Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa

Page created by Larry Kelly
 
CONTINUE READING
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
Pattern Recognition
                   and Applications Lab

Open Source Intelligence

              Giorgio Fumera
                 fumera@unica.it
 source: Davide Ariu – davide.ariu@pluribus-one.it

                                                                 University
                                                              of Cagliari, Italy

                                            Department of Electrical
                                                and Electronic
                                                 Engineering
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
Intelligence
     • Definition: the process and product of identifying,
       collecting, analyzing and refining information to make it
       useful to policymakers in making decisions —
       specifically, about potential threats to national security

     • Intelligence gathering
           – clandestine operations, secret or covert means, known
             only at the highest levels of government
           – information that is widely available

     • Can be used for both legitimate and nefarious purposes

http://pralab.diee.unica.it   https://www.fbi.gov/about-us/intelligence   1
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
Intelligence collection disciplines (*INT)
     Five intelligence collection disciplines:
           1. HUMan INTelligence (HUMINT): the process of gaining intelligence
              from humans or individuals by analyzing behavioral responses
              through direct interaction
           2. SIGnal INTelligence (SIGINT): electronic transmissions that can be
              collected by ships, planes, ground sites, or satellites –
              Communications Intelligence (COMINT): interception of
              communications between two parties
           3. IMagery INTelligence (IMINT), or PHOTo INTtelligence (PHOTINT)
           4. Measurement And Signatures INTelligence (MASINT): advanced
              processing and use of data gathered from overhead and airborne
              IMINT and SIGINT collection systems (e.g.: identifying chemical
              weapons)
                •   TELemetry INTelligence (TELINT): data relayed by weapons during tests
                •   ELectronic INTelligence (ELINT): electronic emissions picked up from modern
                    weapons and tracking systems
           5. Open Source INTelligence (OSINT): the process of gathering
              intelligence from publicly available resources (including the Internet)

http://pralab.diee.unica.it                                                                       2
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
OSINT – Definitions
     • Open Source Information (OSINF): publicly available
       data – not necessarily free

     • OSINF collection: monitoring, selecting, retrieving,
       tagging, cataloguing, visualising & disseminating data

     • Open Source Intelligence (OSINT): proprietary
       intelligence recursively derived from OSINF, as a result of
       expert analysis

                                       Slide credit: C.H. Best, JRC – European Commission
http://pralab.diee.unica.it                                                                 3
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
OSINT – Origins
     •   The term 'OSINT' originates from Security Services
     •   The practice of using OSINT to build intelligence is not new
           – Italy: OVRA (Organizzazione per la Vigilanza e la Repressione dell'Antifascismo)
             used OSINF since 1930
           – Cold war: American and German secret services vs Russia
     •   HUMINT, SIGINT and Classified information was largey preferred
     •   Paradigm change:
           – 9/11: OSINT could have been use to foresee attacks
           – fast growth of the Internet, appearance of Social Networks
     •   The 9/11 Commission Report:
          The need to restructure the intelligence community grows out of six problems that
          have become apparent before and after 9/11
           – Structural barriers to performing joint intelligence work
           – Lack of common standards and practice across the foreign-domestic divide
           – Divided management of national intelligence capabilities
           – Weak capacity to set priorities and to move resources
           – Too many jobs
           – Too complex and secret

http://pralab.diee.unica.it                                                                     4
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
OSINT – Who is involved?
                                  Minister
                                  General
                                Commissioner
                                   CEO

                                  Analyst

                OSINF                                         Classified
         Collector/Researcher                                Information

                 Tool
          Builder/Developer
                                            Slide credit: C.H. Best, JRC – European Commission
http://pralab.diee.unica.it                                                                      5
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
Who uses OSINT?
     • Security Services, Law Enforcement Agencies and
       Military Bodies

     • Governmental organisations
           –   EU, NATO, AU Situation Centre
           –   IAEA – Nuclear Safeguard
           –   UN Department for Peacekeeping Operations
           –   World Health Organisation
           –   NGOs

