Institute for Ship Structural Design and Analysis - M-10 Sören Ehlers - DGMK
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Institute for Ship Structural Design and Analysis M-10 Sören Ehlers Prof. DSc. (Tech) / Institutsleiter 12/11/20
Institute for Ship Structural Design and Analysis (M-10) Sören Ehlers: Design and analysis of ships and offshore structures Teaching Research • Fundamentals of engineering • Analytical, numerical and experimental design structural analysis • Ship structural design I, II and III • Structural analysis and design under extreme • Introduction to ship structural conditions analysis • Fatigue of Ships and Offshore structures • Arctic technology • Design of Ships and Structures for polar regions • Structural optimisation 12/11/20 2
Marine Technology Students at TUHH Teaching in the current situation: Registered students 2020: § Quite a drop in recent years § Teaching is primarily online with live or § New Master students: 8 pre-recorded presentations § New Bachelor students: 18 § Total registered students: 71 § General trend is a decreasing amount of students in mechanical engineering § Especially for Marine Technology I feel that we fail to communicate the diversity and cutting-edge technology we deal with. Often the one associates naval architecture with steel and iron work of heavy labor at a yard alone 12/11/20 3
Research Areas Fatigue/fracture mechanics Ice loads • Detail design • Ice-structure interaction • New cutting and welding methods • Ice-pressure-distribution • New materials • Thin sections • Production and in-service • Friction testing influences on fatigue and fracture behavior Nonlinear Waves under Solid Ice Numerical Simulations • Nonlinear wave propagation • Component design • Dispersion of waves • Structural optimization • Swell conditions • Fatigue assessment • Ice breakup mechanism • Material models • Simulation of collision and grounding 12/11/20 4
Research Areas Residual stresses and laser scanning Ship structural design for ice loads • Hole-drilling rosette method • Ice-structure interaction • Weld surface geometry scanning • Ice-pressure-distribution • Plate deformation • Thin sections • Friction testing Structural behavior Ship acoustics • Design of ships and equipment • Sound sources • Collision and grounding • Sound propagation through • Production and in-service structures influences on structural strength • Sound radiation into water • Influence of corrosion 12/11/20 5
Motivation Dokumentierte Schäden in Offshore Strukturen 1 § Vielseitige Schadensfälle für Schiffe und Offshore Strukturen 1 § Oft kombinierte Schäden 2 § Ein Großteil der Schäden sind auf schlechtes design und operative Fehler zurückzuführen 2 § Materialwahl kann Schäden beeinflussen 3 Image © Structural Integrity Associates, Inc. Ref.: 1 A. Dehghani, F. Aslani, A review on defects in steel offshore structures and developed strengthening techniques. Structures, 20 (2019) 635-657. https://doi.org/10.1016/j.istruc.2019.06.002 2 S.J. Price, R.B. Figueira, Corrosion Protection Systems and Fatigue Corrosion in Offshore Wind Structures: Current Status and Future Perspectives. Coatings, 7 (2017). https://doi.org/10.3390/coatings7020025 3 V. Igwemezie, A. Mehmanparast, A. Kolios, Materials selection for XL wind turbine support structures: A corrosion- fatigue perspective. Marine Structures, 61 (2018) 381-397. https://doi.org/10.1016/j.marstruc.2018.06.008 11.12.20 7
