LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021

Page created by Shawn Howell
 
CONTINUE READING
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
La circula)on thermohaline
     de 1800 à nos jours

      Casimir de Lavergne
     MathsInFluids, février 2021
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
La circulation thermohaline aujourd’hui

                                                                                         TalleyRed
Figure 1. Schematic of the global overturning circulation. Purple = upper ocean and thermocline. 2013
                                                                                                   =
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Plan

       I. Découverte de la circula)on
          thermohaline

       II. Moteurs de la circula)on
           thermohaline

       III. Une strate exclue de la circula)on
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
I. Découverte de la circula)on
   thermohaline

II. Moteurs de la circula)on
    thermohaline

III. Une strate exclue de la circula)on
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Benjamin Thomson (1798)
              The propaga*on of heat in fluids (1798).

                                                        Température (ºC)
                                                        Salinité (g/kg)
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Benjamin Thomson (1798)

                Capitaine Ellis (1750) : T ~ 10 ºC

                                                     Température (ºC)
                                                     Salinité (g/kg)
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Benjamin Thomson (1798)
   La circulaIon n’est pas mesurée mais déduite des traceurs.

                                                                Température (ºC)
                                                                Salinité (g/kg)
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Benjamin Thomson (1798)
   La circulaIon n’est pas mesurée mais déduite des traceurs.

                                                                Température (ºC)
                                                                Salinité (g/kg)
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
??
                              ??
                                     Benjamin Thomson (1798)

Salinité (g/kg)   Température (ºC)
LA CIRCULAON THERMOHALINE DE 1800 À NOS JOURS - CASIMIR DE LAVERGNE MATHSINFLUIDS, FÉVRIER 2021
Stommel (1958)
                                   T h e a b y s s a l circulation

                                  (Received 18 February, 1958)

     « It seems
y survey            likely that
          of the theories          the low
                             of ocean        temperature
                                        currents  (Deep-Sea of   deep
                                                             Res.,       waters
                                                                     1957,          in theseveral
                                                                            4, 149-184)     worldschem
     oceanofisocean
pretations       maintained      in the
                        circulatory       faceare
                                     patterns  of presented.
                                                   downwardIndiffusion
                                                                   this letterofI heat
                                                                                  wish tofrom
                                                                                           showthehow, u
 me warm     surface
     principles,         layers by
                 it is possible      a veryinslow
                                 to sketch         upward
                                               broad outline component
                                                              the flow patternof velocity   in thecircul
                                                                                  for the abyssal
e world
     deepocean.
            water. »
 eems likely that the low temperature of deep waters in the world ocean is maintained in
of downward diffusion of heat from the warm surface layers by a very slow upward compo
     La circulaIon et la straIficaIon sont maintenus par le mélange des eaux
locity in the deep water. An adequate theory of the thermocline would, presumably, de
     profondes
 pward             avec
         velocity as       des eaux
                       a function   of plus légères.
                                       surface       MathémaIquement
                                               heating, turbulence parameters,    : etc. We might re
 ermocline as a " p u m p i n g mechanism " which slowly draws up deep water and hence act
mines the rate of flow of the abyssal circulation. An estimate of the maximum upward
nt of velocity under the thermocline, Wmax, is given in terms of the depth of the thermoc
  the equation.

                 Vitesse diapycnale              Diffusivité              Densité
Stommel (1958)
                                   T h e a b y s s a l circulation

                                   (Received 18 February, 1958)