     • All the large companies

http://pralab.diee.unica.it                                6
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
OSINT – Sources of information
     •   Media
           – newspapers, magazines, radio, television, etc.
     •   The Internet
           – news web sites, Social Networks, blogs, video sharing sites, thematic sites, etc.
           – deep Web (not indexed by traditional search engines): dynamic web pages, sites
             behind log-in, sites with a ROBOT.txt file properly configured
           – Dark Nets/Web (TOR, I2P)
     •   Subscription services
           – LexisNexis (http://www.lexisnexis.com): a corporation providing computer-assisted
             legal research, business research and risk management services. During the 1970s
             it pioneered the electronic accessibility of legal and journalistic documents
           – Factiva (http://www.dowjones.com/products/product-factiva/): the world’s leading
             source of premium news, data and insight, with access to thousands of premium
             news and information sources on more than 22 million public and private
             companies
           – Jane's Information Group (www.janes.com): a British publishing company
             specialised in military, aerospace and transportation topics
           – BBC Monitoring (https://monitoring.bbc.co.uk) includes news, information and
             comment gathered from the mass media around the world for service subscribers

http://pralab.diee.unica.it                                                                      7
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
OSINT – Sources of information
     •   Commercial Satellites
          – http://www.euspaceimaging.com/applications/fields/security-defense-
             intelligence
          – https://www.maxar.com
     •   Public Data
          – government reports, budgets, demographics, hearings, legislative debates,
             press conferences, speeches, marine and aeronautical safety warnings,
             environmental impact statements and contract awards
     •   Professional and Academic
          – conferences, professional associations (e.g., IEEE, ACM), academic papers,
             and subject matter experts
     •   Open Data
          – https://open-data.europa.eu/en/data
          – http://www.dati.gov.it
          – http://www.datiopen.it
          – Geospatial Data Providers – for an exhaustive list see:
             https://en.wikipedia.org/wiki/List_of_GIS_data_sources

http://pralab.diee.unica.it                                                              8
Open Source Intelligence - Giorgio Fumera source: Davide Ariu-UniCa
*INT targets: individuals
     Potentially interesting information
           – physical locations
           – OSN profiles for checking on relationships, contacts, content
             sharing, preferred web sites, etc.
           – e-mail addresses, users’ handles and aliases available on the
             Internet including infrastructure owned by the individual such as
             domain names and servers
           – associations and historical perspective of the work performed
             including background details, criminal records, owned licenses,
             registrations, etc.:
                 • public data provided by official databases
                 • private data provided by professional organizations
           – released intelligence such as content on blogs, journal papers,
             news articles, and conference proceedings
           – mobile information including phone numbers, device type,
             applications in use, etc

                               Source: Targeted Cyber Attacks Multi-staged – Attacks Driven by Exploits
http://pralab.diee.unica.it    and Malware, Elsevier, 2014                                                9
*INT targets: corporations and organisations
     Potentially interesting information
           – determining the nature of business and work performed by target
             corporations and organizations to understand the market vertically
           – fingerprinting infrastructure including IP address ranges, network
             peripheral devices for security and protection, deployed technologies
             and servers, web applications, informational web sites, etc.
           – extracting information from exposed devices on the network such as
             CCTV cameras, routers, and servers belonging to specific organizations
           – mapping hierarchical information about the target organizations to
             understand the complete layout of employees at different layers
             including ranks, e-mail addresses nature of work, service lines,
             products, public releases, meeting, etc.
           – collecting information about the different associations including
             business clients and business partners
           – extracting information out of released documents about business,
             marketing, financial, and technology aspects
           – gathering information about the financial stand of the organization
             from financial reports, trade reports, market caps, value history, etc.

