Drosophila: an alternative model for the modeling of human pathologies and the search for new therapies - FRANCOPA
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Drosophila: an alternative model for the modeling of human pathologies and the search for new therapies Hervé TRICOIRE Unité de Biologie Fonctionnelle et Adaptative UMR8251 Université Paris Diderot/CNRS Colloque OPAL & FRANCOPA 4 Novembre 2015
DISEASE Associated genes CLINICAL STUDIES >100 M$ Disease models In vivo screening, >0.5 M$ validation of compounds Pathological mechanisms « FDA approved » library Putative therapeutic targets screening, high throughput screening, other strategies >80% of potential therapies fail in human clinical studies Incorrect modelization Genetic background S. Perrin, Nature 507 (2014) 423 Insufficient statistics
Why are animal models essential? Multicellular organisms • Cellular interactions • Non autonomous cellular events Clemmons • Long distance signalisation (hormones, doi:10.1038/nrd2359 neuropeptides, cytokines,...) • Metabolic regulation • .... Cells or isolated tissues cannot reproduce the complexity of an organism
DISEASE CLINICAL STUDIES Associated genes Studies in mammals Organoids • Sophisticated molecular Disease models In vivo screening, genetics models validation of compounds Pathological mechanisms • Ability to reproduce « FDA approved » human disease features Putative therapeutic targets library screening, • Short lifespan speed other strategies • Low cost of husbandry and experiments good statistics • Controlled genetic background
Drosophila and human pathologies 75% of genes involved in human diseases have a Drosophila orthologue 700 Keyword: disease • Neurodegenerative diseases • 600 Drosophila Cancer Number of papers per year C. elegans 500 Zebrafish • Cardiac diseases 400 • Metabolic disorders 300 Genome • Gastro intestinal diseases • sequencing 200 SCA3 Sleep disorders 100 model • Intellectual disability • …. 0 1985 1990 1995 2000 2005 2010 2015 2020 Year http://flystocks.bio.indiana.edu/Browse/HD/HDintro.htm http://flydiseasemodels.blogspot.fr/ http://www.flyrnai.org/cgi-bin/DRSC_DG_query.pl/ http://flybase.org/lists/FBhh/
Modelization of a disease: the Fly toolbox 2 - Temporal control 3 - Control of expression level Gal4GS RU486 Mutated Gal4GS protein Promoter Gal4GS Mutated human gene GOF UAS 1- Spatial LOF control c DNA UAS ds RNA
Phenotypic Caracterisation: a wide range of assays Human genetics Epidemiology Generation of a Drosophila model TISSUE DEGENERATION In vivo phenotypic caracterisation BEHAVIOR LONGEVITY
Example 1: Neurodegenerative diseases A large number of NDs have been modelized in flies McGurck et al.: Genetics. 2015 Oct;201(2):377-402 • Alzheimer disease Sentruck & Bellen: Curr Opin Neurobiol. 2018 Jun;50:24-32 • Parkinson disease • Bouleau & Tricoire: J Alzheimers Dis. 2015;45(4):1015-38 • Huntington disease and SCAs • Hewitt & Whitworth Curr Top Dev Biol. 2017;121:173-200 • Krench & Littleton: Curr Top Dev Biol. 2017;121:201-223 • Amyotrophic lateral sclerosis • Casci & Pandey: Brain Res. 2015 May 14;1607:47-74 • Monnier et al.: Int J Mol Sci. 2018 doi: 10.3390/ijms19071989 • Freidreich ataxia …. Sowa et al. PNAS 2018 115(11):E2624-E263 • Identifying modifier genes • In vivo analysis of tissue specificities • Identification of therapeutic compounds • In vivo assays for putative disease variants
Validation of new susceptibility genes in Parkinson disease Nus1: an ER membrane protein Whole exome sequencing of 39 EOPD families 39 Identification of de novo mutations 12 Filtering of variants Candidate genes 1 Screen gene variants on large PD cohorts NUS1 as a new candidate gene for PD Analysis in vivo in Drosophila models Neuronal Tango14/dNUS1 KD Locomotor activity Dopamine titer • Impairment of locomotor activity • Reduction of dopamine Neuronal • Loss of dopaminergic neurons Loss Guo et al.: Proc Natl Acad Sci U S A. 2018 Oct 22. doi: 10.1073/pnas.1809969115
Example 2: Cancer • Decoding oncogenic pathways • In vivo analysis of cellular context • In vivo analysis of the different phases of the disease • Analysis of combinatorial treatment Gonzales Nature Rev. Cancer 13, 172 (2013)
A whole-animal Drosophila platform to identify highly potent drugs against medullary thyroid carcinoma (MTC) Assay of FDA anticancer kinase inhibitors First chemical optimisation MTC model Sorafenib LS1-15 Assays in mouse Rationalized chemical optimisation Identification of pro-targets (TT xenograft assay) and anti-targets for LS1-15 by genetic screening LS1-15 APS6-45 Sorafenib « more standard screening platforms … would have led us toward different compounds” Sonoshita et al.: Nat Chem Biol. 2018 14(3):291-298
Example 3: Friedreich ataxia (FA) Most frequent recessive ataxia: 1/50000 Linked to GAA repeat expansion in intron 1 of the frataxin (Fxn) gene Frataxin is a mitochondrial protein involved in : Fxn down regulation (30%) • Fe/S complexes synthesis • Resistance to oxydative Neuronal degenerescence stress Cardomyopathy (2/3) • Iron homeostasis Diabetis (16%)
