Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale

Page created by Ruby Rivera
 
CONTINUE READING
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Energetische Nutzung von Mikroalgen: Status Quo und
Entwicklungspotentiale
 EnergieSpeicherSymposium 2013
 13. März 2013, Stuttgart

 Dr.-Ing. Ursula Schließmann, Dr. Ulrike Schmid-Staiger
 Fraunhofer Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart

Dr. Ulrike Schmid-Staiger
Fraunhofer IGB Stuttgart

© Fraunhofer IGB
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Microalgae as energy feedstock

        Algae are the most promising non-food source of biofuels –
         can be cultivated in seawater or brackish water on non-arable land,
         and do not compete for resources with conventional agriculture.
        Growth rate may be 5 to 10 times higher compared to plants
        Algae have a simple cellular structure
        The biomass is homogenous and free of lignocellulose
        A lipid-rich or starch-rich composition (40–80% in dry weight)
         under specific cultivation conditions possible
        Carbon dioxide emitted from combustion processes can be used
         as a source of carbon for algal growth (1 kg of dry algal biomass
         requiring about 1.8 kg of CO2).
        Different waste water streams can be used as resource for nutrients
         (nitrogen and phosphorous) and water
        Water demand for algal biomass production is lower than for land          © Ernsting, GEO
         plants like rape seed
        Microalgae biomass can be harvested during all seasons.
        Algae biofuel contains no sulfur, is non-toxic and highly biodegradable
        Net energy production is possible

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Renewable Energy Directive (RED 2009/28)

The “Renewable Energy Directive” (RED 2009/28) established mandatory targets of 10% share of
    renewable energy in the transport sector by 2020. While the Fuel Quality Directive (FQD 2008/30)
    introduced a mandatory target to achieve by 2020 a 6% reduction in the greenhouse gas emissions
    of fuels used in road transport. The contribution of biofuels towards these targets is expected to be
    significant, accounting for nearly 80% of the overall output.
further incentives to be provided by increasing the weighting of advanced
    biofuels towards the RED 10% transport target compared to conventional
    biofuels.
the contribution made by biofuels produced from municipal solid waste, aquatic
   material, agricultural, aquaculture, fisheries and forestry residues and
   renewable liquid and gaseous fuels of non-biological origin shall be
   considered to count four times within the EU’s 10% target.

 © Fraunhofer IGB
 Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Cost estimation of microalgae production

 At 1 ha scale today:                       10 € / kg

 At 100 ha scale today:                    4 € / kg *

 What will be possible          0.4 – 0.7 € / kg *
                                                                         © Ernsting, GEO

 Too expensive for energetic use alone

 Too expensive for chemicals production

 Reduction of biomass production and processing costs
 Valorisation of biomass

                                   * according to Wijffels et al. 2010

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Main components of microalgae
                                               Algae

     Proteins               Carbohydrates                Lipids                        valuable
                                                                                      compounds

• high content              • storage           storage lipids                        • pigments
                                                                  membrane lipids
  up to 50% of                products:                                               • antioxidants
                                                • mainly TAGs
  dry weight in               ά-(1-4)-starch                      • different lipid
  growing                                       • up to 50% of                        • fatty acids
                              ß-1,3-glucan,
  cultures                                        DW               classes            • vitamins
                              fructanes,
• all 20 amino                glycerol          • TAG as oil      • up to 40% of      • anti
  acids                                           droplets                             -fungal,
                                                                   total lipids are    -microbial
• 20 % soluble              • Low cellulose                                            -viral
  80% membrane                                                     PUFA                toxins
                              content
  bound

                                                                   Usable for valorisation of biomass

© Fraunhofer IGB                                                           5
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Algal components as energy carrier

               growing cells                                                     non-growing cells

  hydrophilic                         lipophilic                               hydrophilic                          lipophilic

   proteins                           membrane lipids                          proteins                             oil (=TAG)
   cell walls                         carotenoids                              cell walls                           carotenoids
   carbohydrates                      xanthophylls                             starch                               phytosterols
                                      phytosterols
                                                                                       Carbohydrates as energy storage product
                                                                                               Storage products
                                                                                                                   valuable
                                                                                                       pigments   compound
                                                                                             lipids
                                                                                                                              proteins
                           valuable
                 pigments compound
      lipids