                              Source: Targeted Cyber Attacks Multi-staged – Attacks Driven by Exploits
http://pralab.diee.unica.it   and Malware, Elsevier, 2014                                                10
*INT target modes: investigating cyber-attacks

                              Domains registered by criminals for
                                • counterfeiting goods
                                • data exfiltration
                                • exploit attacks
                                • illegal pharma
                                • infrastructure (ecrime name resolution)
                                • malware C&C
                                • malware distribution, ransomware
                                • phishing, business email compromise
                                • scams (419, reshipping, stranded
                                    traveler…)

http://pralab.diee.unica.it                                                 11
OSINT processes                                            TECHNICAL ISSUES
                                                                • data mapping
                                                                • data deduping
                                                                • data cleansing
                                                                • data conversion
                                                                • data linking
                                                                • data normalisation

                                                                             Visualise
    Collect               Transform                Analyse                                  Collaborate
                                                                             & Report

                      •   Geo-tagging
                      •   Translation          •    Link Analysis
                                               •    Relationships        •    Networks
                                                                                            •   Intel Wiki
                      •   Entity Extraction
                                                                         •    Relations
                      •   Entity Resolution    •    Geolinking
                                                                                            •   IM
                                               •    Trends               •    Time graphs
                                                                                            •   Case DB
                                               •    Statistics           •    Maps
                                                                                            •   Publish

•   Multilingual Information Retrieval             connecting
•   Search                                          the dots
•   Crawl
•   News feeds
                                                           generating actionable intelligence
•   Machine Translation

http://pralab.diee.unica.it       Slide credit: C.H. Best, JRC – European Commission                         12
Information collection issues
     How to search for textual information?
           – search engines
                 • generic, e.g.: Google, Yahoo, Bing, Baidu (Chinese, Japanese), Sogou
                   (Chinese), Soso.com (Chinese)
                 • thematic, e.g.: computers and devices (Shodan), maps (Bing, Google,
                   Nokia, Yahoo!), people (Spokeo), source code (Koders, Krugle, Google
                   Code Search)
           – libraries (e.g.: Lexis Nexis, IEEE Xplore, ACM Digital Library)
     How to extract textual information?
           – API – information access constraints, subject to change;
             platform-specific
           – scraping: ad-hoc source code for each platform; noise has to be
             removed; open solutions exist (need to merge results)

                                                                                      13
http://pralab.diee.unica.it                                                                13
14

      Information collection issues
      Non-textual information (difficult to automate extraction)
      • Images
            – people (who)? places? texts? objects?
      • Videos
            – people (who)? places? text? objects? (same as for images)
            – if video contains audio: transcription, translation, speaker
              identification
      • Audio traces
            – transcription
            – translation
      • Other files
            – e.g.; executables files, proprietary formats

 http://pralab.diee.unica.it                                                 14
15

         Information collection: language issues

     •   Culture               •   Hi-Tech              •   Sport           • Magazine
     •   Art                   •   Health-Environment   •   Politic         • Short news
     •   Religion-Thought      •   Society              •   International
     •   University            •   Economy              •   Provinces
         Howzeh                •   Markets              •   Photo
                                                        •   Video
 http://pralab.diee.unica.it                                                               15
16

      Information collection: language issues
      English version: https://en.mehrnews.com/

 http://pralab.diee.unica.it   Slide Credit: C.H. Best, JRC – European Commission   16
17

      Information collection: language issues
      Persian version: https://www.mehrnews.com/
                                                                                    •   News
                                                                                    •   Culture
                                                                                    •   Literature
                                                                                    •   Religion
                                                                                    •   University
                                                                                    •   Social
                                                                                    •   Economic
                                                                                    •   Political
                                                                                    •   International
                                                                                    •   Sport
                                                                                    •   Nuclear
                                                                                    •   Photo