Post-weld improvement and retrofitting § TIG-dressing as a repair method up to 2.3 mm crack 20 depth without reduction in r = -0.02 p = 0.92 S700 R=0.1 (Pedersen et al., 2009 ) A36 R=0 (Mendez et al., 2017) S31803 R=0.1 (Baptista e Grade 43A R=-1 (Booth, 1 fatigue strength 1 A36 R=0 (Mendez et al., 2017) Grade 43A R=0.5 (Booth, 15 Low carbon micro alloyed R=0.1 Grade 43A R=0 (Knight, 1 § Recent results on TIG- (Haagensen, 1993) S420 R=0 (Miki et al., 1999) Grade 43A R=0 (Knight, 1 dressing and grinding S355 R=0.5 A (Huther et al., 2001) S355 R=0.5 B (Huther et al., 2001) Grade 43A R=0 (Knight, 1 Supereiso70 R=0 (Knight Slope m support and assessment 10 S355 R=0.5 C (Huther et al., 2001) S355 R=0.5 D (Huther et al., 2001) Supereiso70 R=0 (Knight Supereiso70 R=0 (Knight based on a slope m = 4 2,3 DH36 R=0.1 (Polezhayeva et al., 2009) BS15 R=-1 (Gurney, 1968 DH36 R=0.1 (Gao et al., 2015) S355 R=0 (Braun et al., 2 § Higher fatigue strength " ! = 3.9 S355 R=0.1 (Zhang and Maddox, 2009) Grade A R=0.1 (Rutherford et al., 2006) F51 R=0 (Braun et al., 20 S690 R=0 (Braun et al., 2 improvement for weld 5 S700 R=0.2 (Lieurade et al., 2005) S275 R=0 (Hansen et al., 2007) S900 R=0 (Braun et al., 2 SUS316L R=0.1 (Iwata et profiling than for burr grinding 304L R=0.1 (Baptista et al., 2007) S31803 R=0.1 (Baptista et al., 2007) m=3 Median of m=3.90 and disc grinding 2 0 § Highest improvement for 0 5 10 15 20 25 combination of grinding and Numbers of specimens in data series n peening 3 Ref.: 1 Al-Karawi et al., Fatigue crack repair in welded structures via tungsten inert gas remelting and high frequency mechanical impact. Journal of Constructional Steel Research, 172 (2020). https://doi.org/10.1016/j.jcsr.2020.106200 2 Braun & Wang, A review of fatigue test data on weld toe grinding and weld profiling. International Journal of Fatigue, submitted for publication (2020) 3 Ahola et al., Fatigue strength assessment of ground fillet-welded joints using 4R method. International Journal of Fatigue, 142 (2021). https://doi.org/10.1016/j.ijfatigue.2020.105916 11.12.20 8
2.5 Kt 2 Weld geometry assessment 0 20 40 60 80 100 120 140 160 Weld Length [mm] Local Extreme Global Extreme (a) (b Weld 1 Weld 2 Weld 3 Weld 4 Radius [mm] 1.5 Radius [mm] 1 0.5 0 20 40 60 80 100 120 140 160 Weld Length [mm] 160 Angle [°] Angle [°] 140 120 0 20 40 60 80 100 120 140 160 Weld Length [mm] Leg Length [mm] 10 8 6 0 20 40 60 80 100 120 140 160 Weld Length [mm] 2.5 Ref.: Renken et al. (2020). An algorithm for statistical evaluation of K t,b [-] weld toe geometries using laser triangulation, under preparation. 2 11.12.20 9 1.5
Weld geometry assessment § IIW Round Robin study on weld geometry measurement systems & algorithm § First results published 1 § Higher measurement effort leads to more locations that do not fulfil ISO5817 requirements 2 Ref.: 1 Schubnell et al. (2020). Influence of the optical measurement technique and evaluation approach on the determination of local weld geometry parameters for different weld types. Welding in the World, 64(2), 301-316. https://doi.org/10.1007/s40194-019-00830-0 2 Renken et al. (2020). An algorithm for statistical evaluation of weld toe geometries using laser triangulation, under preparation. 11.12.20 10