                                                     N- ,P- and S-limitation                 carbohydrates

                                                         light, CO2
                                          proteins                                                               valuable
carbohydrat                                                                                            pigments compound
    es                                                                                                                            proteins

                                                                                    lipids
                                                                                                                              carbohydrates

   © Fraunhofer IGB
   Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Algal biofuel conversion technologies

                                           Algal Biomass

           Conversion of                Direct production             Conversion of
           whole biomass                    of biofuels                 extracts

                            Calvin cycle             photosynthesis

                            pyruvate
                                             NADPH

                             ethanol
                             butanol
                             secreted

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Algal biofuel conversion technologies
                                   Conversion of
                                   whole Biomass

           Anaerobic        hydrothermal       Pyrolysis               Gasification
           digestion         conversion

                                                                        SynGas
                             Liquid or
                             vapor fuels                    Fischer-                  Higher
                                                            Tropsch                   Alcohol
                                                                                      synthesis

                             Catalytic                     Catalytic
                             upgrading                     upgrading

              Biogas        Transport. fuels              Liquid          Hydrogen     MeOH,
              CH4 + CO2       liquid or gas           Hydrogen fuels                  EtOH etc.

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Algal biofuel conversion technologies
                                         Conversion of
                                           Extracts

                            Lipids                              Carbohydrates

        Chemical                 Enzymatic         Catalytic        Fermentation
        Transesteri-             Conversion        Cracking
        fication

           Diesel                Biodiesel      Gasoline, Diesel        Ethanol
                                  FAME          Kerosene, Olefine
                                                Aromatics

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Energetische Nutzung von Mikroalgen: Status Quo und Entwicklungspotentiale
Demands to sustainable microalgal Processes

       Energy efficient algae biomass production process
                strain selection, high rate of photosynthesis, fatty acid profile, photobioreactor, CO2-
                utilization, net energy balance
       Product recovery
                 use of whole biomass or use of extracts
                 solvents (which and quantity)
                 extraction from wet biomass, avoiding energy intensive drying steps
       Residual biomass utilization
                  free of lignocellulose, conversion to biogas by anaerobic digestion,
       Recycling of nutrients
                   CO2, nitrogen, phosphate, water
       Water reuse
                     quantity and quality

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Demands on an energy efficient and cost effective microalgae process

  Strain properties
   high growth rate and biomass productivity in fresh water, saline water or
     waste waters
   high productivity of metabolites for example lipids or starch
   product concentration i.e. oil content (> 30% TAG) or starch (> 30% )
   product composition (fatty acid profile, α-1,4 starch or ß-1,3 glucan)
   high yield on light at high light intensities
   robust algae strains adapted to local environmental conditions
     especially temperature
   ease of biomass separation and processing (harvest and rupture)

                            Chlorella vulg. lipid phase
                     14%                              18%

        10%                                                      2%

                                                                        C16:0
                                                                                    increase of lipid
                                                                        C18:0
                                                                                      content by 35%
                                                                                    main fatty acid
                                                                        C18:1n9c
                                                                        C18:2n6c
                                                                        C20:0
                                          56%                                        is oleic acid C18:1
                             total lipid content: 45 % of dry biomass                                      © Fraunhofer IGB

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Demands on an energy efficient and cost effective microalgae process

  Process engineering
     net energy production by optimization of energy input for
        intermixing and distribution of high light intensities (full sunlight
        intensity) for a high biomass productivity
     one-stage production for conversion of complete biomass to
      energy product
     two-stage production for specific product formation like TAG or
      starch after nutrient limitation
     use of flue or waste gas as CO2 source
     use of waste water streams as nutrient source
     energy efficient downstream processes (harvest and extraction)
     possibility of obtaining other valuable compounds to valorise
         algae biomass

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Comparison between different Cultivation Systems

  System                    Raceway ponds   Tubular reactors   Flat panel airlift
                                                                   reactors
  Light efficiency           Fairly good       excellent          excellent
  Temperature control           None           excellent          excellent
  Gas transfer                  Poor           Low-high           Low-high
  Oxygen accumulation            low             high                 low
  Biomass concentration          low             high                high
  Sterility                      low             high                high
  Cost to scale-up               low             high                high
  Volumetric productivity        low             high                high

  Energy demand per kg          high             high                 low
  biomass produced

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Two-stage process for lipid production

