LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
La circulation thermohaline aujourd’hui TalleyRed Figure 1. Schematic of the global overturning circulation. Purple = upper ocean and thermocline. 2013 =
Plan I. Découverte de la circula)on thermohaline II. Moteurs de la circula)on thermohaline III. Une strate exclue de la circula)on
I. Découverte de la circula)on thermohaline II. Moteurs de la circula)on thermohaline III. Une strate exclue de la circula)on
Benjamin Thomson (1798) La circulaIon n’est pas mesurée mais déduite des traceurs. Température (ºC) Salinité (g/kg)
Benjamin Thomson (1798) La circulaIon n’est pas mesurée mais déduite des traceurs. Température (ºC) Salinité (g/kg)
Stommel (1958) T h e a b y s s a l circulation (Received 18 February, 1958) « It seems y survey likely that of the theories the low of ocean temperature currents (Deep-Sea of deep Res., waters 1957, in theseveral 4, 149-184) worldschem oceanofisocean pretations maintained in the circulatory faceare patterns of presented. downwardIndiffusion this letterofI heat wish tofrom showthehow, u me warm surface principles, layers by it is possible a veryinslow to sketch upward broad outline component the flow patternof velocity in thecircul for the abyssal e world deepocean. water. » eems likely that the low temperature of deep waters in the world ocean is maintained in of downward diffusion of heat from the warm surface layers by a very slow upward compo La circulaIon et la straIficaIon sont maintenus par le mélange des eaux locity in the deep water. An adequate theory of the thermocline would, presumably, de profondes pward avec velocity as des eaux a function of plus légères. surface MathémaIquement heating, turbulence parameters, : etc. We might re ermocline as a " p u m p i n g mechanism " which slowly draws up deep water and hence act mines the rate of flow of the abyssal circulation. An estimate of the maximum upward nt of velocity under the thermocline, Wmax, is given in terms of the depth of the thermoc the equation. Vitesse diapycnale Diffusivité Densité
Stommel (1958) T h e a b y s s a l circulation (Received 18 February, 1958) « It seems y survey likely that of the theories the low of ocean temperature currents (Deep-Sea of deep Res., waters 1957, in theseveral 4, 149-184) worldschem oceanofisocean pretations maintained in the circulatory faceare patterns of presented. downwardIndiffusion this letterofI heat wish tofrom showthehow, u me warm surface principles, layers by it is possible a veryinslow to sketch upward broad outline component the flow patternof velocity in thecircul for the abyssal e world deepocean. water. » eems likely that the low temperature of deep waters in the world ocean is maintained in of downward diffusion of heat from the warm surface layers by a very slow upward compo La circulaIon et la straIficaIon sont maintenus par le mélange des eaux locity in the deep water. An adequate theory of the thermocline would, presumably, de profondes pward avec velocity as des eaux a function of plus légères. surface MathémaIquement heating, turbulence parameters, : etc. We might re ermocline as a " p u m p i n g mechanism " which slowly draws up deep water and hence act mines the rate of flow of the abyssal circulation. An estimate of the maximum upward nt of velocity under the thermocline, Wmax, is given in terms of the depth of the thermoc the equation. Flux de floCabilité γ γ+Δγ Vitesse
Munk (1966) Abyssal recipes WALTER H. MUNK* 0 . . . . . I - - - I + I i - - - - - T - - I v+ I- " - i - -I ......... I - - - I . . . . . . 7 . . . . . . I -- ( Received 31 January 1966) Abstract--Vertical distributions in the , 7 interior Pacific (excluding tbe top and bottom kilometer) I are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature and salinity can be fitted by exponential- like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height." / For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob- %" served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from .l sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at 0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding south-north 4-f i. gradients in the deep Pacific, provided thereI• is an average northward drift of at least a f few millimetres per second. How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual I freezing of 2.1 x 10to g of Antarctic pack ice is associated I with bottom water formation in the ratio i 43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific I- bottom water; the value w = 1"2 cm day -t 5 " implies 6 x 10~0 t io 2 ° g year-L I I I I3! have ° attempted, I I 4° without • .70much success, I,,, t . 6 0 to interpret x.50 I I from a variety I 3 4 . 4 0of I %+ viewpoints: from Fig. mixing 3. P o l c nalong tial tcmp the c r a t ocean u r e a n d boundaries, fromo l 'thermodynamic s a l i n i t y as ft,,Ictions d c p t h ( k i n ) a! s t a t i o nand # 00.190, 33 ° 17"]'4, 132042-5'W ( s a l i n i t y at d c p t h I B S ? m was q u c s l i o , l c d i n Ihe o r i g i l l a l biological ('~#('o/i 1964: processes, and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface nh~rv~lion~l (:Lirvt'_~ I~heJ~(I w / x ( i n i m i l ~ Icm - 1 ) nre, h~c:e~l ('m e+111:lllc)l~ (1~
