EPITAG - EPIdemiological modelling and control - for Tropical AGriculture Inria associate team & LIRIMA team
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
EPITAG – EPIdemiological modelling and control for Tropical AGriculture Inria associate team & LIRIMA team 2017–2019 Suzanne TOUZEAU Samuel B OWONG BIOCORE, Inria Sophia Antipolis University of Douala, Cameroon ISA, INRA Sophia Antipolis January 2020 1 / 46
LIRIMA = International Laboratory for Computer Sciences and Applied Mathematics ◮ Before: CARI (1992–), Sarima (2004–2008) ◮ 2009–2014: 12 project-teams ◮ 2015–2019: Inria International Lab “LIRIMA” via Inria associate team programme More: https://lirima.inria.fr/ Inria associate team ◮ Aim: “fostering collaborations between Inria project teams and top-level research teams across the world” ◮ Lifespan: 3 to 6 years ◮ Exchanges of researchers and students (6 13 ke/year) More: https://www.inria.fr/... 2 / 46
Who we are BIOCORE Cameroon • Suzanne TOUZEAU (INRA) • Samuel B OWONG (Douala) • Jean-Jules T EWA (Yaoundé 1) • Jean-Luc G OUZÉ • Berge T SANOU (Dschang) • Frédéric G ROGNARD • Émile M INYAKA (Douala) • Ludovic M AILLERET (INRA) • Myriam D JOUKWE TAPI • Samuel N ILUSMAS (Douala, PhD 2015–) (INRA, PhD 2016–) • Israël TANKAM C HEDJOU • Clotilde D JUIKEM (Yaoundé I, PhD 2016–) (Inria, PhD 2019–) • Yves F OTSO F OTSO (Dschang, PhD 2017–) • Janvier P ESSER N TAHOMVUKIYE Other participants (Douala, PhD 2017–) • Clotilde D JUIKEM ◮ Yves D UMONT (CIRAD) (Douala, Master April 2018) ◮ Gauthier S ALLET (emeritus) • Michel M OUGANG (Douala, Master Oct. 2019) 4 / 46
Context • Crop pests, diseases and weeds destroy up to 40% of global crop yields every year ⇒ threat to food security • Cameroon: agriculture is a major sector for employment (62%) and revenues (30% of exports, 15% of GDP) ➥ Controlling crop pests is a major issue Control methods Pesticides: high financial and environmental cost, health issues Alternatives: cropping practices, biological control, plant resistance Why models ◮ complement field studies (costly and time-consuming) ◮ formalise and integrate knowledge ◮ help design efficient strategies for integrated pest management 5 / 46
What we do Aims Study the epidemiology and management of tropical crop diseases, mathematically and numerically, with a focus on Cameroon Approach ◮ Tools from dynamical systems and control theory ◮ Development and analysis of models to: 1. understand the plant–parasite interactions 2. identify relevant parameters 3. predict the evolution of damages 4. provide efficient and sustainable control strategies to limit damages Challenges ◮ Relevance of our models ⇒ collaboration with field experts and involvement of stakeholders ◮ “Small data” in epidemiology (scarce and often qualitatively known) 6 / 46
How we collaborate Joint PhD supervision on specific topics Long visits in France: 3 students/year, 3–5 months/visit T1. Cocoa plant mirids Myriam D JOUKWE TAPI, Douala–Cirad (2015–) S. B OWONG, L. B AGNY-B EILHE, Y. D UMONT T2. Plantain plant-parasitic nematodes Israël TANKAM C HEDJOU, Yaoundé I–Inria (2016–) J.-J. T EWA, L. M AILLERET, F. G ROGNARD, S. TOUZEAU T3. Coffee berry borers Yves F OTSO F OTSO, Dschang–Inria (2017–) B. T SANOU, S. B OWONG, F. G ROGNARD, S. TOUZEAU T4. Coffee leaf rust Clotilde D JUIKEM, MSc (2018) & PhD Inria–Douala (2019–) S. B OWONG, F. G ROGNARD, S. TOUZEAU 7 / 46
