Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)

Page created by Jon Lucas
 
CONTINUE READING
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Learning with Pierre:
     from branes to gravity
                              Cédric Deffayet
                              (IAP and IHÉS, CNRS Paris)

                              APC, May the 3rd 2018

Les Houches 1999
« the primordial Universe »
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
• Frank Thuiller 1991                                                 The PhD students of Pierre
       (Sur certains aspects géométriques des théories conformes bidimensionnelles)

• Emilian Dudas 1994
       (Mécanismes de brisure de supersymétrie)

• François Pillon 1995
       (Étude de la brisure de symétries dans des théories de cordes et de supergravité)

• Stéphane Lavignac 1997
       (Le problème des hiérachies de masse dans les modèles supersymétriques)

• C.D. 2000
       (Aspects cosmologiques des théories de supercordes)

• Jean-François Dufaux 2004
       (Modèles branaires en théories de gravité généralisées)

• Leonardo Sala 2009
       (Search for beyond the standard model physics at the CMS experiment : supersymmetry and extra dimensions)

• Alejandro Bohé 2011
       (Production d'ondes gravitationnelles par les cordes cosmiques avec jonctions)

• Alexis Helou 2015
       (Beyond the trapping horizon : the apparent universe & the regular black hole)

• Mauro Pieroni 2016
       (Classification des modèles d’inflation et contraintes sur la physique fondamentale)
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
• Frank Thuiller 1991                                                 The PhD students of Pierre
       (Sur certains aspects géométriques des théories conformes bidimensionnelles)

• Emilian Dudas 1994
       (Mécanismes de brisure de supersymétrie)

• François Pillon 1995
       (Étude de la brisure de symétries dans des théories de cordes et de supergravité)
                         High energy
• Stéphane Lavignac 1997 theoretical physics
       (Le problème des hiérachies de masse dans les modèles supersymétriques)

• C.D. 2000
       (Aspects cosmologiques des théories de supercordes)

• Jean-François Dufaux 2004                                                             Cosmology
       (Modèles branaires en théories de gravité généralisées)

• Leonardo Sala 2009
       (Search for beyond the standard model physics at the CMS experiment : supersymmetry and extra dimensions)

                                               Gravitation
• Alejandro Bohé 2011
       (Production d'ondes gravitationnelles par les cordes cosmiques avec jonctions)

• Alexis Helou 2015
       (Beyond the trapping horizon : the apparent universe & the regular black hole)

• Mauro Pieroni 2016
       (Classification des modèles d’inflation et contraintes sur la physique fondamentale)
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Pierre was first my professor at the ENS (in 1993) where he was teaching
(special) relativity and then at the « master 2 » « CPM »

                                                      Promotion 1996
                                                      (thanks to F. Derue)
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Then my PhD director at Orsay LPT on
« Cosmological aspects of superstring theories »
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
1994-                                                          Scientific context:
        « Second string revolution »                           High energy theory
        and discovery of the string web of dualities
        ADS-CFT correspondance (Maldacena)
1997-

                                               Role played there by
                                               « D(irichlet)-branes »

                                               Brane-localized
                                               degrees of freedom
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Scientific context:
                                                              Cosmology

1998-   Discovery of the acceleration of the expansion of the Universe
                       (SCP and HZT teams 1998, Nobel prize 2011)

2001-   Launch of WMAP mission (june 2001)

                  Advent of « Precision cosmology »
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Very good timing for the
  interests of Pierre !
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
I started my PhD
in sept 1997….

