Guidelines for 5G Campus Networks - Orientation for Small and Medium-Sized Businesses - BMWi

Page created by Bernard Cook
 
CONTINUE READING
Guidelines for 5G Campus
             Networks – Orientation for Small
             and Medium-Sized Businesses
             Concepts, terminology, operator models and selection criteria
             for manufacturing and logistics with implications for other
             sectors such as medical campuses and hospitals, ports, mining,
             construction sites and agriculture
Impressum

Herausgeber
Bundesministerium für Wirtschaft und Energie (BMWi)
Öffentlichkeitsarbeit
11019 Berlin
www.bmwi.de

Stand
April 2020

Gestaltung
PRpetuum GmbH, 80801 München

Bildnachweis
Burunduk's / Shutterstock / S. 13
Cirebon Jeh / S. 36
cnythzl / Getty Images / Titel, S. 4, S. 13
Derplan13 / Shutterstock / S. 20
one line man / Shutterstock / Titel, S. 4, S. 7, S. 20, S. 36
Tiverets / Shutterstock / S. 7

Diese und weitere Broschüren erhalten Sie bei:
Bundesministerium für Wirtschaft und Energie
Referat Öffentlichkeitsarbeit
E-Mail: publikationen@bundesregierung.de
www.bmwi.de

Zentraler Bestellservice:
Telefon: 030 182722721
Bestellfax: 030 18102722721

Diese Publikation wird vom Bundesministerium für Wirtschaft und
Energie im Rahmen der Öffentlichkeitsarbeit herausgegeben. Die Publi-
kation wird kostenlos abgegeben und ist nicht zum Verkauf bestimmt.
Sie darf weder von Parteien noch von Wahlwerbern oder Wahlhelfern
während eines Wahlkampfes zum Zwecke der Wahlwerbung verwendet
werden. Dies gilt für Bundestags-, Landtags- und Kommunalwahlen
sowie für Wahlen zum Europäischen Parlament.

                                                                        bmwi.de
Imprint

Publisher
Federal Ministry for Economic Affairs and Energy (BMWi)
Public Relations
11019 Berlin
www.bmwi.de

Status
April 2020

Design
PRpetuum GmbH, 80801 Munich

Picture credits
Burunduk's / Shutterstock / p. 13
Cirebon Jeh / Shutterstock / p. 36
cnythzl / Getty Images / title, p. 4, p. 13
Derplan13 / Shutterstock / p. 20
one line man / Shutterstock / title, p. 4, p. 7, p. 20, p. 36
Tiverets / Shutterstock / p. 7

This publication as well as further publications
can be obtained from:
Federal Ministry for Economic Affairs and Energy
Public Relations
Email: publikationen@bundesregierung.de
www.bmwi.de

Central procurement service:
Tel.: +49 30 182722721
Fax: +49 30 18102722721

This brochure is published as part of the public relations
work of the Federal Ministry for Economic Affairs and Energy.
It is distributed free of charge and is not intended for sale.
The distribution of this brochure at campaign events or at
information stands run by political parties is prohibited, and
political party-related information or advertising shall not be
inserted in, printed on, or affixed to this publication.
With the PAiCE technology programme (Platforms |           These Guidelines are based on the results of IC4F
Additive Manufacturing | Imaging | Communication |         (Industrial Communication for Factories), a PAiCE
Engineering), the Federal Ministry for Economic            flagship project that aims to develop a reference
Affairs and Energy (BMWi) supports the implemen-           architecture for industrial communication using
tation of the overall ‘Industrie 4.0’ vision in business   5G, with a focus on IT security, reliability, real-time
practice as part of the Federal Government’s Digi-         capability and resilience of industrial communica-
tal Agenda. In 16 projects, companies and research         tion infrastructures. The Guidelines illustrate possible
institutions are testing the use of innovative digital     applications and describe the features and application
technologies in production and logistics in large,         areas for 5G campus networks. They offer orientation
application-­oriented pilot projects. The Federal Min-     for deciders and communications infrastructures
istry for Economic Affairs and Energy supports the         implementers in small and medium sized enterprises
more than one hundred partners in the various pro-         in the manufacturing sector and in logistics. The
jects with a total of EUR 50 million. Together with the    approach outlined here for setting up and operating
project partners’ own shares, PAiCE has a volume of        5G campus networks can be applied to other sectors
over EUR 100 million.                                      such as medical campuses or hospitals, ports, mining,
                                                           construction sites, mobile campus networks and agri-
                                                           culture.
Table of contents

1              Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4

2              Introduction and Overview  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 7
               2.1 5G Campus Networks: a technological overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
               2.2 Local spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
               2.3 Current market developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3	New application scenarios with 5G .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 13
 3.1 Use in manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 3.2 Use in intralogistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
 3.3 Use in logistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
		3.3.1 Transport in ports  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
		3.3.2 Rail and trucks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
 3.4 Applications in the Smart City . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 3.5 Applications for power utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 3.6 Applications in mining  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
 3.7 Applications in medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
 3.8 Mobile campus networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
		3.8.1 Applications in agriculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
		3.8.2 Construction sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
		3.8.3 Mobile factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
 3.9 Summary of requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4	5G campus networks – topologies and operating models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 20
 4.1	Architecture of 5G campus networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
 4.2 Operator models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
		4.2.1 Separate 5G campus network (in-house operation)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
		4.2.2 Virtual ‘Slice’ in the public network of mobile network providers  . . . . . . . . . . . . . . . . . . . . . . . . . 24
		4.2.3 ‘Network slice’ in the public network of the mobile
          network providers with a separate user plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
		4.2.4 Additional ‘hybrid’ forms and variations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
		4.2.5 Assessment and comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3	Setting up and operating 5G campus networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
		4.3.1 Identifying the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
		4.3.2 Feasibility study  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
		4.3.3 Legal prerequisites (licence)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
		4.3.4 Contractual requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
		4.3.5 Network planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
		4.3.6 Network installation and start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
		4.3.7 Integration in the company IT infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
		4.3.8 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
		4.3.9 Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5	Outlook and further development .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 36
               5.1	International 3GPP standardisation and regulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
               5.2 Overview of 3GPP Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
               5.3 Future aspects of 5G  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
               5.4 Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6              Notes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 43
               6.1                 Abbreviations and important 5G terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
               6.2                 References and additional literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
               6.3                 Links to projects, organisations and initiatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
               6.4                 Authors and contact persons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4

