Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale EnergieSpeicherSymposium 2013 13. März 2013, Stuttgart Dr.-Ing. Ursula Schließmann, Dr. Ulrike Schmid-Staiger Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart Dr. Ulrike Schmid-Staiger Fraunhofer IGB Stuttgart © Fraunhofer IGB
Microalgae as energy feedstock Algae are the most promising non-food source of biofuels – can be cultivated in seawater or brackish water on non-arable land, and do not compete for resources with conventional agriculture. Growth rate may be 5 to 10 times higher compared to plants Algae have a simple cellular structure The biomass is homogenous and free of lignocellulose A lipid-rich or starch-rich composition (40–80% in dry weight) under specific cultivation conditions possible Carbon dioxide emitted from combustion processes can be used as a source of carbon for algal growth (1 kg of dry algal biomass requiring about 1.8 kg of CO2). Different waste water streams can be used as resource for nutrients (nitrogen and phosphorous) and water Water demand for algal biomass production is lower than for land © Ernsting, GEO plants like rape seed Microalgae biomass can be harvested during all seasons. Algae biofuel contains no sulfur, is non-toxic and highly biodegradable Net energy production is possible © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Renewable Energy Directive (RED 2009/28) The “Renewable Energy Directive” (RED 2009/28) established mandatory targets of 10% share of renewable energy in the transport sector by 2020. While the Fuel Quality Directive (FQD 2008/30) introduced a mandatory target to achieve by 2020 a 6% reduction in the greenhouse gas emissions of fuels used in road transport. The contribution of biofuels towards these targets is expected to be significant, accounting for nearly 80% of the overall output. further incentives to be provided by increasing the weighting of advanced biofuels towards the RED 10% transport target compared to conventional biofuels. the contribution made by biofuels produced from municipal solid waste, aquatic material, agricultural, aquaculture, fisheries and forestry residues and renewable liquid and gaseous fuels of non-biological origin shall be considered to count four times within the EU’s 10% target. © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Cost estimation of microalgae production At 1 ha scale today: 10 € / kg At 100 ha scale today: 4 € / kg * What will be possible 0.4 – 0.7 € / kg * © Ernsting, GEO Too expensive for energetic use alone Too expensive for chemicals production Reduction of biomass production and processing costs Valorisation of biomass * according to Wijffels et al. 2010 © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Main components of microalgae Algae Proteins Carbohydrates Lipids valuable compounds • high content • storage storage lipids • pigments membrane lipids up to 50% of products: • antioxidants • mainly TAGs dry weight in ά-(1-4)-starch • different lipid growing • up to 50% of • fatty acids ß-1,3-glucan, cultures DW classes • vitamins fructanes, • all 20 amino glycerol • TAG as oil • up to 40% of • anti acids droplets -fungal, total lipids are -microbial • 20 % soluble • Low cellulose -viral 80% membrane PUFA toxins content bound Usable for valorisation of biomass © Fraunhofer IGB 5 Dr. Ulrike Schmid-Staiger
Algal components as energy carrier growing cells non-growing cells hydrophilic lipophilic hydrophilic lipophilic proteins membrane lipids proteins oil (=TAG) cell walls carotenoids cell walls carotenoids carbohydrates xanthophylls starch phytosterols phytosterols Carbohydrates as energy storage product Storage products valuable pigments compound lipids proteins valuable pigments compound lipids N- ,P- and S-limitation carbohydrates light, CO2 proteins valuable carbohydrat pigments compound es proteins lipids carbohydrates © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Algal biofuel conversion technologies Algal Biomass Conversion of Direct production Conversion of whole biomass of biofuels extracts Calvin cycle photosynthesis pyruvate NADPH ethanol butanol secreted © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Algal biofuel conversion technologies Conversion of whole Biomass Anaerobic hydrothermal Pyrolysis Gasification digestion conversion SynGas Liquid or vapor fuels Fischer- Higher Tropsch Alcohol synthesis Catalytic Catalytic upgrading upgrading Biogas Transport. fuels Liquid Hydrogen MeOH, CH4 + CO2 liquid or gas Hydrogen fuels EtOH etc. © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Algal