi UtmoLight Co., 64 cm 2 2 2012 2014 2016 2018 2020 2022 First published Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020). Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019). confidential
Perovskite single-junction time evolution. Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap. All deposition methods Present time PSC-SJ. 30 HZB , 22.43%, SJ Shockley-Queisser Limit SJ Eg > 1.7 eV 26 co-evap. PSC-S, semi-transparent UNC, 21.7%, doctor-blading. PSC-SJ large area (> 10 cm2) 23 25 ICMol, 20.03%, PSC-SJ, scalable co-evap. 20 methods for perovskite EMPA/Solliance, 17.2%, evap./Spin-coating deposition. PCE (%) PCE (%) 17 20 PSC-SJ ST, scalable methods for perovskite deposition. 14 15 11 NEDO/Panasonic Co., 804 cm2 8 Microquanta Semiconductor Co., 17 cm2 PSC-SJ, Opaque, non- 10 NTU, 21 cm2 scalable, lab-scale. 5 Wuxi UtmoLight Co., 64 cm 2 PSC-SJ, with module 2 active area > 10 cm2 5 2012 2014 2016 2018 2020 2022 2012 2016 2020 2024 2028 First published First published Roß, M. et al. ACS Appl. Mater. Interfaces 12, 39261–39272 (2020). Feurer, T. et al. Adv. Energy Mater. 9, 2–7 (2019). confidential
Perovskite-based tandems time evolution. Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at a laboratory scale. 2T tandems 32 C-silicon/perovskite Oxford PV, HZB tandem solar cells. Oxford PV 29.52% 29 All-perovskite tandems. UNL/UNC- Nanjin U./U. 26 CH/ASU Toronto, 24.8% CIGS/perovskite tandems Nanjing U./ U. Toronto, 24.2% 23 PCE (%) HZB/KUT UCLA/ Solar Frontier NREL/U. 20 Colorado NREL/U. Toledo 17 U. Toledo 14 KIST 11 8 2014 2016 2018 2020 2022 2024 First published Chen, B. et al. Joule 4, 850–864 (2020). Al-Ashouri, A. et al. Energy Environ. Sci. 12, 3356–3369 (2019). confidential
Perovskite-based tandems time evolution. Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at a laboratory scale. 2T tandems 4T tandems 32 C-silicon/perovskite 32 Solliance/ Oxford PV, U. Toronto/ HZB tandem solar cells. Panasonic, Oxford PV 29.52% KAUST 29 C.O. Ramírez. et.al. 28.7% 29 All-perovskite tandems. FAU/UNSW/Trina Solar IMEC KIT/ZSW- UNL/UNC- Nanjin U./U. PERCISTAND 26 CH/ASU Toronto, 24.8% CIGS/perovskite tandems 27.3% 26 Nanjing U./ NREL Solliance U. Toronto, 24.2% NREL/ 23 23 PCE (%) HZB/KUT U. Toledo, 25% PCE (%) UCLA/ U. Toledo Solar Frontier NREL/U. U. Toledo 20 Colorado 20 NREL/U. Toledo 17 U. Toledo 17 14 14 KIST 11 11 8 8 2014 2016 2018 2020 2022 2024 2014 2016 2018 2020 2022 2024 First published First published Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz, C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018). confidential
Perovskite-based tandems time evolution. Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at a laboratory scale. 2T and 4T tandems 32 C-silicon/perovskite Oxford PV, HZB tandem solar cells. Oxford PV 29.52% 29 UNL/UNC- CH/ASU All-perovskite tandems. 26 CIGS/perovskite tandems Nanjin U./U. UCLA/ Toronto, 24.8% Solar Frontier 23 PCE (%) Nanjing U./ U. Toronto, 24.2% 20 HZB/KUT NREL/U. Colorado 17 NREL/U. Toledo U. Toledo 14 KIST 11 8 2014 2016 2018 2020 2022 2024 First published Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz, C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018). confidential
Perovskite-based tandems time evolution. Academia and industry interest on perovskite-based tandem devices is reflected on time evolution 2T and 4T tandems Present time 32 C-silicon/perovskite 35 Oxford PV, Tandem SQ Limit (various Eg) HZB tandem solar cells. Oxford PV 29.52% 29 UNL/UNC- CH/ASU All-perovskite tandems. 30 SJ SQ Limit SJ Eg > 1.7 eV 26 CIGS/perovskite tandems Nanjin U./U. UCLA/ Toronto, 24.8% Solar Frontier 25 23 PCE (%) PCE (%) Nanjing U./ U. Toronto, 24.2% 20 HZB/KUT 20 NREL/U. Colorado 17 NREL/U. Toledo Perovskite-based solar 15 U. Toledo 14 cells 4T and 2T. KIST Opaque PSC-SJ non- 10 11 scalable, lab-scale. Semi-transparent PSC-SJ 8 5 2014 2016 2018 2020 2022 2024 2012 2016 2020 2024 2028 First published First published Chen, B. et al. Nat. Commun. 11, (2020).Miyasaka, T. et al. Ramírez Quiroz, C. O. et al. J. Mater. Chem. A 6, 3583–3592 (2018). confidential
Perovskite-based PV scale evolution. Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including the International Technology Roadmap for PV (ITRPV) Present time Perovskite solar cell (PSC) 1000 804 cm2, 17.9%, NEDO single junction with & Panasonic. module active area > 10 800 cm2, 14.24%, Microquanta. cm2 outliers Active area (cm2) 100 64 cm2, 20.5%, Wuxi UtmoLight 10 20 cm2, 20.2%, Microquanta. 1 2015 2018 2021 2024 2027 2030 First published confidential
Perovskite-based PV scale evolution. Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including the International Technology Roadmap for PV (ITRPV) Present time Perovskite solar cell (PSC) 25 1000 804 cm2, 17.9%, NEDO single junction with & Panasonic. module active area > 10 800 cm2, 14.24%, Microquanta. cm2 20 outliers Active area (cm2) 100 PCE (%) 15 64 cm2, 20.5%, 10 Wuxi UtmoLight 10 20 cm2, 20.2%, Microquanta. 5 1 0 2015 2018 2021 2024 2027 2030 10 100 1000 10000 First published Active area (cm2) confidential