1 Summary
S U M M A RY           5

The term 5G Campus Network defines a geographi-                                                     nications provide new means for using the flexibility
cally limited, local mobile radio network adapted to                                                gained to achieve greater productivity.
special requirements, for example industrial commu-
nication. 5G technology and the use of dedicated fre-                                               Industry is currently conducting a lively debate on the
quencies make it possible to fulfil the highest stand-                                              technical framework for feasible operating models
ards of service quality regarding latency, reliability                                              and the resulting value added provided by 5G Cam-
and availability of communication networks. This                                                    pus Networks in industrial value creation. On the one
makes 5G Campus Networks attractive for applica-                                                    hand, the industrial sector is gaining more and more
tions in various industrial sectors. For this reason, they                                          expertise regarding these technologies, yet the variety
are an important impetus for the factory of the future                                              and breadth of such networks lead to many questions
and currently are the topic of numerous reports in the                                              regarding suitable applications and the factors for
media.                                                                                              success – and accordingly, the relevant criteria for
                                                                                                    choosing the right technology.
The factory of the future – ‘smart factory’ – will rely
on a technologically much more sophisticated com-                                                   5G is not only an innovative radio technology that
munications infrastructure. Figure 1 shows solution                                                 offers a broader frequency spectrum. It is the com-
modules for creating reliable communication net-                                                    bination with new technologies such as the Internet
works between machines, processes, robots, products,                                                of things (IoT), the demand-oriented and automated
tools and humans. In contrast to wired networks,                                                    distribution of IT resources (Mobile Edge Cloud) and
mobile network solutions allow for more flexible and                                                artificial intelligence (AI) that enables 5G Campus
dynamic manufacturing processes. Mobile commu-                                                      Networks to provide new technologies and services

   Figure 1: E
              xample for solution modules of a 5G campus network as envisioned in
             the IC4F project

                                                                                                      Public4G/5G
                                                                                                                                       Certificate provider for
                                                                                                                                       industrial communication

                                    Private 4G/5G local                                                                                                           Public Cloud
          Unlicensed and
          sub-licensed band         wireless access points

   Integrated High Accuracy
   Indoor Posiitioning
   (HAIP)

                                                                                      Internal
                              Edge-Cloud                                              Enterprise-
                                                                                      Cloud              Hybrid Cloud                Multi-Operator
                                                                                                         with public sh
                                                                                                                      hare           Environment

                                                                                                                                                                      End-to-End (E2E)
                                                                               Privatee 4G/5G Base Transceiver                                                        Industrial Slice
                                                                               Stationn including local Gateway                                                       QoSvia public
                                              x500                             and inttegrated PaaS,                                                                   infrastructure
                                                                               IoT Plaatform and Analytics
                  New IoT authentication
                                    ti
                                                          Automation Gateway
                  mechanisms
                                                          (Operational Technology)

                                 Interface to local applications                                                         Real-time remote control
                                 (ERP/MES/PLM/CIM/CAx)                                                                   and mainteenance

   Source: IC4F Consortium
6     S U M M A RY

that are not yet technically feasible on today’s wi-fi       cations, more and more products will be 5G-compat-
and wired networks. 5G offers exceptional features for       ible and the market will provide modules for retrofit-
5G Campus Networks in industrial environments and            ting machines. The following chapters provide facts
will become an important building block for Industrie        and insights for analysing requirements and network
4.0 as digitisation progresses.                              planning or designing a private network or campus
                                                             network. Furthermore, acquiring a radio licence and
5G Campus Networks offer a high degree of reliability,       the various possibilities of network operation will be
predictable performance and integrated security for          evaluated. Various manufacturers of 5G networks and
applications in the industrial environment. A decisive       service providers offer product portfolios for the var-
feature is seamless mobile coverage, without interrup-       ious phases of planning, implementing and operating
tions during handoffs from one cell to another, also at      5G Campus Networks.
large sites, whether inside or outside. 5G Campus Net-
works provide functionalities for supporting applica-        Chapter 2 provides a quick overview of basic technol-
tions in industrial production, that is, for applications    ogies and the frequency spectrum of 5G campus net-
with high standards regarding reliability and guar-          works. It also describes what is currently happening
anteed, short response times (low latency). Thanks to        on the market. Chapter 3 reviews use cases for various
wireless connections, the networks can be adapted at         industrial sectors that potentially represent the major
any time to changes in production conditions or in           market for 5G-Campus Networks. Chapter 4 describes
manufacturing or logistics processes.                        various solutions and provides a short description of
                                                             the basic network architecture. This is followed by a
It is necessary to conduct a comprehensive and               comparison of the various operating technologies of
detailed analysis of what the planned applications           5G Campus Networks, possible operator models and
will require, to ensure that the systems implemented         the criteria for creating and operating 5G Campus
are successful. These requirements include secure            Networks. Finally, chapter 5 describes 5G standardisa-
connections and monitoring of machines in a pro-             tion efforts and provides an outlook on further devel-
duction line, locating tools at any time, controlling        opments.
mobile transportation vehicles or creating sensors for
the logistics of goods. A formal requirement analysis        These Guidelines reflect the work of the ‘IC4F Indus-
is a significant help in identifying the best solution for   trial Communication for Factories’ flagship project
the company [1].                                             that receives most of its funding from the Federal
                                                             Ministry for Economic Affairs and Energy as part of
These Guidelines provide orientation to small and            the Industrie 4.0 initiatives.
medium-sized businesses that are looking for com-
munication solutions using 5G for their digital trans-       In the IC4F project, industrial applications using 5G
formation processes. These Guidelines contain basic          Campus Network solutions are created, tested and
concepts, terminology and applications as well as a          validated by a consortium of partners from industry
comparison of alternative operating models, to allow         and the scientific community. The consortium part-
company decision makers with an interest in this             ners have compiled their results and insights in this
technology a well-founded assessment of its potential.       paper as means of orientation for small and medium-­
In the future, in addition to the standard radio appli-      sized businesses and for any interested parties.
7