Fatigue strength assessment Ref.: N. Friedrich, Experimental investigation on the influence of welding residual stresses on fatigue for two different weld geometries. Fatigue Fract Eng M, 43 (2020) 2715-2730. https://doi.org/10.1111/ffe.13339 considering residual stresses § Gesamtlebensdauer-Wöhlerlinien § deutlicher Eigenspannungseinfluss Schweißzustand spannungsarm geglüht Nennspannungsschwingbreite [MPa] Nennspannungsschwingbreite [MPa] R = 0 (Schweißzustand) R = 0 (spannungsarm) R = -1 (Schweißzustand) R = -1 (spannungsarm) R = -3 (Schweißzustand) R = -3 (spannungsarm) R = -∞ (Schweißzustand) R = -∞ (spannungsarm) Lastwechsel Ngesamt Lastwechsel Ngesamt 11.12.20 11
Schweißsimulation Vereinfachter FE-Simulationsansatz (1) transiente thermische Analyse Last: einheitliche Temperatur auf Nahtquerschnitt keine ng l i b r i eru °C Ka 00 13 Ergebnis: Temperaturverteilung über der Zeit Temperatur [°C] (2) elastisch-plastische Strukturrechnung Last: Temperauren aus (1) Ergebnis: Eigenspannung und Verzug
Schweißsimulation • angewendet auf fiktive Kleinprobe mit Kreuzstoß • angenommener Werkstoff: S355 4 6 2 1 3 5 = b mm 0 Quer 15 (zur htung Naht ) l = 37 5 mm
Schweißsimulation 330 mm Que Naht) (zur rrich tung 55 mm Quereigenspannung [MPa]
Eigenspannungsmessung Eigenspannungsmessungen: • Röntgendiffraktometrie (ifs TU-Braunschweig) • Messtiefe bis ~ 5 μm • auf 3 Proben
Eigenspannungsmessung Eigenspannungsmessungen: • Bohrlochverfahren • Auswertung unter Annahme (gleiche Farbe ≙ gleiche Probe) konstanter Eigenspannungen bis 1 mm Tiefe
Überlagerung mit äußerer Last F F σ $!"# "= =% " =-1 " =-∞ $!$% t mit Eigenspannungen $!$% ohne Eigenspannungen Nahtübergang [MPa] Spannung am $!"# mit Eigenspannungen mit Eigenspannungen ohne Eigenspannungen ohne Eigenspannungen Nennspannungsschwingbreite [MPa]
Schwingversuche – Risserkennung Risserkennung mittels Schweißnaht digitaler Bildkorrelation Fzyklisch iss [%] R 0.15 1.00 0.12 0.95 Schweißnaht 0.09 0.90 0.85 0.06 0.80 0.03 Fzyklisch Dehnung 0.00 0.75 -0.03 0.70 0.65 -0.06 -0.09 0.60 -0.12 0.55 -0.15 0.50 Versuchsbeginn
7. Schwingversuche – Risserkennung
Schwingversuche – Risserkennung
Ice-structure interaction and temperature effects
Collision scenario Ice Floe: Ship: Source: Victor (distributed via shipspotting.com) • Diameter d = 8.5 m • Thickness t = 0.8 m (acc. FSICR) • Total mass for a circular plate: Service à "!"!#$ = "%$"& + "'()*" = 82.6 + Container ship comparable to ship „FORESIGHT” that transited the Northern Sea Route in 2009 Ice class: FSICR IA Length: 134.4 m TankSide Beam: 22.5 m Draught: 8.08 m Engine: 8400.0 kW Ship speed (acc. 1.543 m/s (3 kn) POLARIS): Wind and Current 0 m/s speeds: TankDoublebottom 11.12.20 22
Heat transfer Service = -59°C Tank1 = -54°C How cold could a ship structure can actually Tank2 = -31°C Tank3 = -18°C T∞,air become in winter? Tank4 = -12°C T ∞, se • In the rules and guidelines of the classification rv ic e societies -60 °C can be found as the lowest T∞,cargohold T temperature for material tests on steels used in ∞, ta nk shipbuilding. This value corresponds well with 1 different temperature measurements where Averaged temperature T∞ extreme values below -50 °C were measured in the over the , ta nk height of the 2 area of the Northern Sea Route. collision area ≈ -20°C T ∞, ta • In contrast, liquid seawater cannot become colder nk 3 than -2 °C T ∞, ta nk 4 Ref.: Kubiczek et al. (2019). Simulation of temperature distribution in ship structures for the determination of temperature- dependent material properties, 12th European LS- b DYNA Conference Koblenz. T ∞,tank,d T∞,water 11.12.20 23