Other research topics Cabbage diamondback moth ◮ Michel M OUGANG, MSc Douala (Oct. 2019) S. B OWONG ◮ Aurélien Vanes K AMBEU YOUMBI, PhD Dschang (2019–) B. T SANOU Maize stalk borer ◮ Janvier Pesser N TAHOMVUKIYE, PhD Douala (2017–) S. B OWONG Root-knot nematodes in horticultural crops ◮ Samuel N ILUSMAS, PhD INRA (2016–) S. TOUZEAU, C. C APORALINO, V. C ALCAGNO, L. M AILLERET 8 / 46
Support Inria associate team + UMMISCO & CIRAD Grants Research schools ◮ École de Contrôle Optimal Numérique, France, 2018 [Yves] ◮ International Graduate School on Control, Italy, 2019 [Yves, Clotilde] Conferences ◮ CARI, Stellenbosch, South Africa, 2018 [Israël, Yves] ◮ BIOMATH , Bȩdlewo, Poland, 2019 [Israël, Yves, Clotilde] Mobility ◮ EMS-Simons for Africa PhD development grant, 2018 [Israël] ◮ AUF, Collège doctoral régional de l’Afrique Centrale et des Grands Lacs « Mathématiques, Informatique, Biosciences et Géosciences de l’Environnement », 2019 [Yves] PhD ◮ SCAC grant, 2017 [Janvier] ◮ Inria CORDI grant, 2019 [Clotilde] 9 / 46
SWOT Positive Negative Strengths Weaknesses • High socio-economic impact • Unbalanced exchanges Internal (academic age structure) • Motivated students, jointly supervised • Still limited scientific production (young team), fast improving • Involvement of CIRAD Opportunities Threats • Links with field partners • Administrative hindrances for Cameroonian students External • Financial support by UMMISCO • Difficulties to ensure (other) long-lasting fundings • Links with INRA • Associate Team format for partners such as CIRAD 10 / 46
Focus T1. Cocoa plant mirids Myriam D JOUKWE TAPI, Douala–Cirad (2015–) S. B OWONG, L. B AGNY-B EILHE, Y. D UMONT T2. Plantain plant-parasitic nematodes Israël TANKAM C HEDJOU, Yaoundé I–Inria (2016–) J.-J. T EWA, L. M AILLERET, F. G ROGNARD, S. TOUZEAU T3. Coffee berry borers Yves F OTSO F OTSO, Dschang–Inria (2017–) B. T SANOU, S. B OWONG, F. G ROGNARD, S. TOUZEAU T4. Coffee leaf rust Clotilde D JUIKEM, MSc (2018) & PhD Inria–Douala (2019–) S. B OWONG, F. G ROGNARD, S. TOUZEAU 11 / 46
Plantain plant-parasitic nematodes Rosendahl D. Coyne A: [Jesus, Agron Sustain Dev 2014]; B: M. MacClure, Univ. Arizona; C: [Zhang, EJPP 2012] • Major staple food – Cameroon: 2% GDP • Nematodes (Radopholus similis): root lesions ➔ great damages Most important pest on fruit crops in the tropics • Control: nematicides ↔ cropping practices (soil sanitation), tolerant or resistant banana varieties, biological control – Complex interaction model for the West Indies [Tixier et al. 2006] – Partners: CIRAD and CARBAP 12 / 46
Burrowing nematode (Radopholus similis) disease cycle [F.E. Brooks 2008] ◮ Obligate migratory endoparasite, < 1 mm ◮ Life cycle: 20–25 days ◮ Sexual reproduction & hermaphrodism (mature males not infective) 13 / 46
Plant growth New sucker flowering harvest New sucker root growth fruit growth fallow ◮ Herbaceaous flowering plant, ca. 5 m ◮ Single inflorescence that dies after fruiting → bunch 30–50 kg ◮ Cycle: ca. 11 months, 7 months until flowering ◮ Asexual reproduction by offshoots / new sucker 14 / 46
Plant root – nematode interactions New sucker flowering harvest New sucker root growth fruit growth fallow R. similis destroy roots and affect: ◮ uptake of water and nutrients ➔ reduced growth & bunch weight ◮ anchorage ➔ toppling ➥Doubly hybrid system 15 / 46
Model: initialisation New sucker flowering harvest New sucker root growth fruit growth fallow 0 d D τ T S X P S(0) = S0 plant root P(0) = P0 nematodes in soil X (0) = 0 nematodes in root Hypothesis: nematode-free sucker 16 / 46