2 Introduction and Overview
8       INTRODUCTION AND OVERVIEW

The digital transformation has ushered in a number of                     Mission-critical applications that operate remotely,
new challenges that give communication networks an                        controlling manufacturing systems, e.g. in industry
important role. Machines, tools, products and humans                      automation and in the smart grid, as well as con-
involved in the creation of value are interconnected.                     trolling autonomous vehicles requires substantially
This fundamental transition makes current informa-                        greater reliability of communication services and far
tion and knowledge regarding processes, manufac-                          less latency.
turing and products available to the whole operation
and reliably directs data processing power to the areas                   In order to fulfil these requirements and achieve
where it is needed.                                                       industrial productivity gains, communication net-
                                                                          works must have enhanced capabilities:
The rapidly expanding number of smart devices
and systems as well as the ongoing development of                         •   Network access: various access technologies
business applications require substantially greater                           (wireless, wired and optical) must work together.
bandwidth, in order to provide larger amounts of
information on system status and the operating envi-                      •   Elasticity: networks will become dynamic and
ronment. The following provides a short description                           programmable. When new sites are added, man-
of the important technological requirements. Figure 2                         ufacturing facilities are modified, production
shows the categorisation of the main improvements                             processes are dynamically (re-)organised or
in communications technology.                                                 requirements for network quality fluctuate, the

    Figure 2: The digital transformation defines requirements for further development
              of 5G networks

                Bandwidth
                                                                                   Local delivery of services with global reach
      10 Gb/s            360° Video      VR+VRAN+vehicles                          • New global-local value chains
                                                                                   • Disruptive, innovative business models
                                                                                   • Local service performance,
    100 Mb/s
                                                                                     efficiency and customization

      1 Mb/s

      10 kb/s
                       People & Things    Systems, Control      Latency

                10 s      1s    100 ms   10 ms     1 ms        100 µs

                 Core Cloud                       Edge Cloud

    Source: Nokia
INTRODUCTION AND OVERVIEW            9

     communication network must automatically                5G introduces new technology to the following areas:
     adapt and computing capacity will be provided
     dynamically in local edge and hybrid clouds.            •   New radio interfaces (5G New Radio):
                                                                 5G provides improved performance especially
•    Powerful: the network should provide controlla-             with a new method for radio interfaces (5G New
     ble connections with a predetermined Quality of             Radio). The efficient use of varying, sometimes
     Service for all applications being used, regardless         completely new and non-contiguous frequencies
     of the varying requirements of the applications.            is a major challenge for 5G New Radio. Expanded
                                                                 coding and multiplexing processes help improve
•    Failure-safe: the network should ensure availabil-          performance with respect to throughput, latency
     ity for mission-critical applications. Reliable oper-       and energy efficiency. Another feature of 5G New
     ation of between 99.99% and 99.9999% availability           Radio is ‘Massive MIMO’. MIMO (Multiple Input
     is a condition for productivity and operational             Multiple Output) is an antenna technology that
     safety.                                                     can achieve data transmission rates of up to 10
                                                                 Gbps by using hundreds of antennas in a single
•    Security: networks are a part of the enterprise             base transceiver station. The greater the number
     security solution. Data security is a primary               of antennas used on the base transceiver station,
     requirement for security. A smart network struc-            the more data streams can be processed and the
     ture helps minimise specific threats to security.           more terminal equipment can be served simulta-
                                                                 neously. At the same time, the transmitting power
•    Scalability: networks should be designed to                 can be reduced and the data rate increased. These
     anticipate expanding bandwidth, processing and              additional antennas that parallelise processing of
     other capabilities, and should adapt accordingly.           digital signals make it possible to concentrate the
     Extensive data surveys provide a deeper context             energy used for sending and receiving signals on
     and higher value, and each investment cycle will            continually smaller areas – this is called beam-
     undoubtedly see many convincing new applica-                forming. Several antennas are used to create a di-
     tions.                                                      rected signal to reach a specific receiver. This re-
                                                                 ceiver profits from the signal gain and improved
                                                                 interference cancellation. With the help of these
2.1 5 G Campus Networks:                                        techniques, 5G New Radio provides higher band-
    a technological overview                                     width than previous radio techniques, lower la-
                                                                 tency and a significantly higher number of termi-
From a technology point of view, 5G is a step-by-step            nal devices per area.
enhancement of 4G mobile radio technology, which
already incorporates the applicability to vertical mar-      •   Expansion of the core network (5GC):
kets in its architecture. In the 5G network architecture         A new service-based architecture is being intro-
there are various phases of implementation. The 5G               duced that allows for agile network configuration
Non-Stand-Alone architecture (NSA) continues to use              for adapting to application requirements. In the
the LTE core network as a basis, but terminal devices            5G releases 16 and 17 a number of topics are being
communicate using 5G wireless technologies. Net-                 implemented that are important for 5G Campus
work control however still takes place using LTE tech-           Networks. Examples include LAN services, support
nology, and this also requires dual radio hardware in            of TSN (Time Sensitive Networking), time syn-
the network elements and terminal equipment. The                 chronisation, monitoring the service quality from
implementation phase termed 5G Stand-Alone (SA)                  the user’s side, partial configuration of the 5G net-
architecture defines a completely independent 5G                 work by users (slicing) and support for non-3GPP
mobile network infrastructure.                                   authentication for campus networks.
10      INTRODUCTION AND OVERVIEW