 http://pralab.diee.unica.it   Slide Credit: C.H. Best, JRC – European Commission                       17
18
      Information collection issues:
      Social Network analysis
      •   Privacy restrictions
            – third party application developers create applications that ask for unneeded
              permissions to gain additional information
      •   Platform restrictions
            – based on social relationships, user-based privacy settings, rate limiting, activity
              monitoring, and IP address based restrictions
      •   Data availability
            – users did not provide information
            – the target information exists, but is "hidden" by privacy and platform restrictions
      •   Data longevity
            – relationship dynamics change frequently, profiles are updated constantly
            – each data access is a snapshot of the social graph at collection time
      •   Legal issues
            – disallowing screen scrapers and other data mining tools through ToS agreements,
              but legal enforceability remains unclear
      •   Ethical issues
            – crawling social networks for personal information is an ethically sensitive area

                                 Source: B. R. Holland, Enabling Open Source Intelligence (OSINT) in private social networks

 http://pralab.diee.unica.it                                                                                              18
Information collection issues:
     Social Network analysis

http://pralab.diee.unica.it           19
20
      Information collection issues:
      Social Network analysis

 http://pralab.diee.unica.it           20
21
      Information transformation:
      linguistic requirements
      Foreign language skills and knowledge proficiency:
            – transcription: both listening and writing proficiency in the
              source language are essential
            – interpretation: both listening in the source language and
              speaking proficiency in the target language are essential
            – translation: bilingual competence is a prerequisite for
              translation; linguists must be able to
                  • read and comprehend the source language
                  • write comprehensibly in the target language
                  • choose the equivalent expression in the target language that fully
                    conveys and best matches the meaning intended in the source one

 http://pralab.diee.unica.it   Source: Open-Source Intelligence, Federation of American Scientists, 2012   21
22
      Information transformation:
      entity resolution
      • The problem of identifying and linking/grouping
        different manifestations of the same real world object

      • Examples of manifestations and objects:
            – Different ways of addressing (names, email addresses,
              FaceBook accounts) the same person in text
            – Web pages with differing descriptions of the same
              business
            – Different photos of the same object

                                   Source: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial

 http://pralab.diee.unica.it                                                                            22
23
      Information transformation:
      entity resolution
                                                 Enzo Ferrari e i suoi piloti
      «Un padrone delle ferriere». Era questo il modo singolare, ma per certi versi affettuoso, con cui Clay Regazzoni
      amava definire Enzo Ferrari. E che il Drake fosse un vero padrone, e fatto che nessuno dei piloti che hanno fatto
      tappa a Maranello puo mettere in discussione. Era lui, Ferrari, che stabiliva simpatie e antipatie, ordini e
      concessioni, stipendi e provvigioni. Su una cosa soltanto non concedeva margini neppure a se stesso: il valore
      di chi correva per lui. A patto, pero, che il nome del pilota non avesse il sopravvento, nella popolarita, sul nome
      delle macchine.
      Arrivando a tempi piu recenti, il pilota che piu affascinò Enzo Ferrari fu Niki Lauda. Fortemente parsimonioso e
      terribilmente abile nella trattativa economica, in cui eccelleva peraltro anche il Drake, Niki racconta che Ferrari
      ad un certo punto gli affibbio un curioso soprannome: «Mi chiamava ebreo, probabilmente perche mi riteneva
      anche un buon commerciante della mia professionalità.
      A fine luglio 1977, quando l'ex campione del mondo aveva gia firmato per la Brabham Alfa Romeo, Ferrari
      rivelo un'ammissione di Lauda. «Fino a quando lei sara vivo io guidero per lei», questo disse Niki al Drake, nel
      frattempo da dieci anni ingegnere honoris causa. Ma alla fine di agosto, Lauda si recò a Maranello e disse a
      Ferrari che non avrebbe guidato piu le sue macchine. «Se Lauda fosse restato con noi avrebbe almeno
      eguagliato il record di Fangio di cinque titoli mondiali vinti», confesso Ferrari tempo dopo. Non perdonò mai
      Lauda e non lo rivolle in Ferrari quando l'austriaco si offerse. Il perdono arrivò anni dopo, poco prima della
      morte del Drake.
      L'ultimo pilota, nella classifica degli amori tecnici di Enzo Ferrari, fu Gilles Villeneuve. Il Grande Vecchio era un
      umorale, quando Lauda lo lasciò fece una scommessa con se stesso: prender un signor nessuno e portarlo al
      titolo mondiale.