Model: cropping season New sucker flowering harvest New sucker root growth fruit growth fallow 0 d D τ T ρ(t)=ρ ρ(t)=0 ρ(1-X/K) S δX/(S+Δ) X βS μ αδX/(S+Δ) ω γ plant root nematodes P 1-γ root growth root consumption z }| { z }| { S SX Ṡ = ρ(t) S 1 − −δ K S+∆ SX Ṗ = − βPS + δ α (1 − γ) − ωP S+∆ SX Ẋ = +βP S +δ αγ −µX | {z } | S+∆ {z } | {z } root entering mortality feeding & reproduction 17 / 46
Model: harvest New sucker flowering harvest New sucker root growth fruit growth fallow 0 d D τ T S X P S(D + ) = 0 plant root P(D + ) = P(D) + q X (D) nematodes in soil X (D + ) = 0 nematodes in root 18 / 46
Model: fallow New sucker flowering harvest New sucker root growth fruit growth fallow 0 d D τ T S X ω P Ṡ = 0 plant root Ṗ = −ω P nematodes in soil Ẋ = 0 nematodes in root ⇒ P(T ) = P(D) + q X (D) e−ω τ 19 / 46
Model: new sucker New sucker flowering harvest New sucker root growth fruit growth fallow 0 d D τ T S X P S(T + ) = S0 plant root P(T + ) = P(T ) nematodes in soil X (T + ) = 0 nematodes in root Etc. for the next periods, with transition law: P(Tk +1 ) = P(Tk + D) + q X (Tk + D) e−ω τ 20 / 46
Analysis ◮ Model reduction and analysis (fast root infections) ◮ Local stability results for the pest-free equilibrium ◮ Exact solutions for the linearised model ◮ Conditions for pest extinction, depending on fallow duration (τ ) I. Tankam, S. Touzeau, F. Grognard, L. Mailleret, J.-J. Tewa, 2018. A multi-seasonal model of the dynamics of banana plant-parasitic nematodes. I. Tankam, S. Touzeau, L. Mailleret, J.-J. Tewa, F. Grognard, 2019. Modelling and control of a banana soilborne pest in a multi-seasonal framework. Mathematical Biosciences. In revision. 21 / 46
Optimisation ◮ Aim: maximise the cumulated yield, while minimising the costs (new suckers), on a fixed multi-seasonal time horizon (Tmax ) ◮ Control: fallow period durations (τk ) New sucker flowering harvest New sucker flowering harvest root growth fruit growth fallow 0 d D τ1 T1 T1+d T1+D τ2 T2 Tmax W(t)=0 w 0 w 0 • fixed cropping period D & fixed delay before flowering d • fixed cost of a new pest-free sucker c R T +D R T +D • seasonal yield Yk = Tkk W (t) S(t) dt = w Tkk+d S(t) dt seasonal profit Rk = Yk − c Pn Maximise profit: maxτ =(τ1 ,...,τn ) R(τ ) with R(τ ) = k =0 Rk 22 / 46
Variable fallow durations D τ1 D τ2 D τ3 D 1 2 3 4 0 T1 T2 T3 Tmax Solutions • τk ∈ [0, Tmax − 2 D] → at least 2 cropping seasons • Pests “not too abundant” Admissible fallows τ = (τ1 , . . . , τn ) such that last season ends at Tmax n + 1 complete cropping seasons → n fallows Procedure 1. Solve the optimisation problem for n = 1, . . . , nmax Pn • over the n-simplex : k =1 τk = Tmax − (n + 1)D • Adaptive Random Search algorithm 2. Select the highest profit among the nmax optima 23 / 46
Numerical application Parameter value unit Parameter value unit banana roots nematode d 210 days 1 δ 2.10−4 g.day−1 D 330 days 1 ∆ 60 g ρ 0.025 day−1 α 400 g−1 K 150 g 2 γ 0.5 S0 60 g 2 β 10−1 g−1 .day−1 banana production µ 0.045 day−1 3 w 0.3 CFA.g−1 .day−1 ω 0.0495 day−1 4 simulation P0 100 Tmax 4000 days harvest 1 [Banana cultivation guide, 2018] 2 [Serrano, 2005] q 5% 3 [Sarah et al., 1996] 4 [Chabrier et al., 2008] 24 / 46
Result ➥ Maximum profit: 54,600 CFA for variable fallows over 11 seasons (nmax = 12 cropping seasons) 25 / 46
Regulations distance to simplex centre z }| { Bounded fallow: τsup = 60 days Penalty: R̄ = R − r d(τ, τ0 ) R(τ0 ) with r = 10×dmax (penalty < “regular” profit / 10) ➥ Maximum profit: 54,400 CFA ➥ Maximum profit: 53,500 CFA over 11 seasons over 11 seasons Still 11 cropping seasons Almost no profit loss with regulations 26 / 46
