Introduction to Image Processing Cameras, lenses and sensors - Cosimo Distante
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Computer Vision Introduction to Image Processing Cameras, lenses and sensors Cosimo Distante Cosimo.distante@cnr.it Cosimo.distante@unisalento.it
Computer Vision Cameras, lenses and sensors • Camera Models – Pinhole Perspective Projection • Camera with Lenses • Sensing • The Human Eye
Computer Images are two-dimensional patterns of brightness values. Vision Figure from US Navy Manual of Basic Optics and Optical Instruments, prepared by Bureau of Naval Personnel. Reprinted by Dover Publications, Inc., 1969. They are formed by the projection of 3D objects.
Computer Vision Animal eye: Photographic camera: a looonnng time ago. Niepce, 1816. Pinhole perspective projection: Brunelleschi, XVth Century. Camera obscura: XVIth Century.
1.1.1 Perspective Projection Computer Pinhole model Imagine taking a box, using a pin to prick a small hole in the center of one of its Vision sides, and then replacing the opposite side with a translucent plate. If you held that box in front of you in a dimly lit room, with the pinhole facing some light source, say a candle, you would observe an inverted image of the candle appearing on the translucent plate (Figure 1.2). This image is formed by light rays issued from the scene facing the box. If the pinhole were really reduced to a point (which is of course physically impossible), exactly one light ray would pass through each point in the image plane of the plate, the pinhole, and some scene point. image plane pinhole virtual image Figure 1.2. The pinhole imaging model. In reality, the pinhole will have a finite (albeit small) size, and each point in the image plane will collect light from a cone of rays sustending a finite solid angle, so this idealized and extremely simple model of the imaging geometry will not strictly apply. In addition, real cameras are normally equipped with lenses, which further complicates things. Still, the pinhole perspective (also called central perspective)
Computer Vision Vanishing points Before beginning, we have to learn a couple of key concepts about linear perspective: •All lines vanishing at the same point are parallel. •We call horizontal lines those vanishing on the horizon, and vertical lines those that are perpendicular to the horizontal ones. It also can be defined the vertical lines as those that target the center of the earth, that is, as the line that forms the string of a plumb-line.
Computer Vision Vanishing points • In these images, the blue line represents the horizon and the aquamarine circle in the center, the point of view of the observer.
Computer Vision Vanishing points • Now we look a little upwards. We see that the verticals converge into the sky, towards a vanishing point located above our head - the zenith
Computer Vision Vanishing points • And the opposite case. We look down and the verticals converge on to the ground, towards a vanishing point located beneath our feet - the nadir -
Computer Vision Vanishing points • Now an example of frontal or parallel perspective. It is characterized by having a single vanishing point, which lies on the horizon and that will always match our view point.
Computer Vision Vanishing points • Now we see an example with two vanishing points. These two vanishing points are located on the horizon. As we also have our view point on the horizon, the verticals do not converge.
Computer Vision Vanishing points • And here we have an example with three vanishing points, and now we look up above and see that the verticals have now become convergent
Computer Vision Vanishing points • And here we have an example with three vanishing points, and now we look up above and see that the verticals have now become convergent. The following image shows the opposite case, when looking down.
Computer Vision Vanishing points • And finally, look where the sides of the staircase converge. The left wall converges on the horizon as it is horizontal, while the sides of the staircase, being inclined, converge at a point located above the horizon. In case they were inclined downwards, they would converge towards a point located below the horizon.