•   Virtualizing networks (SDN/NFV):                                   nents. SDN is the basis for prioritisation, quality of
    One new approach is to convert functions previ-                    service and slicing. NFV decouples network func-
    ously carried out by hardware to purely software                   tions from the hardware, making them exchange-
    functions. As is already the case in other areas of                able, geographically flexible and placeable. In addi-
    IT, this allows for virtualization of the networks,                tion to implementing network functions, NFV also
    which can accordingly become much more flex-                       makes it possible to execute new functions from
    ible and dynamic. Software-defined Networking                      the application layer on network hardware, for ex-
    (SDN) and Network Function Virtualization (NFV)                    ample data aggregation. 5G networks are not only
    are key features of 5G. These features make it pos-                a communication platform but can also develop
    sible for specific services to be developed, tested,               into dynamic application platforms. The entire 5G
    operated and combined into integral solutions, in-                 network accordingly is equipped with a program-
    dependently of each other. SDN separates the con-                  mable, flexible and universal infrastructure, start-
    trol and data layers in networks, which is essential               ing with the terminal equipment, including trans-
    for achieving virtualization. Networks thereby be-                 mission networks, edge clouds, the core network
    come multi-tenant capable and support a central-                   and on to ‘traditional’ cloud computer centres.
    ised view and configurations of network compo-

    Figure 3: 5 G wireless technology builds on existing 4G/LTE technology and opens up
              new possibilities in industrial manufacturing

                       DL: 1.5 Gb/s
                       UL: 300 Mb/s                                            10 Gb/s

                                                                                                 First 5G standards focusing
                                                                                                 on mobile broadband CSP
                            ,-19/:/                                             ,-19/:/
                                                                                enhanced         deployments
                             Mobile
                             >(?*4/                                              >(?*4/
                                                                                Broadband
                           @9(+2?+82
                           Broadband                                           @9(+2?+82
                                                                          R15

                           4G                                                   5G                            Expected Rel-16
                                                                                                              standards and
                                                                                                              terminals in 2022
                                                                 massive                      critical
           IoT & Sensors               Machine                   machine                      machine
                                       communication        R17+ communication          R16   communication

           eMTC & NB-IoT        Latency
INTRODUCTION AND OVERVIEW         11

The key performance indicators of 5G networks            This makes it possible for the first time for many
exceed those of 4G/LTE in three dimensions (Figure 3):   industrial companies to create their own, custom-
                                                         ised network that is adapted to their applications and
•    eMBB – enhanced Mobile Broadband: data              needs.
     volumes attain 10 Tbps/km2 and peak data rates
     of 10 Gbps                                          The licence fee is calculated using the formula: €1000
                                                         + B · t · 5 · (6 · a1 + a2). “B” is the bandwidth in MHz
•    mMTC – massive Machine-Type Communications:         between 10 MHz and 100 MHz in intervals of ten; “t”
     high IoT terminal equipment density of one mil-     is term of the contract in years; and “a” is the surface
     lion/km2 and optimal energy consumption of 10%      in km2, whereby there is a difference between resi-
     for LTE systems                                     dential and traffic areas (a1) and other areas (a2) [2].
                                                         A10-year frequency assignment of 30 MHz for an area
•    URLLC – Ultra-Reliable Low-Latency Communi­         comprising 25 ha (500m x 500m) would accordingly
     cations: one-directional latency below 1 ms,        cost €3,250 (residential area), which corresponds to an
     availability of 99.999%                             annual fee of €325.

                                                         More information is available on the Bundesnet-
2.2 Local spectrum                                       zagentur website [3], including detailed administra-
                                                         tive provisions [2], application forms and fee models.
Industrial customers are increasingly interested in
more flexibility in controlling and managing their
company processes. Wireless communication and            2.3 Current market developments
connectivity play a key role in this, and access to
frequencies is decisive.                                 Market participants and their associations are cur-
                                                         rently very interested in 5G campus networks. Mar-
In the summer of 2019, a two-phase process for           ket forecasts indicate a demand of between 5,000
awarding frequencies was initiated by the Bundes­        to 10,000 5G campus networks in Germany by 2025,
netzagentur. First, a 5G frequency spectrum for use      whereby the majority of these networks will be used
in Germany was awarded in an auction to the mobile       by small and medium-sized enterprises [4]. Accord-
network operators Deutsche Telekom, Telefonica and       ing to a survey conducted by the German Mechanical
Vodafone as well as 1&1 Drillisch.                       Engineering Industry Association (VDMA), about 35%
                                                         of the companies surveyed have already decided to
Then an allocation scheme for local 5G frequencies       create 5G campus networks. Of these, around 50%
was started. The Bundesnetzagentur reserved an           want to install a network on their own, and around
additional 100 MHz frequency band of 3.7 to 3.8 GHz      20% want to operate it themselves.
exclusively for local and campus networks. The allo-
cation procedure allows for awarding frequency           The market for 5G campus networks is currently in
blocks exclusively to one or several plots of real       the initial phase, now that spectrum can be acquired
property if requested and under certain conditions       and commercial components become available. The
[2]. According to the desired network solution and       following includes a few examples of articles and
network design, industry and service providers have      studies that illustrate market activity from various
various options for collaboration.                       perspectives:
12     INTRODUCTION AND OVERVIEW