Temperature dependent material properties and the effect on the structural response in case of collision 20°C -20°C -60°C max Force [-] perm. deflection [-] 700 1.05 +3% +1% 600 1.00 eng. stress [N/mm²] 500 0.95 -10% 400 0.90 300 0.85 200 0.80 -22% 100 0.75 0 0.70 0.00 0.10 0.20 0.30 0.40 20°C -20°C -60°C eng. strain [-] material temperature à neglecting the structural temperature leads to a conservative overestimation of the permanent deflection. à consideration of extreme values leads to an underestimation of the permanent deflection because the structure is assumed to be too stiff. 11/12/2020 24
Measurement locations on board Polarstern § Strain gauges and temperature sensors in void space 100 § Strain gauges on F-Deck (10800 aB) § Strain gauges and temperature sensors in void space 92
Temperature measurements § Temperature measurement on steel structure with PT1000 sensors every 5 minutes Data provided by the ship's weather station: § Measurement of water temperature 5m below waterline § Measurement of air temperature 29m above waterline
Temperature measurements V92_p1 V92_p2 V92_p3 V92_p4 ambient_air ambient_water 40 Ship in drydock Ship in water 35 30 temperature [°C] 25 20 15 31.7 1.8 2.8 3.8 4.8 5.8 6.8 7.8 date [-]
Temperature measurements Ship: R.V. Polarstern Cruise-No.: PS 122/1 Date: 20.09.2019 – 15.12.2019 Port: Tromsö – Arctic Ocean temperature [°C] Source: https://dship.awi.de/ Source: http://www.awi.de date [-] in 2019
Material tests to relate DBTT and FTT Research ∆" Fatigue tests S–N curve Development of fatigue assessment methods that take temperature effects into approach (-20 °C) account based on micro- structural support effect Comparison with state- S–N curve hypothesis of-the-art methods (RT) ∆" Low temperature § Two steels # FE modelling S–N curve Temperature modification § Three weld details Charpy tests Design curve factor § Two methods %& # Charpy transition curve $ Extension of SED and stress averaging Conclusions and approach recommendations for ∆" further work S–N curve independent of Statistical assessment of temperature fatigue test results ∆" # Regression curve $ 11.12.20 29
Averaged strain energy density (a) W [Nmm/mm 3 ] 0.01 0.1 1 5 10 4 S235 11.12.20 S500 WT RT WR RT 10 WT -50 °C WT -20 °C WR -50 °C WR -20 °C 5 Cycles to failure N 10 f 6 Rc(T) Fatigue strength deviation N dev = N -N run out om f,exp f,pred,97.5% 0.058 0.192 in 10 St -1 0.1050 1 2 3 ru a 7 ct ls ur tre al ss st m Predicted cycles to failure N (b) St re et f,pred ru ss ho ct ex d + SD - SD ur tra for P s = 97.7% al Xi st po 104 105 106 107 ao re la & ss tio n 104 Ya lin m ea Ef ad riz ec a at tiv 1 io e m n no m tc co h nc st ep re 105 t ±2 life factor SE D ss Line of equality Unconservative co co nc nc ep ep (a) Weld toe failure tR t SE c (T D = R 106 co T) nc ep tR Conservative RT c (T -50°C -20°C ) Experimental cycles to failure N f 107 N om St in ru al ct st u re -1 0 1 2 3 ra s with state-of-the-art methods l s st re m et St ru s s ho ct ex d ur tra al po Xi st la ao re t ss io & lin n Ya m ea riz Ef ad ec a at io 1 n tiv e m no m tc co h nc st ep SE re ss t D co co nc nc ep ep t tR (b) Weld root failure SE c (T Results for SED method and comparison D = co R T) n ce pt 30 R RT c (T ) -50°C -20°C