 http://pralab.diee.unica.it                                                                                                  23
24
      Information transformation:
      entity resolution
                                                 Enzo Ferrari e i suoi piloti
      «Un padrone delle ferriere». Era questo il modo singolare, ma per certi versi affettuoso, con cui Clay Regazzoni
      amava definire Enzo Ferrari. E che il Drake fosse un vero padrone, e fatto che nessuno dei piloti che hanno fatto
      tappa a Maranello puo mettere in discussione. Era lui, Ferrari, che stabiliva simpatie e antipatie, ordini e
      concessioni, stipendi e provvigioni. Su una cosa soltanto non concedeva margini neppure a se stesso: il valore
      di chi correva per lui. A patto, pero, che il nome del pilota non avesse il sopravvento, nella popolarita, sul nome
      delle macchine.
      Arrivando a tempi piu recenti, il pilota che piu affascinò Enzo Ferrari fu Niki Lauda. Fortemente parsimonioso e
      terribilmente abile nella trattativa economica, in cui eccelleva peraltro anche il Drake, Niki racconta che Ferrari
      ad un certo punto gli affibbio un curioso soprannome: «Mi chiamava ebreo, probabilmente perche mi riteneva
      anche un buon commerciante della mia professionalità.
      A fine luglio 1977, quando l'ex campione del mondo aveva gia firmato per la Brabham Alfa Romeo, Ferrari
      rivelo un'ammissione di Lauda. «Fino a quando lei sara vivo io guidero per lei», questo disse Niki al Drake, nel
      frattempo da dieci anni ingegnere honoris causa. Ma alla fine di agosto, Lauda si recò a Maranello e disse a
      Ferrari che non avrebbe guidato piu le sue macchine. «Se Lauda fosse restato con noi avrebbe almeno
      eguagliato il record di Fangio di cinque titoli mondiali vinti», confessò Ferrari tempo dopo. Non perdonò mai
      Lauda e non lo rivolle in Ferrari quando l'austriaco si offerse. Il perdono arrivò anni dopo, poco prima della
      morte del Drake.
      L'ultimo pilota, nella classifica degli amori tecnici di Enzo Ferrari, fu Gilles Villeneuve. Il Grande Vecchio era un
      umorale, quando Lauda lo lasciò fece una scommessa con se stesso: prender un signor nessuno e portarlo al
      titolo mondiale.