Munk (1966) Abyssal recipes WALTER H. MUNK* ( Received 31 January 1966) Abstract--Vertical distributions in the interior Pacific (excluding tbe top and bottom kilometer) are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature and salinity can be fitted by exponential- like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height." For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob- served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at 0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding south-north gradients in the deep Pacific, provided there is an average northward drift of at least a few millimetres per second. How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual freezing of 2.1 x 10to g of Antarctic pack ice is associated with bottom water formation in the ratio 43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific bottom water; the value w = 1"2 cm day -t implies 6 x 10~0g year-L I have attempted, without much success, to interpret x from a variety of viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes, and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface
Munk (1966) Abyssal recipes WALTER H. MUNK* ( Received 31 January 1966) Abstract--Vertical distributions in the interior Pacific (excluding tbe top and bottom kilometer) are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature 1 cm2/s and salinity can be fitted by exponential- 1 cm/jour like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height." For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob- served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at 0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding south-north gradients in the deep Pacific, provided there is an average northward drift of at least a few millimetres per second. How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual freezing of 2.1 x 10to g of Antarctic pack ice is associated with bottom water formation in the ratio 43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific bottom water; the value w = 1"2 cm day -t implies 6 x 10~0g year-L I have attempted, without much success, to interpret x from a variety of viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes, and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. C4, PAGES 5037-5046, APRIL 15, 1986 Gordon (1986) Interocean Exchange of Thermocline Water ARNOLD L. GORDON 5040 Lamont-DohertyGeolo•Tical GORDON' Observatory INTEROCEAN of Columbia EXCHANGE University,Palisades, OF THERMOCLINE WATER New York Formation of North Atlantic 180øW Deep Water 120 ø (NADW) 120 60 ø 0 ø 60 ø represents ø a transfer of upper layer water to 180 ø E abyssaldepthsat a rate of 15 to 20 x 106 m3/s. NADW spreadsthroughoutthe Atlantic Ocean and is exported to the Indian and Pacific Oceans by the Antarctic Circumpolar Current }øN and deep western boundary currents. Naturally, there must be a compensating flow of upper layer water toward (•) UPWELLING the • SINKING northern North Atlantic to feed NADW production. It is proposed that this return flow is accomplished primarily within the ocean's warm water thermocline layer. In this way the main thermoclinesof the ocean are linked as they participate in a thermohaline-drivenglobal scalecirculation cell associatedwith NADW formation. The path of the return flow of warm water is as follows: Pacific to Indian flow within the Indonesian Seas, advection across the Indian Ocean in the 10ø-15øS latitude belt, southward transfer in the Mozambique Channel, entry into the South Atlantic by a branch of the Agulhas Current that does not complete the retroflection pattern, northward advection within the subtropical gyre of the South Atlantic (which on balance with the southward flux of colder North Atlantic Deep Water supportsthe 20" northward oceanic heat flux characteristic of the South Atlantic), and cross-equatorial flow into the western North Atlantic. The magnitude of the return flow increasesalong its path as more NADW is incorporated into the upper layer of the ocean.Additionally, the water masscharacteristicsof the return 0o flow are gradually altered by regional ocean-atmosphereinteraction and mixing processes.Within the Indonesian b seasthere is evidenceof strong vertical mixing acrossthe thermocline. The cold water route, Pacific to Atlantic transport of Subantarctic water within the Drake Passage,is of secondaryimportance, amounting to perhaps 25% of the warm water route transport. The continuity or vigor of the warm water route is vulnerable to change not onlyb7 as the thermohaline forcing in the northern North Atlantic i varies but also as the larger-scalewind-driven criculation factors vary. The interocean links within the Indonesian \ \ seas and at the Agulhas retroflection may be particularly responsiveto such variability. Changesin the warn: water route continuitymay in turn influenceformation characteristics of NADW. /b' DEEPWATERFLOW INTRODUCTION tern in the meridionalplane associated .•. with the NADW for- "COLD"WATER TRANSFER '? )oS Warm salty water spreadsinto the northern North Atlantic, mation is one of a negative estuary [Stommel, INTO 1956; ATLANTIC Reid, OCEAN where it is cooled primarily by evaporation. Ironically, this is 1961; Worthington, 1981; Gordon and Piola, 1983]: "WARM"UPPER upper LAYER FLOW a consequenceof its anomalously high temperature relative to layer water movesto the north, while deeperwater movesto
Broecker (1987) The biggest chill (1987). Great Ocean Conveyor Belt Q \ ~ °' oo~ OCt: PA CtYit~ Fig. 1." The great ocean conveyor logo (Broecker, 1987). (Illustration by Joe Le Monnier, Natural History Magazine.)