Computer Vision Vanishing points H VPL VPR VP1 VP2 To different directions correspond different vanishing points VP3
Computer Vision Vanishing points Application to autonomous navigation in critical conditions Necessary to use other cues such as texture
Computer Vision Vanishing points the focal length of the camera can be calculated from two vanishing points associated with orthogonal scene directions the orthocenter of the triangle formed by three vanishing points associated with three orthogonal scene directions is the principle point Likewise, those same three vanishing points can be used to determine both the internal camera parameters (under cer- tain simplifying assumptions) and camera rotation Even a single vanishing point can provide valuable information about the camera model
Computer Vision Vanishing points
Computer Vision Vanishing points
Computer Vision Geometric properties of projection • Points go to points • Lines go to lines • Planes go to whole image or half-plane • Polygons go to polygons • Degenerate cases: – line through focal point yields point – plane through focal point yields line
Computer Vision Pinhole Camera Model X p Image plane P=(X,Z) P=(x,f) X Optical axis x O f x X Z = f Z X x= f Z
Computer Vision Pinhole Camera Model Y p Image plane P=(Y,Z) P=(y,f) Y Optical axis y O f y Y Z = f Z Y y= f Z
tes and equations. Consider for example a coordinate oComputer Pinholewhose a pinhole camera, Perspective origin OΠ’Equation coincides with j the Vision form a basis for a vector plane parallel f’ to the image P Imagef ′ from the pinhole along ositive distance k the vector k ! x $ ′ Focal ndicular to Πplane and passing through C’ the pinhole isO called length # =# y & & ′ ′ int C where it pierces Π is called the image center. # z & i " % P’ x’ he origin of an image plane coordinate y’ frame, and Optical axis it amera calibration procedures. z’ Camera " x! % ′ int with coordinates ' (x, y, z) and P frame denote its image Sceneof /perspective p $ = $ y! ' Figure 1.5. Setup for deriving the equations Since P ′ lies in the$# zimage ! '& plane, we have z ′ = f ′ . Since world points ′ − −→′ −−→ are colinear, we have λ, soOP = λOP ⎧ for some number ⎨ x′ = λx x ′ y ′ f ′ y′ = λy ⇐⇒ λ = = = , ì x ⎩ ′ f = λz x y z ïï x ' = f ' z and therefore í ⎧ x ⎨ x′ = f ′ , ⎪ ï y' = f ' y ⎪ z y ïî ⎩ y′ = f ′ . ⎪ ⎪ z z
Computer Affine projection models: Vision Weak perspective projection ì x' = -mx where m = - f ' í y ' = -my is the magnification. î z0 When the scene relief is small compared its distance from the Camera, m can be taken constant: weak perspective projection.
Computer Affine projection models: Vision Orthographic projection ì x' = x When the camera is at a í (roughly constant) distance î y' = y from the scene, take m=1.
Computer Vision Planar pinhole Orthographic Spherical pinhole perspective projection perspective
Computer Vision Limits for pinhole cameras
Computer Vision 10 Limits for pinhole cameras Cameras Chapter 1 Figure 1.9. Images of some text obtained with shrinking pinholes: large pinholes give bright but fuzzy images but pinholes that are too small also give blurry images because of diffraction effects. Reprinted from [Hecht, 1987], Figure 5.108.
Computer Vision Camera obscura + lens è
Computer Vision Lenses Snell’s law n1 sin a1 = n2 sin a2 Descartes’ law
Computer Thin Lenses Vision spherical lens surfaces; incoming light ± parallel to axis; n1 n2 n2 - n1 thickness
Computer Thin Lenses Vision ì x ï x' = z ' z 1 1 1 R í where - = and f = ï y' = z' y z' z f 2(n - 1) î z http://www.phy.ntnu.edu.tw/java/Lens/lens_e.html
Note that the field of view of a camera, i.e., the portion of scene space that Computer Fieldonto actually projects of view the retina of the camera, is not defined by the focal length Vision alone, but also depends on the effective area of the retina (e.g., the area of film that can be exposed in a photographic camera, or the area of the CCD sensor in a digital camera, Figure 1.14). film d lens φ f def d Figure 1.14. The field of view of a camera. It can be defined as 2φ, where φ = arctan 2f , d is the diameter of the sensor (film or CCD chip) and f is the focal length of the camera. When the focal length is (much) shorter than the effective diameter of the retina, we have a wide-angle lens, with rays that can be off the optical axis by more than 45◦ . Telephoto lenses have a small field of view and produce pictures closer to affine ones. In addition, specially designed telecentric lenses offer a very good