 http://pralab.diee.unica.it                                                                                                  24
25
      Information transformation:
      entity resolution
                                                 Enzo Ferrari e i suoi piloti
      «Un padrone delle ferriere». Era questo il modo singolare, ma per certi versi affettuoso, con cui Clay Regazzoni
      amava definire Enzo Ferrari. E che il Drake fosse un vero padrone, e fatto che nessuno dei piloti che hanno fatto
      tappa a Maranello puo mettere in discussione. Era lui, Ferrari, che stabiliva simpatie e antipatie, ordini e
      concessioni, stipendi e provvigioni. Su una cosa soltanto non concedeva margini neppure a se stesso: il valore
      di chi correva per lui. A patto, pero, che il nome del pilota non avesse il sopravvento, nella popolarita, sul nome
      delle macchine.
      Arrivando a tempi piu recenti, il pilota che piu affascinò Enzo Ferrari fu Niki Lauda. Fortemente parsimonioso e
      terribilmente abile nella trattativa economica, in cui eccelleva peraltro anche il Drake, Niki racconta che Ferrari
      ad un certo punto gli affibbio un curioso soprannome: «Mi chiamava ebreo, probabilmente perche mi riteneva
      anche un buon commerciante della mia professionalità.
      A fine luglio 1977, quando l'ex campione del mondo aveva gia firmato per la Brabham Alfa Romeo, Ferrari
      rivelo un'ammissione di Lauda. «Fino a quando lei sara vivo io guidero per lei», questo disse Niki al Drake, nel
      frattempo da dieci anni ingegnere honoris causa. Ma alla fine di agosto, Lauda si recò a Maranello e disse a
      Ferrari che non avrebbe guidato piu le sue macchine. «Se Lauda fosse restato con noi avrebbe almeno
      eguagliato il record di Fangio di cinque titoli mondiali vinti», confesso Ferrari tempo dopo. Non perdonò mai
      Lauda e non lo rivolle in Ferrari quando l'austriaco si offerse. Il perdono arrivò anni dopo, poco prima della
      morte del Drake.
      L'ultimo pilota, nella classifica degli amori tecnici di Enzo Ferrari, fu Gilles Villeneuve. Il Grande Vecchio era un
      umorale, quando Lauda lo lasciò fece una scommessa con se stesso: prender un signor nessuno e portarlo al
      titolo mondiale.

 http://pralab.diee.unica.it                                                                                                  25
26
      Information transformation:
      entity resolution

                        Before                                                      After
 http://pralab.diee.unica.it     Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial   26
27
      Information transformation:
      entity resolution
      Traditional challenge: name/attribute ambiguity

           Tom Cruise

         Michael Jordan

 http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial   27
Information transformation:
     entity resolution
     Other challenges
           – errors due to data entry
           – changing attributes
           – abbreviations/data truncation
                                  V. Rossi

         Valentino Rossi               Vasco Rossi   Valeria Rossi
                                                             28
http://pralab.diee.unica.it                                       28
29
      Information transformation:
      entity resolution
      Abstract problem statement

 http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial   29
Information transformation:
     entity resolution
     Deduplication: clustering the record mentions that correspond
     to the same entity

                                                                                                         30
http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial        30
Information transformation:
     entity resolution
     Deduplication: clustering the record mentions that correspond
     to the same entity
     Computing cluster's representatives

                                                                                                         31
http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial        31
32
      Information transformation:
      entity resolution
      Linking records that match across databases

 http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial   32
Information transformation:
     entity resolution

                                                                                                         33
http://pralab.diee.unica.it   Slide Credit: L. Getoor, A. Machanavajjhala - Entity Resolution Tutorial        33
34

      Open source information reliability
      Two types of sources used to collect information
            – primary sources: a document or physical object that was written or
              created during the time under study
                  • original documents (excerpts or translations) such as diaries, constitutions,
                    research journals, speeches, manuscripts, letters, oral interviews, news film
                    footage, autobiographies, and official records
                  • creative works such as poetry,drama,novels,music,and art
                  • relics or artifacts such as pottery, furniture, clothing, artifacts, and buildings
                  • personal narratives and memoirs
                  • person of direct knowledge
            – secondary sources
                  •   journals that interpret findings
                  •   yextbooks
                  •   magazine articles
                  •   commentaries
                  •   histories
                  •   criticism
                  •   encyclopedias

 http://pralab.diee.unica.it       Source: Open-Source Intelligence, Federation of American Scientist, 2012   34
35

      Open source information reliability

 http://pralab.diee.unica.it   Source: Open-Source Intelligence, Federation of American Scientist, 2012   35
36

      Open source information credibility

 http://pralab.diee.unica.it   Source: Open-Source Intelligence, Federation of American Scientist, 2012   36
37

      Link analysis
      • Basic problem for intelligence analysts: putting information
        together in an organized way to make it easier extracting
        meaning into a graphical format