     « It seems
y survey            likely that
          of the theories          the low
                             of ocean        temperature
                                        currents  (Deep-Sea of   deep
                                                             Res.,       waters
                                                                     1957,          in theseveral
                                                                            4, 149-184)     worldschem
     oceanofisocean
pretations       maintained      in the
                        circulatory       faceare
                                     patterns  of presented.
                                                   downwardIndiffusion
                                                                   this letterofI heat
                                                                                  wish tofrom
                                                                                           showthehow, u
 me warm     surface
     principles,         layers by
                 it is possible      a veryinslow
                                 to sketch         upward
                                               broad outline component
                                                              the flow patternof velocity   in thecircul
                                                                                  for the abyssal
e world
     deepocean.
            water. »
 eems likely that the low temperature of deep waters in the world ocean is maintained in
of downward diffusion of heat from the warm surface layers by a very slow upward compo
     La circulaIon et la straIficaIon sont maintenus par le mélange des eaux
locity in the deep water. An adequate theory of the thermocline would, presumably, de
     profondes
 pward             avec
         velocity as       des eaux
                       a function   of plus légères.
                                       surface       MathémaIquement
                                               heating, turbulence parameters,    : etc. We might re
 ermocline as a " p u m p i n g mechanism " which slowly draws up deep water and hence act
mines the rate of flow of the abyssal circulation. An estimate of the maximum upward
nt of velocity under the thermocline, Wmax, is given in terms of the depth of the thermoc
  the equation.
                                                             Flux de floCabilité
                               γ
                            γ+Δγ
                                              Vitesse
Munk (1966)
                                                                                               Abyssal recipes
                                                                                             WALTER H.                     MUNK*

0       .    .       .   .   .   I       -   -   -    I   +   I        i   - - - - - T - -           I             v+      I-       "   -   i   -    -I   .........   I    - - - I   . . . . . .       7   . . . . . .   I   --

                                                                                             ( Received 31 January 1966)

Abstract--Vertical distributions in the                  , 7 interior Pacific (excluding tbe top and bottom kilometer)                                                                             I

are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t
and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature and salinity can be fitted by exponential-
like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height."

                                                                                                                                /
For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob-
                                                     %"

served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and
 ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water
is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from
                 .l
sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at
0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding
south-north
  4-f
      i.       gradients in the deep Pacific, provided thereI• is an average northward drift of at least a                      f
few millimetres per second.
       How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual
                                                                                                    I
freezing of 2.1 x 10to g of Antarctic pack ice is associated                                       I    with bottom water formation in the ratio
      i
43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific                                         I-
                                                                                                      bottom water; the value w = 1"2 cm day -t
    5            "

implies 6 x 10~0
        t
        io        2 ° g year-L
                   I         I       I
                                         I3! have
                                             °          attempted,
                                                            I          I
                                                                      4°          without
                                                                                      •
                                                                                            .70much success,
                                                                                              I,,,         t
                                                                                                                         . 6 0 to interpret x.50
                                                                                                                            I               I
                                                                                                                                                         from a variety
                                                                                                                                                         I
                                                                                                                                                                    3 4 . 4 0of
                                                                                                                                                                           I
                                                                                                                                                                              %+

viewpoints: from  Fig. mixing
                        3. P o l c nalong
                                    tial tcmp  the
                                                c r a t ocean
                                                        u r e a n d boundaries,               fromo l 'thermodynamic
                                                                    s a l i n i t y as ft,,Ictions      d c p t h ( k i n ) a! s t a t i o nand
                  # 00.190, 33 ° 17"]'4, 132042-5'W ( s a l i n i t y at d c p t h I B S ? m was q u c s l i o , l c d i n Ihe o r i g i l l a l
                                                                                                                                                    biological
                                                                                                                                              ('~#('o/i 1964:  processes,
and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface
                                                              nh~rv~lion~l         (:Lirvt'_~ I~heJ~(I w / x ( i n i m i l ~    Icm - 1 ) nre, h~c:e~l ('m e+111:lllc)l~ (1~
Munk (1966)
                                         Abyssal recipes
                                       WALTER H.        MUNK*

                                      ( Received 31 January 1966)

Abstract--Vertical distributions in the interior Pacific (excluding tbe top and bottom kilometer)
are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t
and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature and salinity can be fitted by exponential-
like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height."
For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob-
served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and
 ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water
is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from
sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at
0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding
south-north gradients in the deep Pacific, provided there is an average northward drift of at least a
few millimetres per second.
      How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual
freezing of 2.1 x 10to g of Antarctic pack ice is associated with bottom water formation in the ratio
43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific bottom water; the value w = 1"2 cm day -t
implies 6 x 10~0g year-L I have attempted, without much success, to interpret x from a variety of
viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes,
and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface
Munk (1966)
                                         Abyssal recipes
                                       WALTER H.        MUNK*

                                      ( Received 31 January 1966)