Toggweiler et Samuels (1993) • Deux cellules. • Rôle pivot de l’océan austral. Est Océan Austral Indo-Pacifique Atlantique Indo-Pacifique Cellule pilotée par le vent Antarctique Profondeur Atlantique Cellule thermohaline Atlantique + Indo-Pacifique Nord
Toggweiler et Samuels (1993) Dans le canal ré-entrant : Est Vents Océan Austral d’ouest Indo-Pacifique Atlantique Indo-Pacifique Cellule pilotée par le vent Antarctique Profondeur Atlantique Cellule thermohaline Atlantique + Indo-Pacifique Nord
Talley (2013) Indo-Pacifique • Deux cellules imbriquées : circulaIon Nord en huit. Eaux superficielles Océan Austral : tropicales/subtropicales action du vent et flux de flottabilité Réchauffement en surface Mers Atlantique Nord : re indonésiennes formation m remo d’eaux denses on Profondeur tée ntée s ans al sa légem nsa ent llé g em Indo-Pacifique : Antarctique : en remontée par formation t allégement d’eaux denses Eaux denses Eaux denses antarctiques nord-atlantiques Nord
Talley 5500(2013) 6000 • Deux −60 cellules −50 −40 imbriquées : circulaIon −30 −20 −10 0 10 en huit. (c) Oxygen (µmol kg–1): Pacific Ocean at 165°–170°W 0 240 210 200 Figur 500 220 210 80 60 (b) In 220 230 200 40 The 3 1000 210 190 180 180 20 maxi 1500 160 North 40 100 2000 170 150 60 the o 110 80 S Ocea 2500 > 34 150 140 130 120 salini 3000 220 .7 110 γN = 3 160 120 130 180 3500 210 170 140 cores 150 200 190 160 Wate 4000 nents 170 4500 180 150 maps 210 190 5000 mark 160 inform 5500 200 prop 190 6000 Exper −70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 2011;
Talley (2013) Indo-Pacifique • Deux cellules imbriquées : circulaIon Nord en huit. Eaux superficielles Océan Austral : tropicales/subtropicales action du vent et flux de flottabilité Réchauffement en surface 1Atlantique km Nord : ? Mers re indonésiennes formation m remo d’eaux denses on Profondeur tée ntée s ans al ? sa légem n ent sa 2.5 km X llé g em Indo-Pacifique : Antarctique : en remontée par formation t allégement d’eaux denses 4 km Eaux denses Eaux denses antarctiques nord-atlantiques Nord
I. Découverte de la circula)on thermohaline II. Moteurs de la circula)on thermohaline III. Une strate exclue de la circula)on
Les courants océaniques proviennent de… 1. L’acIon du vent sur la surface 2. Les échanges d’eau et de chaleur à la surface 3. Le chauffage géothermal 4. L’a`racIon gravitaIonnelle de la Lune et du Soleil Source : NASA
Source : NASA
(a) 1. L’ac)on Mean wind stress anddu vent sur momentum fluxla1984–2006 surface (N/m2) (b 0.2 N/m2 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 Tension de vent (N/m2) Source : Ocean circulaIon and climate, Source : NASA 2014
Le moteur essen)el des courants superficiels… Source : NASA
…et de l’ascendance australe Source : NASA
2. Les échanges d’eau et de chaleur à la surface Sea&surface&density& Sea&surface&density& Densité à la surface (kg/m3) Source : World SourceOcean : NASA Atlas
Un moteur des courants descendants Source : NASA
3. Le chauffage géothermal Flux de chaleur au fond de l’océan (mW/m2) Source Source : Lucazeau : NASA 2019
Un moteur de l’allégement abyssal Source : NASA
4. L’aCrac)on gravita)onnelle de la Lune et du Soleil Ondes de marée Courant de marée Turbulence Source : NASA
Un moteur de l’allégement en profondeur Source : NASA
February, 1996, a period encompassing both in this region, we estimate that K between instability and breaking of such waves Le mélange dû à la marée interne spring and neap tides. Turbulent diffusivity 3960 and 4060 m was 0.3 3 1024 to 0.6 3 would provide an energy source for the tur- bulent mixing. Consistent with this idea, enhanced fine-scale shear and strain (17) Fig. 1. Distribution of HRP were observed above rough bathymetry. We stations (triangles) in the Bra- wave propose that the energy break source for the inter- internal Ide zil Basin of the South Atlantic nal waves supporting the mixing near the Ocean. Isobaths greater than MAR is the barotropic tides impinging on ρ1 2000-m depth are depicted with a contour interval of local mixing the rough bathymetry of the ridge. (Mean 1000 m. The expanded scale )dal flow plot to right shows the ship Diffusivity (m 2 s-1 ) 10-5 >10-4 >10-3 tracks during injection of the 10-5 10-2 0 SF6 tracer (solid lines). The remote mixing dashed lines mark the sam- pling tracks of the initial trac- ρ2 500 er survey. 