biofuel conversion technologies Conversion of Extracts Lipids Carbohydrates Chemical Enzymatic Catalytic Fermentation Transesteri- Conversion Cracking fication Diesel Biodiesel Gasoline, Diesel Ethanol FAME Kerosene, Olefine Aromatics © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Demands to sustainable microalgal Processes Energy efficient algae biomass production process strain selection, high rate of photosynthesis, fatty acid profile, photobioreactor, CO2- utilization, net energy balance Product recovery use of whole biomass or use of extracts solvents (which and quantity) extraction from wet biomass, avoiding energy intensive drying steps Residual biomass utilization free of lignocellulose, conversion to biogas by anaerobic digestion, Recycling of nutrients CO2, nitrogen, phosphate, water Water reuse quantity and quality © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Demands on an energy efficient and cost effective microalgae process Strain properties high growth rate and biomass productivity in fresh water, saline water or waste waters high productivity of metabolites for example lipids or starch product concentration i.e. oil content (> 30% TAG) or starch (> 30% ) product composition (fatty acid profile, α-1,4 starch or ß-1,3 glucan) high yield on light at high light intensities robust algae strains adapted to local environmental conditions especially temperature ease of biomass separation and processing (harvest and rupture) Chlorella vulg. lipid phase 14% 18% 10% 2% C16:0 increase of lipid C18:0 content by 35% main fatty acid C18:1n9c C18:2n6c C20:0 56% is oleic acid C18:1 total lipid content: 45 % of dry biomass © Fraunhofer IGB © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Demands on an energy efficient and cost effective microalgae process Process engineering net energy production by optimization of energy input for intermixing and distribution of high light intensities (full sunlight intensity) for a high biomass productivity one-stage production for conversion of complete biomass to energy product two-stage production for specific product formation like TAG or starch after nutrient limitation use of flue or waste gas as CO2 source use of waste water streams as nutrient source energy efficient downstream processes (harvest and extraction) possibility of obtaining other valuable compounds to valorise algae biomass © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Comparison between different Cultivation Systems System Raceway ponds Tubular reactors Flat panel airlift reactors Light efficiency Fairly good excellent excellent Temperature control None excellent excellent Gas transfer Poor Low-high Low-high Oxygen accumulation low high low Biomass concentration low high high Sterility low high high Cost to scale-up low high high Volumetric productivity low high high Energy demand per kg high high low biomass produced © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Two-stage process for lipid production 1. stage 2. stage biomass production lipid production sufficient nutrient nutrient deprivation supply accumulation of storage maximum biomass lipids productivity Fatty acid profile Chlorella vulgaris composition of lipid fraction 100% 80% C18:3 60% C18:2 C18:1 40% C18:0 C16:0 20% 0% 11 % [w/w] 48 % [w/w] © Fraunhofer IGB total lipid content © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Production of oil-rich microalgae biomass Outdoor production of oil-rich Chlorella biomass in 25 L FPA-reactors in Stuttgart Two-stage process • 1st stage – producing algal biomass • 2nd stage – nitrogen and phosphate limitation, high light intensity Oil production (triacylglycerides) • Fatty acid content up to 55% © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Biomass production phase 12 biomass concetration Maximum Average 10 Biomass [g DW L-1] 8 concentration 10.0 4.7 6 [g DW L-1] 4 Vol. biomass productivity 0.98 0.57 2 [g DW L-1d-1] 0 Biomass 0 20 40 60 80 productivity cultivation time [d] based on 21.2 12.4 illuminated 30 reactor surface [g DW m-2d-1] [MJ m-2 d-1] irradiance 20 10 Light yield PAR 0.94 0.45 [g DW EPAR-1 ] 0 1 Einstein [E] equals 1 mol photons 0 20 40 60 80 cultivation time [d] © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Lipid production phase – lipid content 60 50 lipid content % (w/w) 40 30 100% composition of lipid 20 80% others 10 60% C18:3 fraction C18:2 0 40% C18:1 0 2 4 6 8 10 12 14 16 20% C18:0 cultivation time [d] C16:0 initially 1.1 g DW L-1 0% initially 2.3 g DW L-1 53.7% total lipid content initially 3.6 g DW L-1 © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Biogas from algae biomass From Mussgnug et al. 2010 J.Biotechnology Table 1 Summary Problem: hoher Proteingehalt führt zu hohen Ammoniumkonzentrationen (> 1,5 g NH4/l) Problem: • high protein content results in high ammonium concentrations (> 1.5 g NH4/l) • composition and rigidity of cell wall influences degree of cell rupture and biomass degradation rate © Fraunhofer IGB 18 Dr. Ulrike Schmid-Staiger