Ice load measurements Ship: R.V. Polarstern Cruise-No.: PS 122/1 Date: 20.09.2019 – 15.12.2019 measured shear strains Port: Tromsö – Arctic Ocean during a winter storm Frame 1 strain [µm/m] Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Source: http://www.awi.de date [-] in 2019
I. Test Program large scale tests Rigid structure Deformable structure
Test setup for the deformable structures Panel 2 Panel 1 Panel 2 & 3 Panel 1 Plate thickness 10 mm Spacing: 350 mm FB 240 x 12 11.12.20 33
Force curve of the brittle test run against Panel 1 Stroke 1 Reconstruction Stroke 2
Deformation of the panel Initial Post
Deformation of the stiffeners
Stroke 1 Stroke 2
Ice-Extrusion Test simulations D=100 D=200 D=800 Cone 100 Cone 200 Cone 800 11.12.20 39
Results Ice-Extrusion Tests Konus200_G25_A20_V10_1 Dyna_Simulation 180 160 140 Force [kN] 120 100 80 60 40 20 0 0 20 40 60 80 100 120 140 Displacement [mm] 11.12.20 40
Ice Pessures - Cone 200 The loaded area of the LS-Dyna simulation is currently larger than measured. Accordingly, the contact pressures (F/loaded area) are underestimated. The maximum pressures of the simulation are in the magnitude of 30 to 50 MPa. This in accordance with the TekScan results. 11.12.20 41
Application to the large scale extrusion tests Panel 1 Panel 2 Panel 1 Panel 2
Untersuchung der Schwingfestigkeit hybrid additiv und subtraktiv gefertigter Proben aus AISI 316L M. Braun, S. Hellberg, I. Kryukov, S. Böhm, R. E. Wu, S. Ehlers, S. Sheikhi
Motivation SLM Cu-10Sn bronze propeller Crankshaft of medium-speed four-stroke diesel engine Ref.: Scudino et al. (2015) Ref.: Köhler et al. (2011) 11.12.20 44
Hybrid additive and subtractive manufacturing 1. Powder distribution 2. Laser processing 3. Milling Powder distribution Metal Spindle powder Laser Base plate Lifting Table Base plate Base plate Lifting Table Lifting Table 'n' repetitions Every 'n' repetitions Back to step 1 11.12.20 45
Specimen preparation § Material: 316L § Renishaw AM250-System § 200W Ytterbium fibre laser § Argon atmosphere § Layer thickness: 40 µm § Specimens shape acc. to ASTM E466-15 § Built in vertical direction © Renishaw 11.12.20 46
Test program Condition As-built Heat-treated Machined + Heat-treated Heat – 2h @ 650 °C 2h @ 650 °C treatment (furnace cooled) (furnace cooled) Machining – – 1 mm thickness reduction by turning 11.12.20 47
Material characterisation § High strength and ductility § Grains partially extend over several layers 11.12.20 48
Computer tomography scan 11.12.20 49
Computer tomography scan 11.12.20 50
Post-treatment of selective laser melted parts Unbehandelt Bearbeitet Rautiefe Rt 41,929 ± 0,065 5,062 ± 0,063 Mittenrauwert Ra 6,295 ± 0,041 1,024 ± 0,005 11.12.20 51
Fatigue test results 11.12.20 52
Effect of surface roughness 1 Data by Rennert (2012) for Rm = 600 N/mm 2 § Surface roughness as-built: 0.95 f SR = 0.147e-0.1035Rz Surface factor f SR !, ≈ 6.3 µm → !- = 20 – 55 µm + 0.8528e0.0005721Rz 0.9 R2 > 0.99 § Surface roughness machined: 0.85 !, ≈ 1.0 µm → !- = 4 – 16 µm 0.8 § Estimated difference: ≈10% 0.75 0 100 200 Surface roughness Rz Ref.: Rennert, R. (Ed.) (2012): FKM Richtlinie 11.12.20 53
Thank you for your attention! 12/11/20
You can also read