Sistema di Acquisizione delle Immagini Normalmente tutti i dispositivi di acquisizione delle immagini hanno l’area sensibile rettangolare Le dimensioni dell’area sensibile, dove è focalizzata in modo uniforme l’immagine, è caratterizzata geometricamente dalla diagonale maggiore dell’area sensibile rettangolare Scelta approssimativamente uguale alla focale dell’obiettivo Un obiettivo cosiddetto normale per una macchina fotografica con area sensibile di 24×36mm ha una lunghezza focale intorno a 50mm ed un angolo di campo di circa 50° Con focale più corte si ha un angolo di campo più ampio che da 50° può raggiungere valori superiori a 180° (fish-eye con f < 6 mm) Tali obiettivi si chiamano grandangolari che quando molto spinti possono produrre immagini molto distorte 39
Sistema di Acquisizione delle Immagini Obiettivi con lunghezza focale maggiore di 50mm riducono l’angolo di campo fino a qualche grado in corrispondenza di focali di »1000mm (teleobiettivi) L’area sensibile delle moderne telecamere è normalmente di 10x10mm2 e conseguentemente gli obiettivi standard hanno una lunghezza focale intorno a 15mm I sistemi ottici di una macchina fotografica o telecamera, producono una immagine ottica degli oggetti della scena osservata (distribuzione spaziale dell’intensità di energia luminosa: immagine fisica) Se l’immagine fisica è osservabile dagli esseri umani si dice che è un’immagine nel visibile 40
Sistema di Acquisizione delle Immagini Consideriamo l’immagine acquisita dalla telecamera Vidicon E’ necessaria una conversione in forma numerica del segnale video generato con la completa scansione elettronica della superficie sensibile del vidicon. In particolare, lo standard europeo RS 170 prevede la scansione dell’intera immagine (frame) in 625 linee orizzontali con una frequenza di 25 frame al secondo 41
Sistema di Acquisizione delle Immagini Processo di campionamento di una linea del segnale video campionato attraverso la misura istantanea del valore del segnale elettrico ad intervalli di tempo costanti L’accuratezza della quantizzazione dipende dal numero di bit assegnati per rappresentare l’informazione di intensità luminosa per ciascun punto campionato Normalmente sono assegnati 8 bit generando così 256 livelli di intensità luminosa L’intervallo dei livelli di intensità è chiamato anche intervallo dinamico e nel caso di immagini digitali quantizzate a 8 bit si ha un range dinamico da 0 a 255 42
Sistema di Acquisizione delle Immagini L’immagine digitalizzata ed elaborata può essere successivamente visualizzata Frame Grabber Il processo di digitalizzazione è completato •Nelle telecamere digitali con la quantizzazione dei valori di intensità luminosa •Nelle schede di acquisizione dopo aver ricevuto il segnale analogico (perdita di informazione spaziale di campionamento) 43
Rappresentazione dell’Immagine digitale x i Pixel i 0 0 I (i, j ) 0 Campionamento Quantizzazione f ( x, y ) y Immagine fisica j j continua Immagine Immagine campionata quantizzata (iDx,jDy) dove Dx e Dy rappresentano gli intervalli di campionamento Il valore di ciascun pixel I(i,j) rappresenta l’elemento discreto digitale dell’immagine digitalizzata I(i,*) rappresenta la colonna i-ma dell’immagine digitale I(*,j) rappresenta la riga j-ma dell’immagine digitale 44
Rappresentazione dell’Immagine digitale x i Pixel i 0 0 I (i, j ) 0 Campionamento Quantizzazione f ( x, y ) y Immagine fisica j j continua Immagine Immagine campionata quantizzata I è una buona approssimazione di f se sono scelti in modo adeguato: Ø gli intervalli di campionamento Dx e Dy, Ø l’intervallo dei valori di intensità I assegnati a ciascun pixel nella fase di quantizzazione Da questi parametri dipende la qualità dell’immagine in termini di: ü Risoluzione spaziale ü Risoluzione radiometrica (o di intensità luminosa o di colore) ü Risoluzione temporale (abilità a catturare la scena con oggetti in movimento) 45