                            1. stage                                                                                      2. stage
                       biomass production                                                                            lipid production

                         sufficient nutrient                                                                     nutrient deprivation
                                supply
                                                                                                              accumulation of storage
                         maximum biomass                                                                              lipids
                            productivity

                                                                             Fatty acid profile Chlorella vulgaris
                                          composition of lipid fraction

                                                                          100%

                                                                          80%
                                                                                                C18:3
                                                                          60%                   C18:2
                                                                                                C18:1
                                                                          40%                   C18:0
                                                                                                C16:0
                                                                          20%

                                                                           0%
                                                                                   11 % [w/w]          48 % [w/w]                         © Fraunhofer IGB
                                                                                         total lipid content

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Production of oil-rich microalgae biomass

                                                                        Outdoor production of
                                                                        oil-rich Chlorella biomass
                                                                        in 25 L FPA-reactors
                                                                        in Stuttgart

Two-stage process
• 1st stage – producing algal biomass
• 2nd stage – nitrogen and phosphate limitation, high light intensity
   Oil production (triacylglycerides)
• Fatty acid content up to 55%

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Biomass production phase
                   12
biomass concetration

                                                                                   Maximum          Average
                   10
                                                              Biomass
    [g DW L-1]

                    8
                                                              concentration          10.0             4.7
                    6                                         [g DW L-1]
                    4                                         Vol. biomass
                                                              productivity           0.98            0.57
                    2                                         [g DW L-1d-1]
                    0                                         Biomass
                           0   20         40        60   80   productivity
                                 cultivation time [d]         based on
                                                                                     21.2            12.4
                                                              illuminated
                   30                                         reactor surface
                                                              [g DW m-2d-1]
[MJ m-2 d-1]
 irradiance

                   20

                   10
                                                              Light yield PAR
                                                                                      0.94           0.45
                                                              [g DW EPAR-1 ]
                       0
                                                              1 Einstein [E] equals 1 mol photons
                           0   20         40        60   80
                                 cultivation time [d]

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Lipid production phase – lipid content
                         60

                         50
 lipid content % (w/w)

                         40

                         30                                                      100%

                                                               composition of lipid
                         20                                                           80%                         others
                         10                                                           60%                         C18:3

                                                                   fraction
                                                                                                                  C18:2
                         0                                                            40%                         C18:1
                              0     2   4 6 8 10 12 14 16
                                                                                      20%                         C18:0
                                        cultivation time [d]
                                                                                                                  C16:0
                                  initially 1.1 g DW L-1                              0%
                                  initially 2.3 g DW L-1                                           53.7%
                                                                                            total lipid content
                                  initially 3.6 g DW L-1

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Biogas from algae biomass

                                                                        From Mussgnug et al. 2010
                                                                        J.Biotechnology

     Table 1 Summary

   Problem:
   hoher Proteingehalt führt zu hohen Ammoniumkonzentrationen (> 1,5 g NH4/l)
     Problem:
     • high protein content results in high ammonium concentrations (> 1.5 g NH4/l)
     • composition and rigidity of cell wall influences degree of cell rupture and biomass degradation rate

© Fraunhofer IGB                                                  18
Dr. Ulrike Schmid-Staiger
Hydrothermal gasification of microalgal biomass to methane

                                        from Paul-Scherrer-Institut, Villigen- CH

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Hydrogen production with microalgae

• unique, environmentally friendly energy carrier
• currently 500x109 cubic meters of H2 per year are are used in industrial
  processes world wide
• 90 % is derived from fossil resources (natural gas)
• Hydrogen production via microalgae: development is on the level of research
• green algae
• actual H2-production with microalgae: 2 ml H2/L/h
• current market price: 1€/kg H2
• yield of H2 with microalgae needs to be increased 100-fold
• In comparison: cost of algae lipids need to be increased 10-fold

© Fraunhofer IGB                              20
Dr. Ulrike Schmid-Staiger
Water demand - comparison of energy crops and microalgae
  Outdoor, solar                           Corn,         Sugarcane          Switchgrass       Rape             Tetraselmis            Arthrospira
  demonstrated values                      grains                           and mixed         seeds            suecica                (Cyanob.)
                                                                            prairie                            (Alge)    *
                                                                            grasses
  Produktivity (t DW/(ha*a)                     7            73 - 87          3,6 - 15            2,7                38-69             27a; 60-70b