1000 P HYSICAL PROBLEM Brazil Basin 1500 0 2000 Tracer injection level Pressure (dbar) -500 2500 -1000 -1500 3000 -2000 Transect of turbulent diffusivity Water depth (m) 3500 -2500 -3000 across the Brazil Basin. 4000 -3500 4500 -4000 From Polzin et al. (1997). 5000 -4500 5500 -5000 24 28 32 36 40 44 Minutes latitude (+21° S) -5500 Fig. 3. Profiles of average cross-isopycnal diffu- -6000 sivity versus depth as a function of position rel- -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 -18 -16 ative to a spur of the MAR (whose bathymetry is Longitude shown versus latitude). Diffusivity profiles have been offset horizontally to roughly correspond to their physical position relative to the spur and are 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2.0 5.0 8.0 22.0 plotted on a logarithmic axis. The tick marks and Diffusivity (10-4 m2s-1) color scheme denote decadal intervals, and the
Methodologie d’une cartographie Mode-by-mode tracking of energy from sources to sinks GENERATION PROPAGATION DISSIPATION 2D 3D Lagrangian modes 1-5 energy critical slopes tracker shoaling wave-wave interactions modes 6-10 scattering by abyssal hills abyssal hills (modes 50) [Falahat et al. 2014b] [Ocean Modelling 2019] [JAMES 2020] [Melet et al. 2013a]
Methodologie d’une cartographie StaIc 2D maps of depth-integrated dissipaIon VerIcal structures GENERATION PROPAGATION DISSIPATION 2D 3D Lagrangian modes 1-5 energy critical slopes tracker shoaling wave-wave interactions modes 6-10 scattering by abyssal hills abyssal hills (modes 50) [Falahat et al. 2014b] [Ocean Modelling 2019] [JAMES 2020] [Melet et al. 2013a]
4 cartes staIques…
4 cartes staIques… Wave-wave Shoaling interacIons 95 GW 636 GW (9%) (61%) CriIcal Abyssal slopes hills 128 GW 185 GW (12%) (18%)
…et 4 structures verIcales N2 Gregg 1989 N Polzin et al. 1995 Legg 2014 Kunze 2017 exp(-hab/Hcri) rbot: (1+hab/Hbot)-2 St Laurent et al. 2002 1-rbot: N2 Polzin 2004
Une carte 3D réaliste de la diffusivité de Lavergne et al. 2019, 2020
Une carte 3D réaliste de la diffusivité Munk 1966 scarce seafloor, weak mixing abundant seafloor, strong mixing de Lavergne et al. 2019, 2020
flows. Budget de densité à la Walin (1982) Gouretski & Koltermann 2004 de Lavergne et al. 2020 g ? stand Kflows to respectively incrop areas,for wethe firstvelocity set out and turbulent the link diffus between c to caldensity surfaces, structure referred of diffusive to asfluxes. density the dianeutral direction. Within the 40 S-4 y-state density of inear equation budget state, reduces to a vertical an assumption advective-diffu that will be relaxed b d as a vertical coordinate, we can rewrite the dianeutral vel Local density balance e of the ! diffusive @z = @z (Kdensity ? @z flux: ). ! = @ (K? @z ) . 4
flows. Budget de densité à la Walin (1982) Gouretski & Koltermann 2004 de Lavergne et al. 2020 g ? stand Kflows to respectively incrop areas,for wethe firstvelocity set out and turbulent the link diffus between c to caldensity surfaces, structure referred of diffusive to asfluxes. density the dianeutral direction. Within the 40 S-4 y-state density of inear equation budget state, reduces to a vertical an assumption advective-diffu that will be relaxed b d as a vertical coordinate, we can rewrite the dianeutral vel Local density balance e of the ! diffusive @z = @z (Kdensity ? @z flux: ). ! = @ (K? @z ) . 4