Abstract--Vertical distributions in the interior Pacific (excluding tbe top and bottom kilometer)
are not inzonsistent with a simple model involvinga constant upward vertical velozity w~ 1-2 c m clu y - t
and eddy diffusivity ,¢ ~ 1.3 cm ~-sec-1. Thus temperature
                                                  1 cm2/s and salinity     can be fitted by exponential-
                                                                    1 cm/jour
like solutions to [,¢- d"-/dz: -- w. d/d:] T, S = 0, with ,c/w ~ 1 km the appropriate "' scale height."
For Carbon 14 a decay term must be included, [ ] :~C = ~ 1~C; a fitting of the solution to the ob-
served 1~C distribution yields ,,/w2 ~ 200 years for the appropriate "' scale time," and permits w and
 ,~ to be separately determined. Using the foregoing values, the upward flux of Radium in deep water
is found to be roughly 1.5 x 10-~-~gcm-~-sec-L as compared to 3 x 10-Z~gcm--~sec -I from
sedimentary measurements by GOLOaF.RG and KOtDE (1963). Oxygen consumption is computed at
0-004 (ml/I) year-L The vertical distributions of 7', S, t4C and O: are consistent with the corresponding
south-north gradients in the deep Pacific, provided there is an average northward drift of at least a
few millimetres per second.
      How can one meaningfully interpret the inferred rates of upwelling and diffusion ? The annual
freezing of 2.1 x 10to g of Antarctic pack ice is associated with bottom water formation in the ratio
43 : 1, yielding an estimated 4 × 10:0 g year-t of Pacific bottom water; the value w = 1"2 cm day -t
implies 6 x 10~0g year-L I have attempted, without much success, to interpret x from a variety of
viewpoints: from mixing along the ocean boundaries, from thermodynamic and biological processes,
and from internal tides. Following the work of Cox and SA,'qr~STROM(1962), it is found that surface
JOURNAL OF GEOPHYSICAL            RESEARCH, VOL. 91, NO. C4, PAGES 5037-5046, APRIL 15, 1986

 Gordon (1986)
                              Interocean Exchange of Thermocline Water
                                                        ARNOLD     L. GORDON

5040                      Lamont-DohertyGeolo•Tical
                                    GORDON'       Observatory
                                             INTEROCEAN      of Columbia
                                                        EXCHANGE         University,Palisades,
                                                                    OF THERMOCLINE  WATER    New York

                   Formation of North Atlantic
                                           180øW
                                                 Deep   Water
                                                     120 ø
                                                               (NADW) 120
                                                           60 ø 0 ø 60 ø
                                                                         represents
                                                                           ø
                                                                                   a transfer of upper layer water to
                                                                                  180 ø E
                 abyssaldepthsat a rate of 15 to 20 x 106 m3/s. NADW spreadsthroughoutthe Atlantic Ocean and is
                 exported to the Indian and Pacific Oceans by the Antarctic Circumpolar Current }øN      and deep western
                 boundary currents. Naturally, there must be a compensating flow of upper layer water toward       (•) UPWELLING
                                                                                                                       the
                                                                                                                  • SINKING
                 northern North Atlantic to feed NADW production. It is proposed that this return flow is accomplished
                 primarily within the ocean's warm water thermocline layer. In this way the main thermoclinesof the
                 ocean are linked as they participate in a thermohaline-drivenglobal scalecirculation cell associatedwith
                 NADW formation. The path of the return flow of warm water is as follows: Pacific to Indian flow within
                 the Indonesian Seas, advection across the Indian Ocean in the 10ø-15øS latitude belt, southward transfer
                 in the Mozambique Channel, entry into the South Atlantic by a branch of the Agulhas Current that does
                 not complete the retroflection pattern, northward advection within the subtropical gyre of the South
                 Atlantic (which on balance with the southward flux of colder North Atlantic Deep Water supportsthe
                                                                                                                                   20"
                 northward oceanic heat flux characteristic of the South Atlantic), and cross-equatorial flow into the
                 western North Atlantic. The magnitude of the return flow increasesalong its path as more NADW is
                 incorporated into the upper layer of the ocean.Additionally, the water masscharacteristicsof the return
                                                                                                                                         0o
                 flow are gradually altered by regional ocean-atmosphereinteraction and mixing processes.Within the
                 Indonesian
                  b          seasthere is evidenceof strong vertical mixing acrossthe thermocline. The cold water route,
                 Pacific to Atlantic transport of Subantarctic water within the Drake Passage,is of secondaryimportance,
                 amounting to perhaps 25% of the warm water route transport. The continuity or vigor of the warm
                 water route is vulnerable to change not onlyb7 as the thermohaline forcing in the northern North Atlantic
                                                                i
                 varies but also as the larger-scalewind-driven criculation factors vary. The interocean links within the
                 Indonesian
                       \
                         \
                              seas and at the Agulhas retroflection may be particularly responsiveto such variability.
                 Changesin the warn: water route continuitymay in turn influenceformation characteristics   of NADW.