Risoluzione e frequenza spaziale La risoluzione dell’immagine digitale dipende dalle varie componenti del sistema di acquisizione complessivo: ü ambiente, ü sistema ottico, ü sistema di digitalizzazione La scelta della risoluzione spaziale del pixel e quindi dell’intera immagine digitale è strettamente legato alle varie applicazioni. Esistono numerosi sistemi di acquisizione che possono digitalizzare immagini da 256x256 pixel fino a 8Kx8K pixel per varie applicazioni 46
Risoluzione e frequenza spaziale Il concetto di risoluzione spaziale è correlato al concetto di frequenza spaziale che indica con quale rapidità variano i valori dei pixel spazialmente 47
Risoluzione e frequenza spaziale 48
Quantizzazione Mentre il campionamento definisce la risoluzione spaziale ottimale dell’immagine, è necessario definire la risoluzione radiometrica (livelli di luminosità) adeguata ossia con quale accuratezza il pixel rappresenterà l’intensità luminosa dell’oggetto originale 49
Parameters of an optical system Two parameters characterize an optical system • focal lenght f • Diameter D that determines the amount of light hitting the image plane F focal point optical center (Center Of Projection)
Parameters of an optical system Relative Aperture is the ratio D/f Its inverse is named diaphragm aperture a, defined as: a = f/D f/# The diaphragm is a mechanism to limit the amount of light throug the optical system and reaching the imag plane where photosensors are deposited (i.e CCD sensor) The diaphragm is composed of many lamellae hinged on a ring which rotate in a synchronized manner by varying the size of the circular opening, thus limiting the passage of light Diaphragm F
Parameters of an optical system Aperture scale varies with square of 2first value is 1 Other values are 1.4, 2, 2.8, 4, 5.6, 8, 11, 16, 32, 45, 60, … Normally an optical system is dinamically configured to project the right amount of light, by compensating with the exposure time
Parameters of an optical system 35mm set at f/11, Aperture varies from f/2.0 to f/22
Parameters of an optical system
Lens field of view computation Lens choise depend on the wanted acquired scene. Per le telecamere con CCD 1/4” Focal lenght (mm) = Target distance (m.) x 3,6 : width (m.) Per tutte le altre telecamere con CCD 1/3" Focal lenght (mm) = Target distance (m.) x 4,8 : width (m.)
Focus and depth of field f / 5.6 f / 32 Changing the aperture size affects depth of field • A smaller aperture increases the range in which the object is approximately in focus Flower images from Wikipedia http://en.wikipedia.org/wiki/Depth_of_field
Depth from focus Images from same point of view, different camera parameters 3d shape / depth estimates [figs from H. Jin and P. Favaro, 2002]
Field of view • Angular measure of portion of 3d space seen by the camera Images from http://en.wikipedia.org/wiki/Angle_of_view K. Grauman
Field of view depends on focal length • As f gets smaller, image becomes more wide angle – more world points project onto the finite image plane • As f gets larger, image becomes more telescopic – smaller part of the world projects onto the finite image plane from R. Duraiswami
Field of view depends on focal length Smaller FOV = larger Focal Length Slide by A. Efros
Vignetting http://www.ptgui.com/examples/vigntutorial.html http://www.tlucretius.net/Photo/eHolga.html
Vignetting • “natural”: • “mechanical”: intrusion on optical path
Chromatic aberration
Chromatic aberration
Computer Vision Deviations from the lens model 3 assumptions : 1. all rays from a point are focused onto 1 image point 2. all image points in a single plane 3. magnification is constant deviations from this ideal are aberrations è
Computer Vision Aberrations 2 types : 1. geometrical 2. chromatic geometrical : small for paraxial rays study through 3rd order optics chromatic : refractive index function of wavelength è
Computer Vision Geometrical aberrations ❑ spherical aberration ❑ astigmatism ❑ distortion ❑ coma aberrations are reduced by combining lenses è