Constant fallow duration D τ D τ D τ D 1 2 3 4 0 T 2T 3T Tmax Solutions Solution(s) of the optimisation problem in discrete set: Tmax − D Ξ= τ >0: ∈N D+τ Procedure Exhaustive exploration 27 / 46
Result 12 11 10 9 8 7 6 5 4 3 2 profit (CFA) τ (days) ➥ Maximum profit: 52,000 CFA over 11 cropping seasons for τ = 37 days ∈ Ξ 28 / 46
Comparisons Similar profits High final soil infestations with variable fallows 29 / 46
Conclusions ◮ Banana – nematode interaction model, with pest-free suckers planted at each cropping season ◮ Optimal fallow durations: best profit with non constant fallows (even when regulated), but minor gains and high final soil infestations I. Tankam, S. Touzeau, F. Grognard, L. Mailleret, J.- J. Tewa, 2018. An agricultural control of Radopholus similis in banana plantations I. Tankam, S. Touzeau, F. Grognard, L. Mailleret, J.-J. Tewa, 2019. Agricultural control of Radopholus similis in banana and plantain plantations I. Tankam, F. Grognard, L. Mailleret, J.-J. Tewa, S. Touzeau, 2019. Optimal and sustainable management of a soilborne banana pest. In prep. 30 / 46
Focus T1. Cocoa plant mirids Myriam D JOUKWE TAPI, Douala–Cirad (2015–) S. B OWONG, L. B AGNY-B EILHE, Y. D UMONT T2. Plantain plant-parasitic nematodes Israël TANKAM C HEDJOU, Yaoundé I–Inria (2016–) J.-J. T EWA, L. M AILLERET, F. G ROGNARD, S. TOUZEAU T3. Coffee berry borers Yves F OTSO F OTSO, Dschang–Inria (2017–) B. T SANOU, S. B OWONG, F. G ROGNARD, S. TOUZEAU T4. Coffee leaf rust Clotilde D JUIKEM, MSc (2018) & PhD Inria–Douala (2019–) S. B OWONG, F. G ROGNARD, S. TOUZEAU 31 / 46
Coffee berry borers (CBB) [Burbano, JIS 2011] Uccao Cameroun ◮ Coffee is an important cash crop in the tropics ◮ Borers (Hypothenemus hampei) mostly develop and feed in coffee berries, inducing great damages • reduction in berry quality and yield • economic losses > 500 million $/year ◮ Simulation model with crop growth and pest control [Gutierrez et al. 1998; Rodríguez et al. 2011; Rodríguez et al. 2013] 32 / 46
CBB life cycle ◮ Microscopic beetle < 1.5 mm ◮ Life cycle ca. 4 weeks ◮ 1–3 eggs/day during ca. 20 days ◮ Sex ratio 10 ~ / 1 | 33 / 46
CBB life cycle ◮ ~ bore into a berry ◮ Mating occurs inside the berry ◮ Fertilised ~ fly out to infest new berries ◮ | stay in berry [Bustillo et al. 1998] 34 / 46
Variables s z i y Single season model ◮ s(t): healthy coffee berries ◮ i(t): infested coffee berries ◮ y (t): colonizing females (outside the berries) ◮ z(t): infesting females (inside the berries) Hypothesis: males are not limiting 35 / 46
Model μ Λ β μi s y+αs z i ε y μz φ μy infestation new berries mortality sy ṡ = Λ −ǫβ −µs y + αs sy i̇ = Λ + ǫβ − µi i infected berries y + αs emergence sy ẏ = ϕz − εβ − µy y y + αs sy ż = ϕz + εβ − µz z y + αs 36 / 46
Stability of the equilibria Λ Pest-free equilibrium (PFE) µ , 0, 0 ◮ LAS → Basic reproduction number (next-generation matrix): εβϕ α1 N = 1 37 / 46
CBB control ◮ Insecticides ◮ Cropping practices: removing dropped berries, strip-picking, stump pruning ◮ Trapping Brocap R ◮ Biological control • Parasitoid (Phymastichus coffea) or predator (Cathartus quadricollis) insects A. Castillo, F. Infante [Follett et al., 2016] A. Ramirez • Entomopathogenic fungi (Beauveria bassiana) 38 / 46
Model with control sy ṡ = Λ − (1 − σ(v )) β − µs y + αs sy ẏ = ϕz− εβ − µy y y + αs sy ż = +(1 − σ(v )) εβ − µz z y + αs v̇ = −γv + h(t) ◮ Fungus load v (t) reduces the infection of healthy berries with a saturation effect: ξv σ(v ) = with maximum efficacy ξ 6 1 v +k ◮ Fungus load v (t) persists in the plantation → control h(t) ∈ [0, hmax ] 39 / 46