                                                                                        /b'
                                                                                                                     DEEPWATERFLOW
                        INTRODUCTION                                  tern in the meridionalplane associated
                                                                                              .•.
                                                                                                            with   the NADW for-
                                                                                                             "COLD"WATER TRANSFER
                                                                                      '?        )oS
  Warm salty water spreadsinto the northern North Atlantic,           mation is one of a negative estuary [Stommel,
                                                                                                              INTO       1956;
                                                                                                                    ATLANTIC     Reid,
                                                                                                                               OCEAN

where it is cooled primarily by evaporation. Ironically, this is      1961; Worthington, 1981; Gordon and Piola,      1983]:
                                                                                                             "WARM"UPPER        upper
                                                                                                                             LAYER FLOW
a consequenceof its anomalously high temperature relative to          layer water movesto the north, while deeperwater movesto
Broecker (1987)
The biggest chill (1987).
                                                                               Great Ocean Conveyor Belt

                                                   Q

                                                        \                             ~    °'     oo~

            OCt:

                                                                                 PA CtYit~

  Fig. 1." The great ocean conveyor logo (Broecker, 1987). (Illustration by Joe Le Monnier, Natural History Magazine.)
Toggweiler et Samuels (1993)
                           • Deux cellules.
                           • Rôle pivot de l’océan austral.
                                                       Est

                           Océan Austral

                                            Indo-Pacifique       Atlantique

                                            Indo-Pacifique                    Cellule pilotée
                                                                                par le vent
             Antarctique
Profondeur

                                             Atlantique

                              Cellule
                           thermohaline                               Atlantique +
                                                                     Indo-Pacifique

                                                          Nord
Toggweiler et Samuels (1993)

                    Dans le canal ré-entrant :
                                                              Est
                                            Vents
                           Océan Austral   d’ouest

                                             Indo-Pacifique         Atlantique

                                             Indo-Pacifique                      Cellule pilotée
                                                                                   par le vent
             Antarctique
Profondeur

                                               Atlantique

                              Cellule
                           thermohaline                                  Atlantique +
                                                                        Indo-Pacifique

                                                            Nord
Talley (2013)                                                                           Indo-Pacifique

             • Deux cellules imbriquées : circulaIon
                                          Nord       en huit.

                                                                                    Eaux superficielles
                 Océan Austral :                                                    tropicales/subtropicales
                action du vent
             et flux de flottabilité           Réchauffement en surface

                                                                             Mers          Atlantique Nord :
                          re                                                 indonésiennes        formation
                            m                  remo                                           d’eaux denses
                               on
Profondeur

                                  tée                  ntée s
                                                             ans al
                                        sa                         légem
                                           nsa                          ent
                                                llé
                                                   g   em                             Indo-Pacifique :
                     Antarctique :                       en                           remontée par
                     formation                             t                          allégement
                     d’eaux denses

                                                                                                  Eaux denses
                                      Eaux denses antarctiques                                   nord-atlantiques