Perovskite-based PV scale evolution. Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including the International Technology Roadmap for PV (ITRPV) Present time Perovskite solar cell (PSC) 25 1000 804 cm2, 17.9%, NEDO single junction with & Panasonic. module active area > 10 800 cm2, 14.24%, Microquanta. cm2 20 outliers Active area (cm2) 100 CIGS module, industrially PCE (%) fabricated, 7200 cm 2 t.a., 15 17.6%, NICE solar energy 64 cm2, 20.5%, 10 Wuxi UtmoLight 10 20 cm2, 20.2%, Microquanta. 5 1 0 2015 2018 2021 2024 2027 2030 10 100 1000 10000 First published Active area (cm2) confidential
Perovskite-based PV scale evolution. Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including the International Technology Roadmap for PV (ITRPV) Present time Perovskite solar cell (PSC) 25 1000 ITRPV module size 804 cm2, 17.9%, NEDO single junction with prediction for residential use. & Panasonic. module active area > 10 80% word market share 800 cm2, 14.24%, > 17000cm2 by 2025 Microquanta. cm2 20 outliers Active area (cm2) 100 CIGS module, industrially PCE (%) fabricated, 7200 cm 2 t.a., 15 17.6%, NICE solar energy 64 cm2, 20.5%, 10 Wuxi UtmoLight 10 20 cm2, 20.2%, Microquanta. 5 1 0 2015 2018 2021 2024 2027 2030 10 100 1000 10000 First published Active area (cm2) ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021). confidential
Perovskite-based PV scale evolution. Active area and efficiency time evolution illustrate the challenge of scaling up. Perspective including the International Technology Roadmap for PV (ITRPV) Present time Perovskite solar cell (PSC) 25 1000 ITRPV module size 804 cm2, 17.9%, NEDO single junction with prediction for residential use. & Panasonic. module active area > 10 80% word market share 800 cm2, 14.24%, > 17000cm2 by 2025 Microquanta. cm2 20 outliers Active area (cm2) 100 CIGS module, industrially PCE (%) fabricated, 7200 cm 2 t.a., 15 17.6%, NICE solar energy 64 cm2, 20.5%, 10 Wuxi UtmoLight 10 ITRPV module size 20 cm2, 20.2%, prediction power plant. Microquanta. ~95% word market share 20000-30000 cm2 by 2025 5 1 0 2015 2018 2021 2024 2027 2030 10 100 1000 10000 First published Active area (cm2) ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021). confidential
Research development vs ITRPV mass production predictions . ITRPV 12th ed., (2021). predicts average stabilized efficiency values for tandem solar cells in mass production Present time 35 Tandem SQ Limit (various Eg) Current and potential future development in perovskite-based 30 SJ SQ Limit SJ Eg > 1.7 eV photovoltaics are aligned with industry predictions in terms of efficiency. PCE (%) 25 PCE time evolution 20 All-perovskite tandems, lab-scale. Single-junction 15 perovskite, lab-scale ST PSC, lab-scale 10 PSC large scale (> 10 cm2) 2012 2015 2018 2021 2024 2027 2030 Year ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021). confidential
Research development vs ITRPV mass production predictions . ITRPV 12th ed., (2021). predicts average stabilized efficiency values for tandem solar cells in mass production Present time 35 Tandem SQ Limit (various Eg) ITRPV 12th ed. 2021 Current and potential future c-Silicon/perovskite development in perovskite-based 30 SJ SQ Limit SJ Eg > 1.7 eV tandem solar cells. photovoltaics are aligned with CIGS/perovskite tandems. industry predictions in terms of All-perovskite tandems efficiency. PCE (%) 25 PCE time evolution 20 All-perovskite tandems, lab-scale. Single-junction 15 perovskite, lab-scale ST PSC, lab-scale 10 PSC large scale (> 10 cm2) 2012 2015 2018 2021 2024 2027 2030 Year ITRPV. VDMA Photovolt. Equip. 12, 1–83 (2021). confidential
Conclusions Advances at lab-scale followed by scaling-up efforts reveal cell-to-module efficiency gap. Since first reported, tandem efficiencies have reached 29.52% for 2T tandems and 28.7% 4T tandems at a laboratory scale – Although most record efficiencies use non-scalable deposition techniques. Reports and publications show challenges for scaling up. Should be prioritized. ITRPV 2021 ed. predicts average stabilized efficiency values for tandem solar cells in mass production Other considerations Size and throughput (TPT) should be ideal. Do the deposition methods meet the general TPT requirements to compete? Product size requirements in PV (BOS driven) will define minimum size requirement for thin-film deposition equipment. confidential
Contact Dr.-Ing. Cesar Omar Ramirez Thank you for your attention Quiroz CRamirez@nicesolarenergy.com confidential
Thank you for watching Percistand Workshop Team confidential
You can also read