•   In a White Paper, 5G-ACIA describes various in-        •   T-Systems describes IIoT scenarios for 5G Campus
    troduction scenarios for 5G Campus Networks for            Networks to enable use of Industrie 4.0 applica-
    IIoT (Industrial IoT) applications that were agreed        tions [11]. Slicing in the context of campus net-
    on by 3GPP. This White Paper was published in              works is described in the document 5G Campus
    July 2019 [6].                                             Networks – LTE and 5G-Technology for local com-
                                                               pany networks [12].
•   The VDMA, Europe’s largest industry association,
     is preparing a publication for Q2 2020 on the topic   When using cellular technology, especially in the
    ‘5G in Engineering’ [7]. Several IC4F project part-    higher frequency bands reserved for 5G, there are
     ners are involved.                                    some concerns about potential effects on humans
                                                           and the environment. According to the Federal Office
•   Arthur D. Little expects industrial demand and         for Radiation Protection, many findings from stud-
    regulatory changes to open up new possibilities        ies on the possible effects of electromagnetic fields
    for established network suppliers and operators,       generated by mobile communications are applicable
    as well as offering new providers the opportunity      to some extent to 5G. This relates in particular to all
    to enter the market with specific components and       frequency bands up to 3.6 GHz. It is also expected that
    solutions for 5G Campus Networks [8].                  future frequency bands of 26 GHz, 40 GHz or up to
                                                           86 GHz will not create a health hazard if they remain
•   Network operators such as Telekom are working          below the current maximum permissible levels [13].
    on 5G campus networks that guarantee high avail-       Bitkom also sees no health hazards from electromag-
    ability, provide high bandwidths for industrial IoT    netic fields with the frequencies used by 5G cellular
    processes, fast response times and that satisfy the    systems if the current maximum permissible levels
    requirements for mobile applications [9].              are adhered to.

•   The Bundesnetzagentur has published calcula-
    tions for 5G campus network charges, which were
    noted by the Federal Association for Broadband
    Communication, among others, as being “moder-
    ate” [10].
13

3 N
   ew application scenarios
  with 5G
14    N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G

3.1 Use in manufacturing                                         flexible sensor systems can be linked directly to con-
                                                                 trol units of autonomous robots and problems related
Industrie 4.0 and changing markets and customer                  to control or production can be predicted in advance.
expectations are raising new challenges to the man-              The systems themselves can also be controlled with
ufacturing environment as it exists today. Manufac-              low-latency connections. High availability and reli-
turers and their suppliers are looking for more agility          ability of 5G communication can even facilitate the
and ability to forecast in order to improve just-in-             mobile and flexible use of security-relevant processes.
time production and to better serve rapid changes in             The high data rates make it possible to use high-res-
consumer demand. In view of the slowdown in pro-                 olution camera systems in manufacturing and con-
ductivity growth, manufacturers are looking for more             trolling, to deliver real-time and reliable information
efficient ways to manage supply chains and logistics,            on the quality of the product and status of produc-
to create more agile manufacturing and to support                tion. An extensive list of use cases in production can
their employees with modern technology. Many man-                be found in publications [15] and [16]. Numerous use
ufacturers are already largely automated, yet their              cases are being implemented in the IC4F project [17].
assembly line robots and automated transportation
vehicles are tied to static workflows. The next gener-
ation of industrial automation promises to optimise              3.2 Use in intralogistics
production, making it easier to modify workflows and
quickly adapt production equipment to new require-               5G provides new use cases for intralogistics, in par-
ments, even for small lots, down to production of                ticular for mobile industrial applications that have
individual items, which requires fast conversion.                not been possible up to now. These are not the tra-
                                                                 ditional fleet management systems for forklifts and
In addition to connecting machines, it will be impor-            conveyors with their customary time and volume
tant to include goods, products, tools, transportation           requirements that can also be run on 4G or WLAN –
vehicles and employees in the digital transformation             the new systems are usually autonomous. For one
in order to be able to access information at all times           thing, it is highly likely that the number of these sys-
regarding the status and progress of the manufactur-             tems will sky-rocket in the future, and for another,
ing process. Interconnected sensors and actors, tools            they will need to manage increasingly complex tasks,
and machines (Industrial IoT), analytics, methods for            as they take over humanoid tasks to improve produc-
artificial intelligence and machine learning are prom-           tivity. Autonomous systems of the current generation
ising in view of the improvement to real-time infor-             are usually extremely self-sufficient and therefore
mation and control of automated processes. When                  require only a limited mobile connection. The tasks of
this data and information is combined, a digital image           calculating routes, localisation, strategies for solving
of production processes, that is, a digital shadow or            problems and safety functions are directly integrated
digital twin is created. Analysis, understanding and in-         in the vehicles. As a rule, only destination coordinates
terpreting the data and information collected makes              and task data are transmitted from outside the vehicle,
it possible to initiate action and changes that can help         and a limited amount of operating data is retrieved.
improve production or operating efficiency and help              The next generation of autonomous vehicles will
make decisions.                                                  benefit from 5G, because edge cloud computing pro-
                                                                 vides a powerful and highly stable communications
5G promises to fulfil these expectations. 5G can for             connection that will make it possible to outsource
example interconnect a multitude of sensors so that              partial functions. In the first place, functions related
N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G   15