                                                                      Nord
Talley
    5500(2013)
    6000
    • Deux
       −60 cellules
            −50 −40 imbriquées : circulaIon
                     −30 −20 −10    0   10  en huit.
                                         (c) Oxygen (µmol kg–1): Pacific Ocean at 165°–170°W
       0                                           240
                                                                                                                                                  210 200   Figur
     500                                                     220 210                      80
                                                                                                    60                                                      (b) In
                             220        230
                                                   200
                                                                                                                      40                                    The 3
    1000                              210
                                                         190
                       180
                                           180                                                                                                    20        maxi
    1500                                         160                                                                                                        North
                                                                                                                                       40
                                                                                                                100
    2000                              170              150                                                                                  60
                                                                                                                                                            the o
                                                                                                    110                               80
                         S                                                                                                                                  Ocea
    2500                     >
                                 34                                           150         140   130 120
                                                                                                                                                            salini
    3000   220                     .7                                                                                                           110
                                                                                                                                                            γN =
                                       3                                       160
                                                                                                                                              120
                                                                                                                                            130
                                                         180
    3500         210                                                    170
                                                                                                                                      140                   cores
                                                                                                                           150
                                                               200       190                                               160                              Wate
    4000
                                                                                                                                                            nents
                                                                                                                 170
    4500                                                                                                  180
                                                                                                                                            150             maps
                             210                                                          190

    5000                                                                                                                                                    mark
                                                                                                                                      160
                                                                                                                                                            inform
    5500                                   200
                                                                                                                                                            prop
                                                                                                                  190
    6000                                                                                                                                                    Exper
        −70       −60            −50          −40        −30           −20          −10         0          10              20    30          40        50
                                                                                                                                                            2011;
Talley (2013)                                                                           Indo-Pacifique

             • Deux cellules imbriquées : circulaIon
                                          Nord       en huit.

                                                                                    Eaux superficielles
                 Océan Austral :                                                    tropicales/subtropicales
                action du vent
             et flux de flottabilité           Réchauffement en surface

                                                                                           1Atlantique
                                                                                             km Nord :

                                                                ?
                                                                             Mers
                          re                                                 indonésiennes         formation
                            m                  remo                                            d’eaux denses
                               on
Profondeur

                                  tée                  ntée s
                                                             ans al

                               ?
                                        sa                         légem
                                           n                            ent
                                            sa                                            2.5 km
                                                                                   X
                                                llé
                                                   g   em                             Indo-Pacifique :
                     Antarctique :                       en                           remontée par
                     formation                             t                          allégement
                     d’eaux denses
                                                                                           4 km
                                                                                                  Eaux denses
                                      Eaux denses antarctiques                                   nord-atlantiques

                                                                      Nord
I. Découverte de la circula)on
   thermohaline

II. Moteurs de la circula)on
    thermohaline

III. Une strate exclue de la circula)on
Les courants océaniques proviennent de…

          1. L’acIon du vent sur la surface

  2. Les échanges d’eau et de chaleur à la surface

            3. Le chauffage géothermal

4. L’a`racIon gravitaIonnelle de la Lune et du Soleil

                                              Source : NASA
Source : NASA
(a)        1. L’ac)on
      Mean wind stress anddu vent sur
                           momentum fluxla1984–2006
                                           surface (N/m2)                    (b
                                                                0.2 N/m2

      -0.2 -0.15 -0.1 -0.05   0   0.05    0.1    0.15     0.2
                    Tension de vent (N/m2)
                                  Source : Ocean circulaIon and climate,
                                                             Source : NASA 2014
Le moteur essen)el des courants superficiels…

                                       Source : NASA
…et de l’ascendance australe

                               Source : NASA
2. Les échanges d’eau et de chaleur à la surface
           Sea&surface&density&
         Sea&surface&density&

             Densité à la surface (kg/m3)
                                            Source : World
                                                      SourceOcean
                                                             : NASA Atlas
Un moteur des courants descendants

                                     Source : NASA
3. Le chauffage géothermal

Flux de chaleur au fond de l’océan (mW/m2)
                                       Source Source
                                              : Lucazeau
                                                     : NASA 2019
Un moteur de l’allégement abyssal

                                    Source : NASA
4. L’aCrac)on gravita)onnelle de la Lune et du Soleil

     Ondes
     de marée                Courant
                             de marée

     Turbulence

                                             Source : NASA
Un moteur de l’allégement en profondeur

                                     Source : NASA
February, 1996, a period encompassing both                                in this region, we estimate that K between               instability and breaking of such waves