      • Link analysis can be applied to relationships among identified
        entities
            1.   assemble all raw data
            2.   determine focus of the chart
            3.   construct an association matrix
            4.   code the associations in the matrix
            5.   determine the number of links for each entity
            6.   draw a preliminary chart (not covered in these slides)
            7.   clarify and re-plot the chart (not covered in these slides)

 http://pralab.diee.unica.it   Source: Criminal Intelligence – United Nations Office of Drugs and Crime   37
38

      Link analysis

 http://pralab.diee.unica.it   Source: Criminal Intelligence – United Nations Office of Drugs and Crime   38
39

      Link analysis – Example
      1. Assemble all raw data
           – sssemble all relevant files, field reports, informant
             reports, records, etc.
      2. Determine the focus of the chart
           – identify the entities that will be the focus of your chart
             (names of people and/or organizations, auto license
             numbers, addresses, etc.)
      3. Construct an association matrix
           – an essential, interim step
             to identify associations
             between entities

 http://pralab.diee.unica.it   Source: Criminal Intelligence – United Nations Office of Drugs and Crime   39
40

      Link analysis – Example
      4. Code the associations in the matrix

 http://pralab.diee.unica.it   Source: Criminal Intelligence – United Nations Office of Drugs and Crime   40
41

      Link analysis – Example
      5. Determine the number of links for each entity

 http://pralab.diee.unica.it   Source: Criminal Intelligence – United Nations Office of Drugs and Crime   41
Preparation & Tools

http://pralab.diee.unica.it
Questions to ask before an investigation
     • Should you hide your activities from bad actors?
           – criminals may block IPs of known investigators
           – they may also monitor activity
     • Do you want to leave crumbs associated with
       investigations that are traceable back to you?
           – log records, metadata at third party intelligence sources
     • Do you want resources you use to leave crumbs on your
       devices
           – cookies, plug-ins, or worse…

http://pralab.diee.unica.it                                              43
OnionWRT: Tor router
         1.    Buy a $20 micro router or Raspberry Pi
         2.    Install OpenWRT and OnionWRT
         3.    Investigate over TOR from behind router
         4.    Put all your devices behind your router

                                                        WiFi Encryption

              http://www.securityskeptic.com/2016/01/how-to-turn-a-nexx-wt3020-router-into-a-tor-router.html
http://pralab.diee.unica.it                                                                                    44
Software to anonymize traffic
     •
         https://www.torproject.org/projects/projects.html.en
           – Amnesic Incognito Live System (TAILS) Linux distribution
           – Tor browser
     • Disposable, anonymous inboxes
           –                    https://mailinator.com/
     • Browser tricks
           – Incognito/private mode can still be tracked
           – User agent changes (can do with cURL as well)

http://pralab.diee.unica.it                                             45
Recon-Ng
     https://github.com/lanmaster53/recon-ng

     • A full-featured open-source Web reconnaissance
       framework written in Python
           – geolocating an IP address
           – finding the domains associated with a given email address
           – ...

     • A completely modular framework with independent
       modules, database interaction, built in convenience
       functions

http://pralab.diee.unica.it                                              46
Recon-Ng modules
           – Discovery
                 • discovery/info_disclosure/interesting_files
           – Exploitation
                 • exploitation/injection/command_injector
                 • exploitation/injection/xpath_bruter
           – Import
                 • import/csv_file
                 • import/list
           – Recon (60 modules)
                 •     recon/companies-multi/whois_miner
                 •     recon/domains-credentials/pwnedlist/leak_lookup
                 •     recon/hosts-hosts/ipinfodb
                 •     recon/profiles-profiles/twitter
           – Reporting
                 •   reporting/csv
                 •   reporting/html
                 •   reporting/json
                 •   reporting/list

http://pralab.diee.unica.it                                              47
Case Study

http://pralab.diee.unica.it
49

      Maltego
      Open Source Intelligence tool
      Maltego (Community Edition, CE)
      https://www.maltego.com

 http://pralab.diee.unica.it            49
You can also read