to calculating routes and providing information for         3.3 Use in logistics
maintenance will be reallocated. New AI strategies
can therefore receive the necessary data and real-time      3.3.1 Transport in ports
intervention on the basis of digital twins will be feasi-
ble. Latency of less than 10 milliseconds and handover      Today, approximately 90% of global goods accord-
times of 1 millisecond allow for seamless communica-        ing to weight are transported by sea [18]. Container
tion and are essential conditions for this development.     ports play a decisive role in managing fluctuations in
The advantages of managing large fleets of automatic        traffic and ensuring quick processing for customers.
guided vehicles (AGVs: driverless vehicles) are reduc-      The scope and advantages of digitalisation are enor-
ing processor capacities in the vehicles, the nearly        mous, because a large part of current operations is
limitless capacity for data storage, and outsourcing of     based on manual processes. Many of these ports have
data-intensive image processing, for example. Solu-         begun to rely increasingly on automation, in order
tion strategies that are necessary for operating such       to improve processes, efficiency and the security of
large fleets can therefore be moved to the edge cloud,      the goods they move. When a ship with more than
where all vehicle data is available. Plans for the next     20,000 containers docks in a port, the goods must be
but one AGV generation envisage to move the security        unloaded quickly and securely for further transport.
systems into the global context, which will make it         Automation and digitalisation make it possible for
even easier to manage individual AGVs.                      ports to manage the enormous volumes of data that
                                                            come with ship containers and that must be gener-
When providing the relevant infrastructure for auton-       ated for the onward journey. Several companies are
omous systems, there are certain conditions that            frequently involved in the activities, each company
must be met to facilitate operation. Large fleets with      with its own demand for dedicated connectivity in
data-hungry communication must have access to a             the port. Further­more, these efforts must be closely
large number of 5G cells. The cellular network must         coordinated. The first application that is most often
be redundant to be able to relocate security-related        requested is to create a real-time overview of port
functions and avoid production downtimes for cen-           operations, using cameras in order to give despatch-
tral control.                                               ers the possibility of operating cranes and straddle
                                                            carriers. These cameras are also used to assess the
In addition to these technical possibilities, however,      condition of the containers upon arrival and to pre-
extensive standardisation will be necessary to imple-       vent theft in the port. In future, ports will need to
ment such extensive systems. Whereas a 5G Campus            use remote-controlled, automated heavy goods vehi-
Network involves a uniform communication infra-             cles, straddle carriers and cranes, in order to further
structure, companies usually use vehicle fleets with        improve efficiency and security.
a mix of brands from various manufacturers. All of
these systems must therefore behave uniformly on            3.3.2 Rail and trucks
the various communication levels and have a uniform
security concept. This will require adapting many           Automation of logistics begins at ports or airports,
interfaces in the future. Furthermore, various service      but people live in the cities. To get from the ports to
channels will be required for manufacturers, so that        the cities, modes of transportation such as the rail-
their complex systems can be properly maintained.           road and trucks are used. Here, too, automation and
                                                            connectivity are increasing in order to improve both
16    N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G

efficiency and security. Train stations have quick and           3.5 Applications for power utilities
flexible communication between the infrastructure,
the trains and also personnel and are able to react              Creating a secure and reliable energy supply from
more quickly to service interruptions, prioritised               energy sources that often fluctuate requires mon-
transports and unforeseeable incidents. A fully inter-           itoring and control of devices installed in private
connected smart camera system that can read out                  households, companies and distribution networks,
images in real-time and is connected with the control            at a speed and volume that greatly exceeds current
system can prevent accidents involving passengers,               parameters. This switch will lead to radical changes
but also avoid congestion by switching trains or add-            in network functions and business models. Major
ing train cars without interrupting service. In addition,        amounts of power are generated in consumer build-
a wide selection of updated information and multi-               ings and independent decentralised locations, with
media products can be made available to passengers,              the consequence that power from the neighbourhood
because the central controlling system is continually            and the municipality is exchanged. Retail markets for
updated on all incidents and delays and can flexi-               energy are being created to facilitate real-time energy
bly manage rail routes. In train stations in particular,         transactions with the help of blockchains and to make
5G provides a wide range of possibilities to the large           it easier to conduct these transactions.
number of users who at the same time benefit form
high data rates and low latency.                                 Widespread automation, use of data analysis to sup-
                                                                 port new supply applications and use of expanded
                                                                 information systems by sales personnel will change
3.4 Applications in the Smart City                               utilities operations. Enormous sums were invested
                                                                 in the centralised energy network of the past. Now
Now available in the city, 5G provides limitless pos-            this infrastructure – originally conceived for one-
sibilities and business models for companies and                 way power flows – must manage bidirectional energy
private individuals as well. The gain in convenience             flows. It is essential to protect existing assets to keep
is immense when a reliable internet communication                energy costs low for consumers. Accordingly, utilities
link connects everyone to everything. This could be              must provide a number of sensors and controllers
individuals amongst each other, individuals with the             to ensure that their networks are not congested and
infrastructure but also the infrastructure with itself.          power quality is maintained. There are myriad possi-
A few examples for interconnected infrastructure                 bilities for digital efficiency in the power grid.
include vehicles, traffic lights, door, supermarkets and
much more. The various improvements offered by 5G
compared with previous generations of mobile com-                3.6 Applications in mining
munications can be implemented to the maximum
and, especially in private campus networks, provide              In a strong economy, mining benefits from an
a huge potential for operators of shopping centres,              unquenchable thirst for minerals. Under favourable
schools, office complexes, and also for entire inner             economic conditions, productivity in mining is lim-
city infrastructures, where reducing dependence on a             ited mainly by bottlenecks in mineral extraction or
public infrastructure opens up many opportunities.               in the supply chain. The industry is also burdened
                                                                 with exorbitant operating costs and cost of capital.
                                                                 These factors are forcing mining to achieve every
N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G   17