                                          Le mélange dû à la marée interne
spring and neap tides. Turbulent diffusivity                              3960 and 4060 m was 0.3 3 1024 to 0.6 3                  would provide an energy source for the tur-
                                                                                                                                   bulent mixing. Consistent with this idea,
                                                                                                                                   enhanced fine-scale shear and strain (17)
Fig. 1. Distribution of HRP                                                                                                        were observed above rough bathymetry. We
stations (triangles) in the Bra-                                                                                                                        wave
                                                                                                                                   propose that the energy     break
                                                                                                                                                           source for the inter-
                                                                                                                 internal Ide
zil Basin of the South Atlantic                                                                                                    nal waves supporting the mixing near the
Ocean. Isobaths greater than                                                                                                       MAR is the barotropic tides impinging on
                                                                                                            ρ1
2000-m depth are depicted
with a contour interval of    local mixing                                                                                         the rough bathymetry of the ridge. (Mean
1000 m. The expanded scale                                                                                                                     )dal flow
plot to right shows the ship                                                                                                                            Diffusivity (m 2 s-1 ) 10-5 >10-4 >10-3
tracks during injection of the                                                                                                                           10-5     10-2
                                                                                                                                                         0
SF6 tracer (solid lines). The
                        remote mixing
dashed lines mark the sam-
pling tracks of the initial trac-                                                                           ρ2                                         500

er survey.
                                                                                                                                                      1000
  P HYSICAL PROBLEM
                                                                      Brazil Basin                                                                    1500

                        0                                                                                                                             2000

                                                                                                                                                                                             Tracer injection level
                                                                                                                                    Pressure (dbar)
                     -500
                                                                                                                                                      2500
                     -1000

                     -1500                                                                                                                            3000

                     -2000
                                                                                                                                  Transect of turbulent diffusivity
   Water depth (m)

                                                                                                                                                      3500

                     -2500

                     -3000                                                                                                        across the Brazil Basin.
                                                                                                                                                      4000

                     -3500                                                                                                                            4500

                     -4000
                                                                                                                                  From Polzin et al. (1997).
                                                                                                                                                      5000

                     -4500
                                                                                                                                                      5500
                     -5000                                                                                                                                   24   28     32        36      40                         44
                                                                                                                                                                   Minutes latitude (+21° S)
                     -5500
                                                                                                                                   Fig. 3. Profiles of average cross-isopycnal diffu-
                     -6000                                                                                                         sivity versus depth as a function of position rel-
                             -38    -36     -34         -32     -30     -28    -26      -24         -22      -20     -18    -16    ative to a spur of the MAR (whose bathymetry is
                                                                       Longitude
                                                                                                                                   shown versus latitude). Diffusivity profiles have
                                                                                                                                   been offset horizontally to roughly correspond to
                                                                                                                                   their physical position relative to the spur and are
                             0     0.1    0.2     0.3     0.4    0.5   0.6     0.7   0.8      0.9     2.0     5.0    8.0   22.0
                                                                                                                                   plotted on a logarithmic axis. The tick marks and
                                                                 Diffusivity (10-4 m2s-1)
                                                                                                                                   color scheme denote decadal intervals, and the
Methodologie d’une cartographie
        Mode-by-mode tracking of energy from sources to sinks
  GENERATION             PROPAGATION                             DISSIPATION
                                                    2D                           3D
                          Lagrangian
    modes 1-5               energy             critical slopes
                            tracker

                                                  shoaling

                                                 wave-wave
                                                interactions
   modes 6-10

                                               scattering by
                                                abyssal hills
   abyssal hills
  (modes 50)

[Falahat et al. 2014b]          [Ocean Modelling 2019]                   [JAMES 2020]
 [Melet et al. 2013a]
Methodologie d’une cartographie
StaIc 2D maps of depth-integrated dissipaIon                         VerIcal structures
  GENERATION             PROPAGATION                             DISSIPATION
                                                    2D                           3D
                          Lagrangian
    modes 1-5               energy             critical slopes
                            tracker

                                                  shoaling

                                                 wave-wave
                                                interactions
   modes 6-10

                                               scattering by
                                                abyssal hills
   abyssal hills
  (modes 50)

[Falahat et al. 2014b]          [Ocean Modelling 2019]                   [JAMES 2020]
 [Melet et al. 2013a]
4 cartes staIques…
4 cartes staIques…

Wave-wave             Shoaling
interacIons            95 GW
  636 GW                (9%)
   (61%)

 CriIcal              Abyssal
  slopes                hills
 128 GW               185 GW
  (12%)                (18%)
…et 4 structures verIcales