How to do a cardiac model of Friedreich ataxia in Drosophila Gal4 Promoter Gal 4 c DNA UAS ds RNA Constructions fhIR1, fhIR2 Mito-GFP UAS
Dilated cardiomyopathy model to screen for FA therapeutic compounds 50 µm + WT FA fhRNAi fhRNAi MB 30µM From Julio C. Rojas et al MB treatment protects again establishment of cardiac dilatation in Progress in Neurobiology 2012 Drosophila FRDA model and has positive post symptomatic effects Tricoire et al. HMG 23, 968 (2014) METHYLENE BLUE (MB) • Redox and antioxydant properties • Already used in clinics (methemoglobinemia, ifosfamide- induced encephalopathy…) • Behaves as alternative electron transporter in mitochondria • Protects in a rotenone model of PD Wen et al; JBC 2011
Screening of repositionnable compounds Prestwick Chemical library : 1280 repositionnable compounds Screening on the in vivo cardiac model of FA Fast screening with 8 flies (1 year) + secondary validation: +/- 30% de sauvetage de la dilatation cardiaque, p
The future of fly in human disease research • Integrating CRISPR/CAS9 technology for better disease model generation Humanizing Drosophila gene ✓ Ensuring more relevant physiological gene regulation ✓ Assaying the phenotype of human variants in conserved proteins • Implementing large scale collaborations between clinic and biological research
Integrating the CRISPR revolution for FA New FA models A CRISPR induced Freidreich ataxia fly model • Targeted mutations to accurately mimic FA • Physiological expression of fh Reduced lifespan and Epigenetic repression of Heart • Searching for new locomotor defects neighbouring genes dysfunction pathological pathways and wild-type fh-GAAs therapeutic drugs • Assaying new therapeutic strategies (CRISP mediated repeat excision)
Large scale multiple models consortium are required for diseases research Wangler et al. Genetics (2017) 207, 9–27
Rare diseases open the way Wangler et al. Genetics (2017) 207, 9–27
H. Tricoire’s lab Véronique Monnier Élodie Martin Michael Rera Maria Russi Laura Tixier
Bilan des modèles Drosophile • Des succès indéniables dans un vaste spectre de pathologies (neurodégénératives, musculaires, oncogéniques, métaboliques,…) présentant des conservations évolutives • Un rapport « qualité/prix » élevé pour le criblage dans des organismes multicellulaires ✓ Faible taille, haute fertilité fortes statistiques (40 000 individus/m2) ✓ Nombreux phénotypes criblables et génétique moléculaire sophistiquée. Nouvelles possibilités avec CRISPR/CAS9. ✓ Pas (peu) de redondance génétique ✓ Cout d’exploitation limité ✓ Adaptés aux études sur des pathologies du vieillissement Un interfaçage encore insuffisant avec d’autres chaines de criblage (HTS en cellules, autres modèles animaux) Des capacités de flux de criblage in vivo parfois trop limitées pour certains paradigmes
Les modélisations chez la Drosophile sont-elles pertinentes? • Essentiellement les mêmes neurotransmetteurs sont utilisés • Conservation fonctionnelle de certaines structures cérébrales • De nombreuses interactions cellulaires critiques (ex: neurones- astrocytes) sont aussi présentes • De nombreux mécanismes physiopathologiques semblent conservés
Limites possibles du criblage pharmacologique chez la Drosophile Administration des composés par ingestion L’élimination des composés peut être très différente entre une drosophile et des vertébrés Des composés ciblant des structures très précises de protéines de mammifères ont peu de chance d’être efficaces chez la Drosophile
Willoughby et al. Disease Models & Mechanisms 6, 521-529 (2013)
Recherche de modes d’actions + Stratégies génétiques par inactivation ou fhIR surexpression de: AconIR • Membres de la chaine respiratoire CG1970-IR mitochondriale CG9172-IR • Protéines antioxydantes CG4769-IR • Régulateur du fer mitochondrial CG17856-IR CG11015-IR Analyse de composés apparentés: • Effets sur le phénotype cardiaque 90 80 • Relations avec les caractéristiques 70 60 connues ESD (µm) 50 40 30 20 Methylene Blue (MB) Toluidine Blue (TB) Neutral Red (NR) 10 0 - + + + + + + + + + + + + + MB MB TB TB NR NR 2CP 2CP Pr Pr CP CP 10µM 30µM 10µM 30µM 10µM 30µM 10µM 30µM 10µM 30µM 10µM 30µM 2-chlorophenothiazine (2-CP) Promethazine (Pr) Chlorpromazine (CP) Seule la restauration d’une activité respiratoire semble corrélée à l’effet du BM et des phenothiazines testées
Génétique humaine Epidémiologie Génération d’un modèle Drosophile Caractérisation phénotypique in vivo Autres modèles Criblage haut débit Criblage Criblage génétique pharmacologique
Antiprion drugs 6-aminophenanthridine and guanabenz reduce PABPN1 toxicity and aggregation in oculopharyngeal muscular dystrophy. Barbezier N, Chartier A, Bidet Y, Buttstedt A, Voisset C, Galons H, Blondel M, Schwarz E, Simonelig M. EMBO Mol Med. 2011 Jan;3(1):35-49 Invertebrate models of lysosomal storage disease: what have we learned so far? Hindle S, Hebbar S, Sweeney ST. Invert Neurosci. 2011 Dec;11(2):59-71
You can also read