greater efficiency. The risks inherent in the mining      3.8 Mobile campus networks
environment (dust, use of highly explosive material,
extremely high temperatures and moving heavy              Some areas such as agriculture or construction sites
equipment) leads to a strong emphasis on work safety      cannot be served with permanently installed pri-
in this industry.                                         vate infrastructure or a slice of the public network.
                                                          The latter is usually due to the fact that there are still
The need to continually improve safety, productivity      large areas with only sporadic cell coverage or none
and efficiency leads to an unprecedented demand           at all. However, to be able to use modern technology
for digitalisation, automation and optimisation of all    and efficiency-boosting processes, it is important to
aspects of mining operations, from the pit to the port.   ensure reliable connectivity in the field or at the con-
Introducing automation to open-pit mining has led to      struction site, with high data rates and low latency. It
an improvement in operating efficiency.                   is important that applications can be run locally and
                                                          independently, because often only a satellite con-
                                                          nection with low data rates is possible, or a partially
3.7 Applications in medicine                              active directional radio connection. In addition, appli-
                                                          cations for event technology can be implemented
To meet future challenges of demand-driven and per-       with mobile private 5G networks for mobile events
sonalised medicine, the advantages of digitalisation      (e.g. concert festivals) [19].
must also be efficiently applied to the health sector.
It will be decisive to use appropriate communication      3.8.1 Applications in agriculture
infrastructures. In addition to the technical require-
ments of various medical applications, data security      In modern agriculture, terms such as ‘smart farming’
is also a key requirement of the communications net-      and ‘precision farming’ are prevalent. However, tradi-
work.                                                     tional mobile radio applications using wide area net-
                                                          works are not capable of sufficiently supporting such
5G offers enormous connectivity and high speeds,          applications. Mobile campus networks on private
which will help transform health care.                    frequencies make it possible to implement reliable
                                                          and high-transmission-rate mobile communications
Medical campus networks for hospitals and care facil-     in agricultural areas. This allows for interconnecting
ities provide a suitable communication framework          autonomous driving vehicle fleets, drones that cooper-
for ensuring the security of highly sensitive health      ate with each other and high-precision fertilising and
data and on the other hand, to fulfil future applica-     spraying. Because cellular coverage is only needed at
tion-specific requirements. New areas of use are in       certain times, e.g. when planting, harvesting or fertil-
particular the fast transmission of large volumes of      ising, it is important that the network is installed on a
data from medical imaging systems, expanding tele-        portable, independently run platform and is available
medicine and reliable real-time patient monitoring,       quickly and flexibly to the farmer. 5G provides these
digital assistance systems such as AR/VR or holo-         possibilities by means of private campus networks and
graphic visualisation for new operation techniques.       also facilitates many applications due to its flexibility
                                                          and configurability, such that the networks between
                                                          them do not have to stand idle at times, rather can be
                                                          used for other application scenarios.
18    N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G

3.8.2 Construction sites                                         hyperflexible manufacturing processes with cloud-
                                                                 based applications, sensors on partial levels, manufac-
Another use case is the construction site of the future.         turing execution systems (MES) and robotics. Mobile
Whereas many builders today are working at full                  factories make it possible to standardise investment
capacity because they cannot find the sufficiently               in operations technologies. The factory-in-a-box uses
qualified personnel to operate machines, in the future,          sensor networks, AR/VR applications or collaborative
a smart, autonomous excavator will be able to work               robotics, depending on the production phase. The
on its own. The needed information for operation will            connection of the factory-in-a-box to cloud services
either be provided locally with an edge cloud on-site,           for each machine being used or to higher levels of the
or using a connection to the company’s own cloud or              company infrastructure is possible at almost any loca-
a cloud operated by the machine manufacturer. Here,              tion, thanks to 4G and 5G radio technology.
too, mobile campus networks are the cornerstone for
such applications, because they enable networks to
be set up flexibly in areas where there are insufficient         3.9 Summary of requirements
networks or the existing network does not satisfy the
requirements for latency or data rate. This is particu-          The 5G use cases described here are quite varied.
larly necessary when several construction machines               To facilitate comparison of use cases, their specific
shall interact with other machines or even with                  requirements are listed in Table 1, broken down by
workers in collaboration. Only local, custom-config-             number of terminal devices, required data rate and
ured networks can satisfy the requirements of such               latency. The uses can be divided into three big catego-
constellations. Mobile campus networks can ensure                ries. The first use case is motion control. This means
safety at construction sites, improve efficiency and             the direct and highly precise control and regulation
shorten construction time. A construction machine                of actuators. This requires very low latency between
that is waiting for an operator or to be transferred             transmission and reception of a control command, in
to a different construction site will be a thing of the          order to avoid dysfunction. However, it is not nec-
past. High connectivity and high-precision GPS and               essary to have a large number of user devices or a
5G-controlled localisation will improve the utilisation          high data rate. The second area of use is autonomous
of these machines exponentially. These approaches are            vehicles that are not on public roads and that can
currently being addressed in the DigitalTWIN project             drive autonomously. This includes intralogistic AGVs,
[20].                                                            autonomous drones and tractors in agriculture and
                                                                 autonomous construction machines such as excava-
3.8.3 Mobile factory                                             tors. These application cases are characterised by high
                                                                 data rates and relatively good latency, yet with less
A mobile factory is a self-contained production unit. It         end devices involved. The third group are large Inter-
consists of serviceable modules in the form of freight           net of Things networks with a large number of partic-
containers that can be set up and installed at a selected        ipants, but low data rates and high, acceptable latency.
site in very short time [21]. Successful use cases for
this ‘factory-in-a-box’ are production lines in the elec-        The application cases for ports are not listed in Table
tronics industry, the consumer goods sector and the              1, but they can be evaluated by combining all three
food and drinks industry. The factory-in-a-box utilises          application types described. To monitor containers on
various concepts that are key to Industrie 4.0, such as          the port property, a large number of sensors is nec-
N E W A P P L I C AT I O N S C E N A R I O S W I T H 5 G   19

essary to transmit the position of the containers and      trucks, autonomous vehicles are used that have com-
the temperature of cooling containers. To transport        munication requirements similar to those of intralo-
containers on the port property and reload them onto       gistics.