            N2
  Gregg 1989                            N
  Polzin et al. 1995               Legg 2014
  Kunze 2017

 exp(-hab/Hcri)            rbot:        (1+hab/Hbot)-2
St Laurent et al. 2002
                         1-rbot:        N2
                                      Polzin 2004
Une carte 3D réaliste de la diffusivité

                           de Lavergne et al. 2019, 2020
Une carte 3D réaliste de la diffusivité

Munk
1966

               scarce seafloor, weak mixing

              abundant seafloor, strong mixing

                                  de Lavergne et al. 2019, 2020
flows.         Budget de densité à la Walin (1982)
         Gouretski & Koltermann 2004   de Lavergne et al. 2020

g ? stand
Kflows  to respectively
           incrop areas,for
                         wethe
                            firstvelocity
                                   set out and  turbulent
                                            the link      diffus
                                                     between  c
to
caldensity surfaces,
    structure         referred
              of diffusive     to asfluxes.
                           density    the dianeutral direction.
                                            Within the  40 S-4
y-state density of
inear equation   budget
                   state, reduces to a vertical
                          an assumption         advective-diffu
                                        that will be relaxed b
d as a vertical  coordinate, we can rewrite the dianeutral vel
        Local density balance

e of the
       ! diffusive
         @z = @z (Kdensity
                     ? @z flux:
                           ).
                  
         ! = @ (K? @z ) .

                      4
flows.         Budget de densité à la Walin (1982)
         Gouretski & Koltermann 2004   de Lavergne et al. 2020

g ? stand
Kflows  to respectively
           incrop areas,for
                         wethe
                            firstvelocity
                                   set out and  turbulent
                                            the link      diffus
                                                     between  c
to
caldensity surfaces,
    structure         referred
              of diffusive     to asfluxes.
                           density    the dianeutral direction.
                                            Within the  40 S-4
y-state density of
inear equation   budget
                   state, reduces to a vertical
                          an assumption         advective-diffu
                                        that will be relaxed b
d as a vertical  coordinate, we can rewrite the dianeutral vel
        Local density balance

e of the
       ! diffusive
         @z = @z (Kdensity
                     ? @z flux:
                           ).
                  
         ! = @ (K? @z ) .

                      4
flows.         Budget de densité à la Walin (1982)
         Gouretski & Koltermann 2004   de Lavergne et al. 2020

g ? stand
Kflows  to respectively
           incrop areas,for
                         wethe
                            firstvelocity
                                   set out and  turbulent
                                            the link      diffus
                                                     between  c
to
caldensity surfaces,
    structure         referred
              of diffusive     to asfluxes.
                           density    the dianeutral direction.
                                            Within the  40 S-4
y-state density of
inear equation   budget
                   state, reduces to a vertical
                          an assumption         advective-diffu
                                        that will be relaxed b
d as a vertical  coordinate, we can rewrite the dianeutral vel
        Local density balance

e of the
       ! diffusive
         @z = @z (Kdensity
                     ? @z flux:
                           ).
                  
         ! = @ (K? @z ) .

                      4
flows.         Budget de densité à la Walin (1982)
         Gouretski & Koltermann 2004                              de Lavergne et al. 2020

                                      Geochemistry, Geophysics, Geosystems                           10.1029/2019GC00

g ? stand
Kflows  to respectively
           incrop areas,for
                         wethe
                            firstvelocity
                                   set out and  turbulent
                                            the link      diffus
                                                     between  c
to
caldensity surfaces,
    structure         referred
              of diffusive     to asfluxes.
                           density    the dianeutral direction.
                                            Within the  40 S-4
y-state density of
inear equation   budget
                   state, reduces to a vertical
                          an assumption         advective-diffu
                                        that will be relaxed b
d as a vertical  coordinate,
        Local density balance
                              we can rewrite  the
                                           Lucazeaudianeutral
                                                    2019      vel
e of the
       ! diffusive
         @z = @z (Kdensity
                     ? @z flux:
                           ).
                  