Hydrothermal gasification of microalgal biomass to methane from Paul-Scherrer-Institut, Villigen- CH © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Hydrogen production with microalgae • unique, environmentally friendly energy carrier • currently 500x109 cubic meters of H2 per year are are used in industrial processes world wide • 90 % is derived from fossil resources (natural gas) • Hydrogen production via microalgae: development is on the level of research • green algae • actual H2-production with microalgae: 2 ml H2/L/h • current market price: 1€/kg H2 • yield of H2 with microalgae needs to be increased 100-fold • In comparison: cost of algae lipids need to be increased 10-fold © Fraunhofer IGB 20 Dr. Ulrike Schmid-Staiger
Water demand - comparison of energy crops and microalgae Outdoor, solar Corn, Sugarcane Switchgrass Rape Tetraselmis Arthrospira demonstrated values grains and mixed seeds suecica (Cyanob.) prairie (Alge) * grasses Produktivity (t DW/(ha*a) 7 73 - 87 3,6 - 15 2,7 38-69 27a; 60-70b Produktivity raw energy 120 1230 - 1460 61-255 73 700-1550 550, 1230- (GJ/(ha*a) 1435 Main components Nonrecalcitrant 70 30 5 - 12 11c - 47d 15c - (50)d carbohydrates (%) Lipids (%) 4-6 13 1-2 42 (23)c - (15)d 5c - (13)d Proteins (%) 6 -12 (68)c - (28)d 72c - (27)d Water usage (L/ kg DW) 565 89 - 118 50 3390 310 - 570 Water usage per energy 33 5-7 3 200 18 - 34 (L/MJ) a cultivationin seawater, not optimized; in Mexiko Water demand in PBR : < 100 L / kg DW b optimized cultivation in raceway ponds in Israel c growing algae with sufficent nutrient supply or 5 L / MJ d with nutrient limitation results in accumulation of storage products According to Dismukes et al. 2008 © Fraunhofer IGB Current Opinion in Biotechnology 2008, 19:235–240 Dr. Ulrike Schmid-Staiger
Conclusions and outlook Biofuel quality fatty acid profile, ethanol, hydrothermal processes, biogas Protection of climate CO2 mitigation from flue gases or industrial fermentations Costs too expensive up to now reduction of CAPEX and OPEX is mandatory net energy production Sustainability Recycling of nutrients (CO2, nitrogen, phosphate, water) Water usage valorisation of biomass © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
[www.meteonorm.com] Energetic use of microalgae – projects all over the world © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Thank you for your attention Dr.-Ing. Ursula Schließmann ursula.schliessmann@igb.fraunhofer.de Dr. Ulrike Schmid-Staiger schmid-staiger@igb.fraunhofer.de www.fraunhofer.igb.de © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Links: Lichtmikroskopische Aufnahme der Mikroalge Chlamydomonas reinhardtii. Rechts: Kleinere Labor-Photobioreaktoren in denen Algen wachsen. Quelle: Kruse Neben diesem Konsortium leitet Kruse auch ein Projekt, das sich mit der Wasserstoffgewinnung aus der gentechnisch optimierten Grünalge Chlamydomonas reinhardtii befasst – mit finanzieller Unterstützung durch das Bundesministerium für Bildung und Forschung. Hieran sind ebenfalls Wissenschaftler von den Universitäten Karlsruhe und Münster sowie dem Max-Planck-Institut für Molekulare Pflanzenphysiologie in Golm (Potsdam) beteiligt. „Für die Alge ist Wasserstoff ein Abfallprodukt,“ erklärt der 48jährige. „Dadurch kann sie ihre nutzlosen Protonen loswerden. Zwei „Abfall“-Protonen verbinden sich in der Alge zu einem Wasserstoff-Molekül, das flüchtig ist und die einzellige Pflanze verlässt.“ Noch sei die Ausbeute an freigegebenem Wasserstoff nicht sehr hoch, räumt Kruse ein, doch an der Optimierung werde stetig gearbeitet. © Fraunhofer IGB Dr. Ulrike Schmid-Staiger
Bruttoenergieinhalt von Energieträgern hergestellt aus 1 kg Algenbiomasse Gross energy content of products derived from 1 kg biomass Annahmen: 20 18 biodiesel 35 % Lipidgehalt werden zu 16 + biogas biogas 18 0,35 kg FAME umgesetzt 14 19 12 50 % Kohlenhydratgehalt werden MJ/kg ethanol 10 algae biomass + biogas zu 0,225 kg Ethanol 8 12 6 biodiesel 10 ethanol 0,8 m³ Biogas aus 4 6 2 1 kg Biotrockenmasse 0 © Fraunhofer IGB 26 Dr. Ulrike Schmid-Staiger
You can also read