flows. Budget de densité à la Walin (1982) Gouretski & Koltermann 2004 de Lavergne et al. 2020 g ? stand Kflows to respectively incrop areas,for wethe firstvelocity set out and turbulent the link diffus between c to caldensity surfaces, structure referred of diffusive to asfluxes. density the dianeutral direction. Within the 40 S-4 y-state density of inear equation budget state, reduces to a vertical an assumption advective-diffu that will be relaxed b d as a vertical coordinate, we can rewrite the dianeutral vel Local density balance e of the ! diffusive @z = @z (Kdensity ? @z flux: ). ! = @ (K? @z ) . 4
flows. Budget de densité à la Walin (1982) Gouretski & Koltermann 2004 de Lavergne et al. 2020 Geochemistry, Geophysics, Geosystems 10.1029/2019GC00 g ? stand Kflows to respectively incrop areas,for wethe firstvelocity set out and turbulent the link diffus between c to caldensity surfaces, structure referred of diffusive to asfluxes. density the dianeutral direction. Within the 40 S-4 y-state density of inear equation budget state, reduces to a vertical an assumption advective-diffu that will be relaxed b d as a vertical coordinate, Local density balance we can rewrite the Lucazeaudianeutral 2019 vel e of the ! diffusive @z = @z (Kdensity ? @z flux: ). ! = @ (K? @z ) . Geothermal heat flux (mW/m2) 4 Figure 8. Global heat flow map based on similarities with (a) 2 observables, (b) 14 observabl
Application à l’océan mondial Tidal mixing + geothermal heaIng 27 27.2 Upper Neutral density (kg m -3 ) (0-1 km) 27.4 27.6 Mid-depth 27.8 (1-2.5 km) 28 Abyssal 28.2 (> 2.5 km) 28.4 0 5 10 15 20 Dianeutral upwelling (Sv)
Application à l’océan mondial Tidal mixing + geothermal heaIng 27 27.2 Upper Neutral density (kg m -3 ) (0-1 km) 27.4 27.6 Mid-depth 27.8 (1-2.5 km) 28 Abyssal 28.2 (> 2.5 km) 28.4 0 5 10 15 20 Dianeutral upwelling (Sv)
Trois régimes océaniques Ventilated pycnocline Munk regime Topographic regime Munk 1966, de Lavergne et al. 2017
Trois régimes océaniques Ventilated pycnocline Munk regime Topographic regime Munk 1966, de Lavergne et al. 2017
I. Découverte de la circula)on thermohaline II. Moteurs de la circula)on thermohaline III. Une strate exclue de la circula)on
La circulation thermohaline en 2013 Southern Ocean Indian and Pacific Oceans Atlantic Ocean 27.5 1 UC DW LC 2 D Depth (km) Antarctica W 28 Mixing-driven lightening 3 NADW 28.11 4 AABW 5 60ºS 40ºS 20ºS Eq. 20ºN 40ºN Southern Ocean Indian and Pacific Oceans Atlantic Ocean
La circulation thermohaline en 2013 Southern Ocean Indian and Pacific Oceans Atlantic Ocean 27.5 1 UC DW LC 2 D Depth (km) Antarctica W 28 Mixing-driven lightening 3 NADW 28.11 4 AABW 5 60ºS 40ºS 20ºS Eq. 20ºN 40ºN Southern Ocean Indian and Pacific Oceans Atlantic Ocean
AABW La circulation thermohaline en 2022 ? 5 60ºS 40ºS 20ºS Eq. 20ºN 40ºN Southern Ocean Indian and Pacific Oceans Atlantic Ocean 27.5 1 Diffusion/Recirculation 2 Depth (km) Antarctica 28 3 NADW 28.11 Lightening 4 (mixing+geothermal) AABW 5 60ºS 40ºS 20ºS Eq. 20ºN 40ºN
Illustration : une section à travers le Pacifique
Illustration : une section à travers le Pacifique
Illustration : zoom sur l’océan austral Subpolar seas ACC Pacific (210ºE) Indo-Pacific Current view Atlan)c Talley 2013; Gouretski & Koltermann 2004
Illustration : zoom sur l’océan austral Subpolar seas ACC Pacific (210ºE) Hypothesis: weak net upwelling Atlan)c + Indo-Pacific
Indice : distribution du volume de l’océan austral
Indice : vorticité potentielle dans l’océan austral
Conclusions • La circula)on thermohaline est un concept fluctuant. Ø Mais ses schémas sont extrêmement influents. • Des cartographies du mélange et du chauffage géothermal permeCent de quan)fier ces moteurs. Ø Impliquent un allégement confiné aux grandes profondeurs (> 2.5 km). • La circula)on thermohaline pourrait délaisser une strate de mi-profondeur (25-30 % du volume total). Ø Ce qui réduirait son influence sur les traceurs, la venIlaIon, le climat.
You can also read