         ! = @ (K? @z ) .
                                                                    Geothermal heat flux (mW/m2)
                      4 Figure 8. Global heat flow map based on similarities with (a) 2 observables, (b) 14 observabl
Application à l’océan mondial
                                    Tidal mixing + geothermal heaIng
                              27

                             27.2                                          Upper
Neutral density (kg m -3 )

                                                                          (0-1 km)
                             27.4

                             27.6
                                                                         Mid-depth
                             27.8                                        (1-2.5 km)

                              28
                                                                          Abyssal
                             28.2
                                                                         (> 2.5 km)
                             28.4
                                    0     5      10      15         20
                                        Dianeutral upwelling (Sv)
Application à l’océan mondial
                                    Tidal mixing + geothermal heaIng
                              27

                             27.2                                          Upper
Neutral density (kg m -3 )

                                                                          (0-1 km)
                             27.4

                             27.6
                                                                         Mid-depth
                             27.8                                        (1-2.5 km)

                              28
                                                                          Abyssal
                             28.2
                                                                         (> 2.5 km)
                             28.4
                                    0     5      10      15         20
                                        Dianeutral upwelling (Sv)
Trois régimes océaniques

     Ventilated pycnocline

         Munk regime

     Topographic regime

                       Munk 1966, de Lavergne et al. 2017
Trois régimes océaniques

     Ventilated pycnocline

         Munk regime

     Topographic regime

                       Munk 1966, de Lavergne et al. 2017
I. Découverte de la circula)on
   thermohaline

II. Moteurs de la circula)on
    thermohaline

III. Une strate exclue de la circula)on
La circulation thermohaline en 2013

             Southern Ocean           Indian and Pacific Oceans            Atlantic Ocean

                                 27.5                                                       1
                          UC
                            DW
                     LC

                                                                                            2
                        D

                                                                                                Depth (km)
Antarctica

                         W

                                 28
                                                                     Mixing-driven
                                                                      lightening            3
                                          NADW
                                 28.11                                                      4

                             AABW
                                                                                            5
                  60ºS         40ºS         20ºS       Eq.          20ºN             40ºN

             Southern Ocean             Indian and Pacific Oceans          Atlantic Ocean
La circulation thermohaline en 2013

             Southern Ocean           Indian and Pacific Oceans            Atlantic Ocean

                                 27.5                                                       1
                          UC
                            DW
                     LC

                                                                                            2
                        D

                                                                                                Depth (km)
Antarctica

                         W

                                 28
                                                                     Mixing-driven
                                                                      lightening            3
                                          NADW
                                 28.11                                                      4

                             AABW
                                                                                            5
                  60ºS         40ºS         20ºS       Eq.          20ºN             40ºN

             Southern Ocean             Indian and Pacific Oceans          Atlantic Ocean
AABW
                    La circulation thermohaline en 2022 ?                                        5
                  60ºS        40ºS          20ºS              Eq.   20ºN            40ºN

             Southern Ocean            Indian and Pacific Oceans           Atlantic Ocean

                                27.5                                                             1

                                        Diffusion/Recirculation
                                                                                                 2

                                                                                                     Depth (km)
Antarctica

                                28

                                                                                                 3
                                        NADW
                                28.11                                           Lightening       4
                                                                           (mixing+geothermal)
                          AABW
                                                                                                 5
                  60ºS        40ºS         20ºS               Eq.   20ºN           40ºN
Illustration : une section à travers le Pacifique
Illustration : une section à travers le Pacifique
Illustration : zoom sur l’océan austral

Subpolar seas   ACC              Pacific (210ºE)

                               Indo-Pacific

   Current
    view

                               Atlan)c

                               Talley 2013; Gouretski & Koltermann 2004
Illustration : zoom sur l’océan austral

Subpolar seas   ACC              Pacific (210ºE)

Hypothesis:
 weak net
 upwelling

                          Atlan)c + Indo-Pacific
Indice : distribution du volume de l’océan austral
Indice : vorticité potentielle dans l’océan austral
Conclusions
• La circula)on thermohaline est un concept fluctuant.
  Ø Mais ses schémas sont extrêmement influents.

• Des cartographies du mélange et du chauffage
  géothermal permeCent de quan)fier ces moteurs.
   Ø Impliquent un allégement confiné aux grandes
     profondeurs (> 2.5 km).

• La circula)on thermohaline pourrait délaisser une
  strate de mi-profondeur (25-30 % du volume total).
   Ø Ce qui réduirait son influence sur les traceurs, la
     venIlaIon, le climat.
You can also read