Optimal control Maximise the yield at the end of the cropping season s(tf ), while minimising the control costs (↔ maximise profit) & the CBB population for the next cropping season y (tf ): Z tf J (h) = ζs s(tf ) − C hθ (t) dt − ζy y (tf ) 0 yield costs CBB pop. with linear (θ = 1) or quadratic (θ = 2) costs → Pontryagin’s Maximum Principle for quadratic cost (θ = 2): p4 (t) h (t) = max 0, min − ∗ , hmax h∗ (tf ) = 0 2C → PMP for linear cost (θ = 1): bang-bang & singular control 40 / 46
Numerical application: linear cost Parameter Biological meaning Value Λ Production rate of new coffee berries 1200 berries.day−1 µ Natural mortality rate of healthy coffee berries 0.002 day−1 φ Emergence of new colonizing females 2 day−1 β Infestation rate 0.01 day−1 ε Conversion rate from coffee berries to CBB 1 female berry−1 µy Natural mortality rate of colonizing females 1/20 day−1 µz Natural mortality rate of infesting females 1/27 day−1 ξ Maximum effectiveness rate of fungus 0.8 α The interference amplitude 0.7 k Maximal amount the fungus 200 g.day−1 γ Rate of fungus decay 1/50 day−1 ζs Weight of coffee berries 2.10−3 $.day −1 ζy Weight of colonizing female 10−4 $.f emale−1 C Cost per unit of fungus 0.022$.g −1 .day hM Maximal amount fungus to apply 30g.day −1 Numerical method BOCOP direct method 41 / 46
low initial infestation y0 = 104 ~ ×10 5 (a) Healthy coffee berries ×10 5 (b) Colonizing females 3 15 y [females] y* s [berries] 2 10 s* 1 5 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) ×10 4 (c) Infesting females (d) Fungus load 4 1500 z [females] z* 1000 v [g] 2 500 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) (e) Fungus application (f) Effect of fungus load 30 1 h [g/day] 20 σ(v) 0.5 10 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) 42 / 46
high initial infestation y0 = 106 ~ ×10 5 (a) Healthy coffee berries ×10 5 (b) Colonizing females 4 15 y [females] s [berries] y* 10 2 s* 5 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) ×10 4 (c) Infesting females (d) Fungus load 3 2000 z* z [females] 2 v [g] 1000 1 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) (e) Fungus application (f) Effect of fungus load 30 1 h [g/day] 20 σ(v) 0.5 10 0 0 0 50 100 150 200 250 0 50 100 150 200 250 Time (days) Time (days) 43 / 46
Conclusions ◮ CBB-berry interaction model, for a single cropping season ◮ Entomopathogenic fungi can limit the CBB infestation ◮ Optimal control on a simple model gives a rough idea of how pest control should be applied Y. Fotso Fotso, F. Grognard, B. Tsanou, S. Touzeau, 2018. Modelling and control of coffee berry borer infestation Y. Fotso, F. Grognard, S. Touzeau, B. Tsanou, S. Bowong, 2019. Optimal control on a simple model of coffee berry borer infestation Y. Fotso, F. Grognard, S. Touzeau, B. Tsanou, S. Bowong, 2019. Modelling and optimal strategy to control coffee berry borer infestation. In prep. 44 / 46
What next PhD defenses 4 students will very soon defend their thesis (early 2020): ◮ Myriam D JOUKWE TAPI ◮ Samuel N ILUSMAS ◮ Janvier P ESSER N TAHOMVUKIYE ◮ Israël TANKAM C HEDJOU EPITAG = fairly young team, based on joint PhD supervisions ◮ Associate team renewed for 3 more years, with similar overall objectives ◮ Pursue the research topics and associated PhD theses (finishing, ongoing, starting) 45 / 46
In short French & Cameroonian researchers and students with a background in dynamical systems and control and an interest in crop diseases D. Coyne More on EPITAG: https://team.inria.fr/epitag/ 46 / 46
You can also read