Computer Vision Spherical aberration rays parallel to the axis do not converge outer portions of the lens yield smaller focal lenghts è
Computer Vision Astigmatism Different focal length for inclined rays
Computer Vision Distortion magnification/focal length different for different angles of inclination pincushion (tele-photo) barrel (wide-angle) Can be corrected! (if parameters are know)
Computer Vision Coma point off the axis depicted as comet shaped blob
Computer Vision Chromatic aberration rays of different wavelengths focused in different planes cannot be removed completely sometimes achromatization is achieved for more than 2 wavelengths è
Digital cameras • Film à sensor array • Often an array of charge coupled devices • Each CCD is light sensitive diode that converts photons (light energy) to electrons camera CCD array optics frame computer grabber K. Grauman
• Historical Pinhole model: Mozi (470-390 BCE), context Aristotle (384-322 BCE) • Principles of optics (including lenses): Alhacen (965-1039 CE) Alhacen’s notes • Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707) • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes (1839) • Photographic film (Eastman, 1889) • Cinema (Lumière Brothers, 1895) Niepce, “La Table Servie,” 1822 • Color Photography (Lumière Brothers, 1908) • Television (Baird, Farnsworth, Zworykin, 1920s) • First consumer camera with CCD: Sony Mavica (1981) • First fully digital camera: Kodak DCS100 (1990) Slide credit: L. Lazebnik CCD chip K. Grauman
Digital Sensors
Computer Vision CCD vs. CMOS • Recent technology • Mature technology • Standard IC technology • Specific technology • Cheap • High production cost • Low power • High power • Less sensitive consumption • Per pixel amplification • Higher fill rate • Random pixel access • Blooming • Smart pixels • Sequential readout • On chip integration with other components
Resolution • sensor: size of real world scene element a that images to a single pixel • image: number of pixels • Influences what analysis is feasible, affects best representation choice. [fig from Mori et al]
Digital images Think of images as matrices taken from CCD array. K. Grauman
Digital images width j=1 520 i=1 Intensity : [0,255] 500 height im[176][201] has value 164 im[194][203] has value 37 K. Grauman
Color sensing in digital cameras Bayer grid Estimate missing components from neighboring values (demosaicing) Source: Steve Seitz
Filter mosaic Coat filter directly on sensor Demosaicing (obtain full colour & full resolution image)
new color CMOS sensor Foveon’s X3 smarter pixels better image quality
Color images, RGB color space R G B Much more on color in next lecture… K. Grauman
Issues with digital cameras Noise – big difference between consumer vs. SLR-style cameras – low light is where you most notice noise Compression – creates artifacts except in uncompressed formats (tiff, raw) Color – color fringing artifacts from Bayer patterns Blooming – charge overflowing into neighboring pixels In-camera processing – oversharpening can produce halos Interlaced vs. progressive scan video – even/odd rows from different exposures Are more megapixels better? – requires higher quality lens – noise issues Stabilization – compensate for camera shake (mechanical vs. electronic) More info online, e.g., • http://electronics.howstuffworks.com/digital-camera.htm • http://www.dpreview.com/
Computer Other Cameras: Line Scan Vision Cameras Line scanner •The active element is 1-dimensional •Usually employed for inspection •They require to have very intense light due to small integration time (from100msec to 1msec)
Reproduced by permission, the American Society of Photogrammetry and Remote Sensing. A.L. Nowicki, “Stereoscopy.” Manual of Photogrammetry, Computer Thompson, Radlinski, and Speert (eds.), third edition, 1966. Vision The Human Eye Helmoltz’s Schematic Eye
Computer Vision The distribution of rods and cones across the retina Reprinted from Foundations of Vision, by B. Wandell, Sinauer Associates, Inc., (1995). Ó 1995 Sinauer Associates, Inc. Cones in the Rods and cones in fovea the periphery Reprinted from Foundations of Vision, by B. Wandell, Sinauer Associates, Inc., (1995). Ó 1995 Sinauer Associates, Inc.
You can also read