Emerging Technologies That Will Revolutionize Neurological Care Prof. Paolo Manganotti Neurology Clinic of Trieste University Hospital 27 ...
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Emerging Technologies That Will Revolutionize Neurological Care Prof. Paolo Manganotti Neurology Clinic of Trieste University Hospital 27 settembre 2018
Emerging Technologies That Will Revolutionize Neurological Care Neuroimaging for Neurodegenerative Disorders and Stoke Early Diagnosis and Treatment of Alzheimer’s Disease The Promise of Brain and genetic Biomarkers Healing the Brain with Neuromodulation Innovative Pharmacological and genetic Therapy Robotics for Neuro Rehabilitation Digital health and sensors for Acute and Chronic Care
Neuroimaging biomarkers, correlation with CFS biomarkers and joint analysis with high density EEG in early diagnosis and prognosis of Dementias Perfusion MRI high density EEG ASL 3T MRI
Ischemic Volume and Neurological Deficit: Correlation of CT Perfusion with the NIHSS Score in Acute Ischemic Stroke G. Furlanis, M. Ajčević ,P. Maganotti - Journal of Stroke and Cerebrovascular Diseases, 2018
Brain Oscillatory Activity and CT Perfusion in Hyper- Acute Ischemic Stroke L. Stragapede, M. Ajčević ,P. Maganotti - Journal of Stroke and Cerebrovascular Diseases, 2018
MeMoRi NET Network for Mental Rehabilitation and Motors of the Ictus The MEMORI-net project is a joint effort to improve rehabilitation strategies for patients who have suffered a stroke Rehabilitation and Cognitive performance with app
EEG findings Topographic maps showing ERD and t values. Grand average maps of ERD/ERS in alpha and beta bands during immagination of movement. Blue color coding indicates maximal ERD. T-maps of ERD/ERS in alpha and beta bands thresholded at p
High density EEG system EEG cap with 256 channels (Electrical Geodesics Inc. Eugene,OR, USA) Elastic tension structure and electrolyte solution Ag/AgCl electrodes Application time of 10-15 minutes Rate of acquisition (until 20 kHz)
Geodesic Sensor Net - Elettrodo in fibra di carbonio - Utilizzazione soluzione acquosa e potassio - Funzionamento ad alta impedenza - Amplificatori a 32 – 64 - 128 – 256 canali dedicati EGI
Geodesic Sensor Net - Utilizzazione soluzione conduttiva acqua e potassio - Spugna SuperDry ad elevata capacità di assorbimenteo acqua - Microclima di mantenimento umidità che sfrutta il calore corporeo; cica 2 ore
Multimodality approach High density EEG 256 channels Anatomical MRI 3T
Time course of the EEG source Rising phase
Time course of the EEG source Peak
EEG-fMRI coregistration fMRI measures the hemodynamic Standard EEG response related to neural activity 30 channels acquired in the brain. BOLD signal (Blood during fMRI Oxygenation Level Dependent) EEG misures neuronal currents from the EEG-fMRI coregistration system scalp with high temporal resolution (ms) but limited number of EEG channels • fMRI: high spatial resolution • EEG: high temporal resolution
EEG-fMRI coregistration system
EEG-fMRI: conventional analysis in epilepsy EEG during fMRI EEG filtered Artifact Visual subctraction detection (Allen et al., 2000) HRF fMRI map GLM Regressor (Friston et al.,1995) Mostra Desktop.scf
Reproducibility of EEG-fMRI results: overlapping regions were localized in the same Brodmann areas with 1762 common voxels in area 40 and in area 21.
•Synchronization of Neuronal Activity in the Human Primary Motor Cortex •by Transcranial magnetic stimulation: An EEG Study. Paus et al. 2001
Hd EEG and TMS
UNIVERSITA’ DEGLI STUDI DI TRIESTE DIPARTIMENTO DI SCIENZE MEDICHE, CHIRURGICHE E DELLA SALUTE Alternative splicing as a potential biomarker for Parkinson’s disease Prof. Paolo Manganotti Valentina Tommasini Prof. Emanuele Buratti Prof. Maurizio Romano Dott. Mauro Catalan
a-sinucleina La Malattia di Parkinson è una sinucleinopatia
Obiettivo dello studio Identificare biomarcatori nel sangue dei pazienti affetti da Malattia di Parkinson Ricercare variazioni dello splicing alternativo nell’RNA leucocitario
Risultati 2) Espressione genica SNCA LRRK2 PARK2 (alfa- (dardarina) (parkina) sinucleina) Causa più 50% dei PD Principale frequente di PD autosomici componente autosomico recessivi dei corpi di dominante e Lewy fattore di rischio per PD sporadico
Risultati 3) Splicing alternativo ATXN2 HSPH1 LRRFIP1 (atassina-2) (heat-shock (leucine-rich repeat protein 1) flightless-interacting Responsabile protein 1) della SCA-2 e Folding proteico fattore di Risposta allo stress rischio per SLA cellulare e PSP Henderson-Smith, A. et al. Next-generation profiling to identify the molecular etiology of Parkinson dementia. Neurol Genet (2016).
Linee di sviluppo applicative in Neurologia CLINICA DEVICE WIRELSS E SENSORI IN FASE ACUTA E DOMOTICA DEVICE ROBOTICI E NEURO-PROTESI BIOIMAGING E NEUROFISIOLOGIA GENETICA – BIOMARKERS – FARMOGENETICA
You can also read