      … after one year….
Learning with Pierre: from branes to gravity - APC, May the 3rd 2018 Cédric Deffayet (IAP and IHÉS, CNRS Paris)
Today: I am going to discuss some long lasting fruits of a
simple equation obtained in our paper of 1999 :
(the most cited paper of Pierre with more than 1000 citations)
Today: I am going to discuss some long lasting fruits of a
simple equation obtained in our paper of 1999 :
(the most cited paper of Pierre with more than 1000 citations)

                                    19 years today !
Today: I am going to discuss some long lasting fruits of a
simple equation obtained in our paper of 1999 :
(the most cited paper of Pierre with more than 1000 citations)

                                                                 Brane gravity

  Brane cosmology
1998-   Arkani-Hamed, Dimopoulos, Dvali (ADD) brane worlds
                                                         « brane-worlds »

1999-   Randall-Sundrum (RS) models

2000-   Dvali-Gabadadze-Porrati (DGP) models

         Usual space-time
         (4 dimensions):                       gravity
         that of a brane

                                            Bulk space-time has
                                            4+n dimensions
In ADD or RS brane worlds, the gravity potential V(r) between brane
localized sources behaves as in 3+1 dimensions at large distances

                                 This result is obtained by perturbation
                                 theory (with a localized source)

  Newton constant GNewton         I.e. one solves for h¹ º defined by

                  Metric on the brane

                                  g¹ º = g(0)¹ º + h¹ º

                                                      Small perturbation
                                                      « generated » by a
                   Background                         localized matter
                   metric                             source

           Einstein equations
In ADD or RS brane worlds, the gravity potential V(r) between brane
localized sources behaves as in 3+1 dimensions at large distances

                                 This result is obtained by perturbation
                                 theory (with a localized source)

  Newton constant GNewton         I.e. one solves for h¹ º defined by

                  Metric on the brane

                                  g¹ º = g(0)¹ º + h¹ º

                      Contains brane localized sources
                                               Small perturbation
                                                      « generated » by a
                   Background                         localized matter
                   metric                             source

           Einstein equations
In ADD or RS brane worlds, the gravity potential V(r) between brane
localized sources behaves as in 3+1 dimensions at large distances

                                 This result is obtained by perturbation
                                 theory (with a localized source)

  Newton constant GNewton         I.e.
                                  Notone solves for
                                       suitable for hcosmology
                                                     ¹ º defined by!

                  Metric on the brane

                                  g¹ º = g(0)¹ º + h¹ º

                      Contains brane localized sources
                                               Small perturbation
                                                      « generated » by a
                   Background                         localized matter
                   metric                             source

           Einstein equations
Some space geometry !
              The brane localized matter is only sensitive
              to the “curvature” of the metric on the
              brane (and not the one of the bulk) …

              … i.e. to the “intrinsic curvature” of the
              surface mesured e.g. by G (4) .

               The embedding of the surface into the
               defines a so called “extrinsic curvature”
               measured by a tensor K 

        Ex:                      vs.
Geometrical relations between

               •5D curvature:                GAB(5)
               •Intrinsic curvature (4D) :   G (4)
               •Extrinsic curvature:         K 

    Generalized Gauss identities:
                         Intrinsic            Quadratic in the
5D Curvature            curvature            extrinsic curvature
Using this decomposition into Einstein equations (with
   a distributional source)
   1/ By equating the distributional source, we get:

                Extrinsic
                                            Energy-momentum
                Curvature
                                               tensor » 

    2/ Inserting this is the generalized Gauss identities we find

 Kown by the buk            » H2 + …            Quadratic in S¹ º ( or )
Einstein equations
I.e. we get

Or in cosmology
This applies generically to brane worlds (of codimension 1)

    E.g. 1.: Randall-Sundrum model (bulk is AdS5)
E.g. 2.: Dvali-Gabadadze-Porrati (DGP 2000) model (bulk is Minkowski5)

Pertubation theory :

The Newton potential (computed perturbatively) behaves as

           However this is mediated by a resonance of massive gravitons
           and hence
E.g. 2.: Dvali-Gabadadze-Porrati (DGP 2000) model (bulk is Minkowski5)

Cosmology (applying the technique of our 1999 paper) :
     Equating the distributional source in the 5D Einstein equation
     still yields