Table 1: Requirements for 5G in individual use cases

Use case                                                  Number of                Data rate                   Latency
                                                          terminal devices

Machine control (Motion control)1                         100                     100 kbps                     2 ms

Intralogistic AGVs1                                       100                     10 Mbps                      20 ms

Agriculture (autonomous drones and tractors) 2
                                                          20                      20 Mbps                      20 ms

Construction sites (autonomous construction equipment)2   20                      20 Mbps                      20 ms

Smart City (metres, environmental sensors, IoT)           102                     100 bit/sec                  10 seconds

Energy supply (frequency control)1                        102                     100 bit/sec                  < 50 ms

1    Source: [16]
2    Numbers derived from [16]
20

4 5 G campus networks – topologies
  and operating models
5 G C A M P U S N E T W O R K S – TO P O LO G I E S A N D O P E R AT I N G M O D E L S   21

5G campus networks can be set up in various levels               as part of an MNO network (slices), with or without
of depth regarding integration with 5G mobile radio              dedicated local hardware.
networks of the national (‘public’) mobile network
operators (MNO) (see Figure 4). In addition to stand-
alone non-public (private) networks (in-house oper-              4.1 A
                                                                      rchitecture of 5G campus
ation) and virtual networks that are based fully on                  networks
public networks, various intermediate forms can also
be used. Three levels of integration describe the most           The most important network elements of a 5G net-
important types of 5G campus networks: stand-alone               work are illustrated in Figure 5. The mobile network
private networks (in-house operation), the hybrid net-           (RAN: radio access network) connects the terminal
works (partially linked to an MNO network, partially             devices across the base stations (gNB: next generation
in-house operation), and virtual, internal networks              Node B) with the user plane function (UPF) and with

     Figure 4: Frequency spectra and operator models for 5G campus networks

                    SLICE

                                        public
                                    5G MNO 3.5 GHz

            Hybrid – Shared RAN
                                    private 5G core

                                                                                                                 gNB (public MNO)
            Hybrid – Small Cells
                                    private 5G RAN

                                           local                                                                 gNB (private NPN)
                                   5G radio frequencies
                                     3.7 und 26 GHz

                  Stand-alone

     Source: IC4F Consortium
22     5 G C A M P U S N E T W O R K S – TO P O LO G I E S A N D O P E R AT I N G M O D E L S

the 5G core control plane (5GC-CP). The gNBs consist                         4.2 Operator models
of transmitting devices, the accompanying antennas
and sometimes a remote unit for signal processing.                           There are various operator models for implement-
The UPF is the gateway to controlling and forwarding                         ing application scenarios and use cases. They differ
user plane data. The 5GC-CP is the core network that                         in the various schemes for distributing 5G network
consists of a number of individual elements that are                         functions and their operation among 5G campus net-
required for separating, prioritizing and access control.                    work operators and public mobile network operators.
User identities are managed in the unified data man-                         In this chapter, important models and aspects are
agement (UDM) that contains user information and                             explained to help in the selection process of operator
specific profiles and rules.                                                 models.

An important new aspect of 5G networks is the possi-                         4.2.1 S
                                                                                    eparate 5G campus network
bility of providing local or network-based computing                               (in-house operation)
capacity using the Mobile Edge Cloud (MEC), a local
cloud infrastructure that allows applications to pro-                        In a stand-alone 5G campus network, the campus
cess programmes on-site and therefore without long                           operator becomes the local, private 5G network
delays.                                                                      operator. Setting up and operating the stand-alone
                                                                             5G campus network is the sole responsibility of the

   Figure 5: Network elements of a 5G network, operated completely separately, in-house

                                                                                                   Public
                                                                                                  5G MNO
                                                                            Company VPN
                                                                                                                          MEC      UDM
                                   private         MEC     UDM
         private                   device
        5G radio
                                                                                                                                 5G Core
       frequency                                         5G Core

                                                                                                  gNB                    UPF
               gNB                                 UPF

                                                                                                  Shared network traffic of all users
                             gNB
                                             gNB                            Internet

   Source: IC4F Consortium
5 G C A M P U S N E T W O R K S – TO P O LO G I E S A N D O P E R AT I N G M O D E L S   23

campus operator. There is no integration into the                    All network elements in Figure 6 are provided entirely
public mobile radio network.                                         by the operator of the 5G campus network and are its
                                                                     responsibility. The network operator must also fulfil
•    An individual, privately used mobile radio net-                 the obligations associated with acquiring a licence. It
     work is created, with an individual network ID                  is possible, however, to transfer these obligations to
     and strict delimitation from the public mobile                  service providers. There is no integration with public
     radio network by means of separate software and                 mobile radio networks.
     hardware, as well as using disparate radio frequen-
     cies (stand-alone).                                             Operating a 5G campus network in-house is recom-
                                                                     mended in situations in which a high level of commu-
•    The campus operator must apply for a local radio                nication with many systems is anticipated, also very
     licence issued by the national regulatory office, e.g.          high standards for reliability and availability of com-
     Bundesnetzagentur in Germany (see section 2.2).                 munication services as well as long-term operation.
                                                                     Cost estimations of such systems should include costs
•    It is permissible to use a conventional security                of setting up, operation and maintenance. The cost of
     certificate (non-3GPP).                                         creating the network are the highest in this operator
                                                                     model, because to start out with, all of the equipment
•    The network may be set up and/or operated either                must be acquired. Operating costs are usually con-
     independently or by a service provider.

     Figure 6: D
                eployment scenario as a separate 5G Campus Network (in-house operation,
               no MNO integration)

                                                                                                            Company VPN

                                            private              MEC         UDM
                       private              device
                      5G radio
                     frequency                                            5G Core

                               gNB                              UPF

                                      gNB
                                                       gNB                                                   Internet

     Source: IC4F Consortium
You can also read