Les analyses de surface et l'adhésion - BELGIUM X. Vanden Eynde Centre de Recherches Métallurgiques (CRM) - GIS
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Les analyses de surface et l’adhésion X. Vanden Eynde Centre de Recherches Métallurgiques (CRM) BELGIUM CoRI, 26/10/06
Un lien fort entre la propriété macroscopique d’adhérence et les mécanismes locaux d’adhésion good bad bad Les outils pour caractériser le défaut dépendront : • du substrat • de la taille • du mécanisme d’adhésion • du type de défaut • de l’origine supposée du défaut ( organique ou inorganique)
L’adhésion entre deux matériaux nécessite un assemblage de plusieurs couches Adhésif/revêtement Couche atmosphérique interphase Oxyde/primaire Ecrouissage substrat Les proportions relatives des différentes couches dépendent des pré-traitements et du système (substrat/revêtement) utilisé
Une combination intéressante d’outils analytiques pour la caractérisation physico-chimique des surfaces Surface (2-3nm) Depth Depth Profiles Profiles XPS SEM/SAM ToF-SIMS GDOES Elements B< B< All All Bonding states ✔✔ ✔ ✔✔✔ No Sensitivity ✔ ✔ ✔✔✔ ✔✔✔ Quantification ✔✔✔ ✔✔ ✔ ✔✔ ✔ ✔✔✔ ✔✔ No Imaging (~10µm) (~0.01µm) (~0.15µm) Other techniques like IR spectroscopy, EDX analysis, C and S surface combustion, atomic force microscopy (AFM), Contact angle (static and dynamic)
Les traitements de surface • Modifications de surface d’acier et l’adhérence (effet du stockage) • La préparation de surface pour la galvanisation en continu • Cas où le mouillage et l’adhérence ne sont pas désirés • Préparation de surfaces galvanisées en milieu liquide
Tools to investigate steel surface modification during storage and adherence modification X. Vanden Eynde, B. Schmitz, H. De Deurwaerder, Centre de Recherches Métallurgiques (CRM) Coating Research Institute (CoRI) BELGIUM CoRI, 26/10/06
Tools for tuning surface after continuous annealing lines 900 Water 800 quench or ... 700 Temperature (°C) 600 500 400 300 Rinsing or not 200 T Echantillon Cde Regul 100 0 100 150 200 250 300 350 Time (sec) Soaking N2-5%H2 DP-30°C
The surface microstructure is made of small oxalate crystals IF without treatment IF treated with Oxalic ac.
The surface composition is directly observed by XPS : iron oxalate FeOx Fesat ~2+ O-C=O Bidentate Fe0 Fe2p3 C1s O1s iron-carboxylate 600 2500 900 550 800 500 2000 450 C-(C,H) 700 400 1500 c/s c/s c/s 350 O-Fe 600 300 1000 500 250 200 500 400 150 300 100 0 740 720 700 300 290 280 545 535 525 BE (eV) BE (eV) BE (eV) at.% Ratios Theoretical Fe C O Fe/O Fe/C Iron Carbonate FeCO3 20 20 60 0.33 0.33 Ferrous Oxalate 2+ Fe(C2O4) 14 29 57 0.25 0.51 + Ferric Oxalate 3 Fe2(C2O4)3 10 30 60 0.17 0.50 Measurements IF-Ti treated with Oxalic acid 13.7 29.7 53.1 0.26 0.56 IF-Ti treated with Oxalic acid (corrected) 13.7 26.5 53.1 0.26 0.50 Simulation performed with specific HOWAQ or POTC simulators
Although the oxalate are still present after storage test, tarnishing is obvious IF treated with Oxalic ac. IF treated with Oxalic ac. after HC 32 days 63.5 mm 26.5 mm In climatic chamber with internal regulation of air at 40°C and 95 % relative humidity O-C=O Fe2p3 Fesat ~3+ C1s 1500 600 550 1300 Oxalic ac. 500 1100 450 Oxalic ac. + H20 400 c/s c/s 900 350 Oxalic ac.+HC 300 700 Oxalic ac. 250 500 +HC+H2O 200 150 300 100 740 720 700 292 287 282 Oxalate removes by rinsing BE (eV) BE (eV) before storage
The oxalate crystal morphology slightly affected by storage conditions IF treated witout treatment IF treated with Oxalic ac. IF treated with Oxalic ac. after storage corrosion test
The acrylic acid treatment removes small selective oxides from the surface without any crystal formation IF without treatment IF treated with Acrylic ac.