      But now

      Inserting this is the generalized Gauss identities

      We get now a quadratic equation for the Hubble factor H
(C.D. 2000)
First concrete proposal to link the acceleration of the expansion
    of the Universe to a large distance modification of gravity
                                          (CD 2000; CD, Dvali, Gabadadze 2001)

                                                       2016
« Modified gravity » and « cosmology » (from WoS)

               2000

                                                                                 2016
                                     « Modified gravity » (from WoS)

                                                                       2000
Lead to a new phenomenology of scalar-tensor theories via the
« Galileons » and friends.

    The DGP model has a strong coupling in the scalar
    sector
             (CD, Dvali, Gabadadze, Vainshtein, 2002)

    This can be extracted taking a « decoupling limit »
    yielding a scalar theory with second order quadratic
    equations of motions

                                  (Luty, Porrati, Rattazzi, 2003)
This quadratic
        Lead structure
               to a newcomes from the generalized
                        phenomenology             Gauss identities
                                         of scalar-tensor theories via the
        « Galileons » and friends.

            The DGP model has a strong coupling in the scalar
            sector         (
                      (CD, Dvali, Gabadadze, Vainshtein, 2002)

             This can be extracted taking a « decoupling limit »
            (yielding
              Togethera scalar                             )
                        with theory with second order quadratic
             equations of motions

                                           (Luty, Porrati, Rattazzi, 2003)
Lead to a new phenomenology of scalar-tensor theories via the
« Galileons » and friends.

    The DGP model has a strong coupling in the scalar
    sector
               (CD, Dvali, Gabadadze, Vainshtein, 2002)

    This can be extracted taking a « decoupling limit »
    yielding a scalar theory with second order quadratic
    equations of motions

                                     (Luty, Porrati, Rattazzi, 2003)

    Generalized to Galileons (Nicolis, Rattazzi, Trincherini, 2009),
    covariant Galileons (CD, Esposito-Farese, Vikman, 2009) ,
    and the more recent « Beyond Horndeski » theories
    (Zumalacarregui, Garcia-Bellido, 2014; Gleyzes, Langlois, Piazza,
    Vernizzi, 2015)
Revival of « massive gravity » via the Vainshtein mechanism

   (First) attempt to give a mass to the graviton:
   Fierz and Pauli 1939

   A massive and a massless graviton yield drastically
   different physical results (e.g. for light bending)
   (van Dam, Veltman; Zakharov; Iwasaki, 1970)

   A way out was suggested by Vainshtein in 1972

   Criticized and new obstructions found by Boulware and
   Deser in 1972

   The DGP cosmology provided the first hint in favour of the
   Vainshtein mechanism (CD,Dvali, Gabadadze, Vainshtein 2001)
This lead to new efforts in the search of a consistent theory of
massive gravity using in particular the equivalent of the
decoupling limit of DGP model
(Creminelli, Nicolis, Papucci, Trincherini, 2005; CD, Rombouts, 2005)

First explicit proof that the Vainshtein mechanism is working as
expected in massive gravity
(Babichev, CD, Ziour, 2009)

Discovery of a family of massive gravity theory devoid of the
Boulware Deser pathologies
(de Rham, Gabadadze 2010; de Rham, Gabadadze, Tolley, 2011)

                                                                        2016

                          « Massive gravity » (from WoS)

                                                      2000
Back to 1999
GPS (of the GDR): « Groupe de Priorité Supersymétrique » …
Not to be confused with the « Groupe de Pelotons de Sécurité »
(20 april 1999: « affaire des Paillottes » in Corsica …)
Not to be confused with the « Groupe de Pelotons de Sécurité »
(20 april 1999: « affaire des Paillottes » in Corsica …)

                                       Cargèse, Corsica
                                       summer 1998
Working under the supervision of
Pierre was very inspiring !

         On the physics side,
         he was always optimistic !

         And also very pleasant on the human side!

                              We miss him a lot….
You can also read