  Produktivity raw energy                     120         1230 - 1460          61-255              73             700-1550              550, 1230-
  (GJ/(ha*a)                                                                                                                              1435

  Main components

  Nonrecalcitrant                              70              30              5 - 12                              11c - 47d            15c - (50)d
  carbohydrates (%)
  Lipids (%)                                  4-6              13               1-2                42            (23)c - (15)d           5c - (13)d

  Proteins (%)                               6 -12                                                               (68)c - (28)d          72c - (27)d

  Water usage (L/ kg DW)                      565           89 - 118             50              3390             310 - 570

  Water usage per energy                       33             5-7                3                200               18 - 34
  (L/MJ)
                                                                                          a cultivationin seawater, not optimized; in Mexiko
  Water demand in PBR : < 100 L / kg DW                                                   b optimized cultivation in raceway ponds in Israel
                                                                                          c growing algae with sufficent nutrient supply
                  or      5 L / MJ                                                        d with nutrient limitation results in accumulation of storage products

                        According to Dismukes et al. 2008
© Fraunhofer IGB        Current Opinion in Biotechnology 2008, 19:235–240
Dr. Ulrike Schmid-Staiger
Conclusions and outlook

       Biofuel quality
                fatty acid profile, ethanol, hydrothermal processes, biogas
       Protection of climate
                CO2 mitigation
                from flue gases or industrial fermentations
       Costs
                too expensive up to now
                reduction of CAPEX and OPEX is mandatory
                net energy production
       Sustainability
                Recycling of nutrients (CO2, nitrogen, phosphate, water)
                Water usage valorisation of biomass

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
[www.meteonorm.com]
                            Energetic use of microalgae – projects all over the world

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Thank you for
                            your attention

                                        Dr.-Ing. Ursula Schließmann
                                        ursula.schliessmann@igb.fraunhofer.de
                                        Dr. Ulrike Schmid-Staiger
                                        schmid-staiger@igb.fraunhofer.de
                                         www.fraunhofer.igb.de

© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Links: Lichtmikroskopische Aufnahme der Mikroalge
                            Chlamydomonas reinhardtii. Rechts: Kleinere Labor-Photobioreaktoren
                             in denen Algen wachsen. Quelle: Kruse

Neben diesem Konsortium leitet Kruse auch ein Projekt, das sich mit der
  Wasserstoffgewinnung aus der gentechnisch optimierten Grünalge
  Chlamydomonas reinhardtii befasst – mit finanzieller Unterstützung durch das
  Bundesministerium für Bildung und Forschung. Hieran sind ebenfalls
  Wissenschaftler von den Universitäten Karlsruhe und Münster sowie dem
  Max-Planck-Institut für Molekulare Pflanzenphysiologie in Golm (Potsdam)
  beteiligt. „Für die Alge ist Wasserstoff ein Abfallprodukt,“ erklärt der 48jährige.
  „Dadurch kann sie ihre nutzlosen Protonen loswerden. Zwei „Abfall“-Protonen
  verbinden sich in der Alge zu einem Wasserstoff-Molekül, das flüchtig ist und
  die einzellige Pflanze verlässt.“ Noch sei die Ausbeute an freigegebenem
  Wasserstoff nicht sehr hoch, räumt Kruse ein, doch an der Optimierung
  werde stetig gearbeitet.
© Fraunhofer IGB
Dr. Ulrike Schmid-Staiger
Bruttoenergieinhalt von Energieträgern hergestellt aus 1 kg Algenbiomasse

                    Gross energy content of products derived from 1 kg biomass
                                                                                        Annahmen:

              20
              18                                         biodiesel                   35 % Lipidgehalt werden zu
              16                                         + biogas
                                                  biogas    18
                                                                                          0,35 kg FAME umgesetzt
              14
                                                    19
              12                                                                     50 % Kohlenhydratgehalt werden
    MJ/kg                                                            ethanol
              10
algae biomass                                                        + biogas             zu 0,225 kg Ethanol
               8                                                        12
               6              biodiesel
                                 10
                                        ethanol                                      0,8 m³ Biogas aus
               4                           6
               2                                                                          1 kg Biotrockenmasse
               0

  © Fraunhofer IGB                                                              26
  Dr. Ulrike Schmid-Staiger
You can also read