The steel surface is much less affected by storgae conditions, no tarnishing IF treated with Acrylic ac. IF treated with Acrylic ac. after HC 32 days 63.5 mm 26.5 mm In climatic chamber with internal regulation of air at 40°C and 95 % relative humidity Fe2p3 C1s 750 650 O-C=O 1000 Acrylic ac. 550 Acrylic ac. +H2O 750 c/s c/s 450 Acrylic ac.+HC 350 Acrylic 500 ac.+HC+H2O 250 250 150 740 730 720 710 700 300 295 290 285 280 BE (eV) Impossible to remove BE (eV) acrylates by water rinsing
The acrylic acid treatment removes small selective oxides from the surface and creates a film onto the steel surface, which is affected by storage conditions IF treated with Acrylic ac.
The surface treatment can affect the storage behaviours but also the adherence properties. Waterborne (MPa) • AF : very clean surface Reference 8X09 2.0 Adhesive AF = Formic 5.2 Cohesive • GL, AG, AA : reactive surface GL = Aminoacetic 4.9 ± 0.9 Cohesive • AO : reactive surface but with some AG = Glycolic 3.8 ± 1.3 Cohesive remaining free AO at the surface AA = Acrylic 4.5 ± 0.8 Cohesive AO = Oxalic 1.5 ± 0.4 Cohesive 2-K water based epoxy
The surface treatment can affect the storage behaviours but also the adherence properties. Water based • For GL, AG, AO : active species removed Not-rinsed Rinsed by rinsing but very clean surfaces GL 4.9 ± 0.9 Coh 3.8 ± 1.0 Coh AG** 3.8 ± 1.3 Coh 2.8 ± 0.7 Adh/Coh • With AA, the active species remain AA 4.5 ± 0.8 Coh 4.1 ± 0.3 Coh insoluble films and react AO* 1.5 ± 0.4 Coh 3.9 ± 0.6 Coh with the paint components 2-K water based epoxy Rinsed after storage in plastic bags under vacuum
Fast evolution of selective oxides at the steel surface under storage There is a complete re-organisation of the manganese oxides due to the thin water layer naturally present in humid air IF-Mn-Si treated without treatment AREA 1 0h 48h 184h AREA 2
The surface treatment can affect the storage behaviours and also the adherence properties • With XPS, it is possible to follow the chemical species along the process and how these species are linked to the surface. • Surface treatment can help by adding specific bonds or by getting a very clean surface • The electronic microscopy and the corrosion experiments are necessary to characterize the changes in surface morphologies (even for quite small features).
Surface preparation for hot-dip galvanising X. Vanden Eynde, L. Bordignon,, Centre de Recherches Métallurgiques (CRM) BELGIUM Johann Strutzenberger, Alexander Jarosik, Josef Faderl voestalpine Stahl GmbH AUSTRIA CoRI, 26/10/06
Industrial problem Zinc dewetting on an IF-B steel grade (10-3wt.%) C Mn Si P Al Ti B 2 150 11 5.8 40 68 1.5 SCWE Bulk microstructure by Sometimes, SIMS, O2+, BO2- image (FoV:150µm) Zn dewetting appears at the edges, the head and the queue of the coils The coating adherence is drastically affected in dewetted regions 50µm SAM-FEG image LOM 3-D imaging
Laboratory facitilities The XPS is equipped with an in-situ preparation chamber in order to characterise surfaces after simulated processes 10 00 80 0 60 0 T (°C) 40 0 20 0 0 Main advantage : Heat 0 50 10 0 15 0 20 0 2 50 Analysis of real Tim e (s) Treatments surface states Controlled atmosphere XPS before galvanisation UHV ex-situ or in-situ Scanning Auger Microscope Controlled atmosphere : UHV, HNX, CO, NH3, ... ex-situ and Dew Point (H2O) Secondary Ion Mass Spectrometry
N2-5%H2 at 800°C for 60sec Laboratory study Cold-rolled 35 70 XPS surface analyses 30 60 25 50 Mn Annealing in N2-5%H2 at.% (Fe, O) Al at 800°C for 60sec induces 20 40 at.% B 15 30 O B and Mn external oxidation 10 20 Fe with a max at DP=-30°C 5 10 and no B oxide at DP= 10°C 0 0 -60 -10 Dew point (°C) DP= -30°C AREA B1 O1 Mn1 Fe3 PT1 12.3 47.2 15.4 25.1 PT2 17.3 50.0 18.2 14.4 AREA3 0.0 69.2 0.0 30.8 1µm • nodules and needles at grain boundaries • smaller nodules at the ferrite grain surface SAM-FEG electron image • both are composed of Mn-B oxides
Industrial problem Boron profiles vary along the width before annealing GDOES depth profiles (33nm/s) 7 SIMS cross-section of axis sample 6 bulk level 20µm depleted area 5 1st edge Intensity (a.u.) 4 3 2nd edge 2 Axis Cu 1 spacer ~20µm 0 SIMS, Cs+, B2- image (FoV:150µm) 0 200 400 600 800 1000 Sputtering time (s) Boron depletion more pronounced at the axis The origin of such depletion could be related to the hot-rolling process parameters and practice
N2-5%H2 at 800°C for 60sec Laboratory study Cold-rolled Polished (30µm) 35 70 35 70 XPS surface analyses 30 60 30 60 25 50 Mn 25 50 at.% (Fe, O) at.% (Fe, O) Al 20 40 20 40 at.% at.% B 15 30 15 30 O 10 20 Fe 10 20 5 10 5 10 0 0 0 0 -60 -10 -60 -10 Dew point (°C) Dew point (°C) DP= -30°C 1µm 1µm SAM-FEG electron images
N2-5%H2 at 800°C for 60sec Laboratory study Cold-rolled Polished (30µm) 35 70 35 70 XPS surface analyses 30 60 30 60 25 50 Mn 25 50 at.% (Fe, O) at.% (Fe, O) Al 20 40 20 40 at.% at.% B 15 30 15 30 O 10 20 Fe 10 20 5 10 5 10 0 0 0 0 -60 -10 -60 -10 Dew point (°C) Dew point (°C) DP= -30°C B mappings 1µm 1µm SAM-FEG elemental mappings
Wettability measurements Laboratory facilities Correlation between surface states and zinc wetting Sample annealed under desired conditions is transferred in-situ to wetting force measurement device 0.8 Dynamic Θ 110 F (W) γs Wetting force (mN) Wetting angle (°) F (meas) 90 0.4 SAMPLE N2-5%H2 A 70 Θ DP-54°C 0.0 Θ 50 Static Θ -0.4 30 Θ γl Liquid bath γi 0 5 10 15 20 25 Time (s) F(meas.) = F(W) - F(A) = P γl cos Θ - F(A) hot dipping at 460°C in Zn-0.2wt% Al High Θ bad wetting Low Θ good wetting cos Θ = (γ s - γ i) / γ l
N2-5%H2 at 800°C with DP=-30°C Polished (30µm) Laboratory study 60 sec 600 sec 6000 sec SEM 1µm 35 70 Soaking:820°C / 5%H2 / DP-30°C 30 60 80 120 Morphology Mn 75 115 25 50 Si Static Static wetting 20s (°) Dynamic wetting (°) at.% (Fe,O) 70 110 20 40 S at.% 65 105 B 15 30 60 100 O 55 Dynamic 95 Wettability 10 20 Fe 50 90 5 10 45 85 0 0 Polished 3X01 steel grade 40 80 10 100 1000 10000 10 100 1000 Adherence time (sec) Soaking time (s)
Zn coating after oxidation/maturation shows good adherence 1-T bend test (strip thickness 1mm) SEM image of bend part TRIP Si Oxidation N2-1%Air 650°C, 1 sec Annealing in N2 with DP 0°C Cooling in N2-10%H2 Same after scotch tape test
Zn coating after oxidation/maturation shows good adherence TRIP Si Oxidation N2-1%Air 650°C, 1 sec Before the 1-T bend test Annealing in N2 with DP 0°C Cooling in N2-10%H2 1-T bend test (strip thickness 1mm) SEM image of bend part bend part
The surface compostion can affect liquid metal wetting and through the interface homogeneity, the adherence • With in-situ XPS, it is possible to follow the chemical species along the process and how these species are linked to the surface. • Complementary analysis with SIMS and GDOES with their high sensitivity indicates composition variations • The electronic microscopy shows the distribution at the surface before treatment or after galvanising treatment • Wetting measurements are related to the surface state and to the coating adherence • The weak point is not always in the coating or at the interface
You can also read