Die Digitalisierung des Energiesystems - Niedersächsische Energietage, Hannover, 7. 11. 2017 Michael Weinhold, CTO Siemens Energy Management - EFZN
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Die Digitalisierung des Energiesystems Niedersächsische Energietage, Hannover, 7. 11. 2017 Michael Weinhold, CTO Siemens Energy Management Restricted © Siemens AG 2017 siemens.com
Agenda 1 Trends 2 Energiespeicher und Sektorkopplung 3 Innovationsfelder der Digitalisierung 4 Ausblick © Siemens AG 2017 Page 2 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
The Energy Revolution: Big Picture From centralized power Distributed Energy Systems and unidirectional grid … … to fully integrated & intelligent Central and Distributed Energy Systems and bidirectional balancing Transmission Distribution and Consumption 1 Changing generation mix 2 Generation capacity 3 Distance from source to load 4 Decentralization (public/private) 5 Refurbishment/ upgrades additions © Siemens AG 2017 Page 3 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Storyline of the global Energy Transitions: Electricity is key to reach sustainable Energy Systems! Political Targets: Changing 1. De-carbonization 1. Large-scale Renewable System 2. Sustainability integration into the electricity Operation 3. Energy Efficiency system (Wind, PV, Hydro) (“Physics & 4. Resiliency Acceptance”) 2. Distributed Energy Systems to + Breakthrough Technologies maximize: 1. Energy System efficiency 2. Local Renewable integration 3. Resiliency Consumer- centric (Performance & Cost): Energy World 1. Wind- and PV Power Gen. 3. Electrification of Consumption („Physics & 2. Energy Storage (Li-Ion) e. g. Heat Pump, E-Car Psychology“) 3. Digitalization © Siemens AG 2017 Page 4 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Global on-shore wind potential Ireland: >60% wind power on 10.1.2017 https://dupontconsulting.files.wordpress.com/2012/01/3tier_5km_global_wind_speed.jpg © Siemens AG 2017 https://www.siliconrepublic.com/innovation/irish-wind-energy-record Page 5 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Global solar energy yield Saudi Arabia: 2018 ca.1,5 cent €/kWh https://en.wikipedia.org/wiki/Photovoltaic_system#/media/File:SolarGIS-Solar-map-World-map-en.png © Siemens AG 2017 https://www.pv-magazine.com/2017/10/04/saudi-arabias-300-mw-solar-tender-may-conclude-with-lowest-bid-ever/ Page 6 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Germany: more renewable generation capacity than peak load 10/2017: ca. 109 GW 12/2015: ca. 93 GW More installed Wind- and PV-capacity Peak Load („Spitzenlast“) than Peak Load ca. 82 GW >65GW of Wind and PV-Power Plants connected to LV- and MV-systems Base Load („Grundlast“) ca. 40 GW Trend towards an „Electronic Grid“ Resulting Challenges for grid operators: • Changing system dynamics • Frequency and Voltage Stability • Short Circuit Power • … Source: http://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/zahlenunddaten-node.html © Siemens AG 2017 Page 7 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
CHP “Fortuna” in Germany – new performance and efficiency world record Customer Challenges Stadtwerke Düsseldorf Location ~ 61.5% • Profitable operation despite high gas prices (vs. coal) Düsseldorf, Germany • High resource efficiency Date net efficiency 2016 • Fast start-up for balancing energy Solution 603,8 MWel • The highest efficiency combined heat and power station in electrical output Germany with core components from Siemens: SGT5-8000H gas turbine, SST5-5000 steam turbine, generator, I&C system, BENSON® HRSG Customer benefits 300 MWth • Electrical efficiency of around 61.5% and a record power maximum district generating capacity of 603.8 MW during test run heating capacity • Plant can supply around 300 MW of heat for district heating • Handover to customer 19 days ahead of schedule © Siemens AG 2017 Page 8 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
ULTRANET, Germany, 2021 World’s first VSC HVDC with full-bridge converter Customer Amprion / TransnetBW Project Name ULTRANET Location Osterath – Philippsburg, Germany Power Rating 2000 MW, bipolar Type of Plant HVDC PLUS in full-bridge topology, 340 km Voltage Levels ± 380 kV DC, 400 kV AC, 50 Hz Semiconductors IGBT © Siemens AG 2017 Page 9 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
The innovation: Converter using Power Electronic Building Blocks and intelligent control software © Siemens AG 2017 Page 10 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Digitalization drives dramatic change in energy systems Affordability Availability Environment Renewables and conventional Forecasting Distributed energy Generation control HVDC / FACTS Automation Grid stability Agility in Electrification energy Energy Storage Digitalization Security Power to X MDM e-Mobility Customer engagement HVDC/FACTS = High Voltage Direct Current/Flexible AC Transmission Systems MDM = Meter Data Management © Siemens AG 2017 Page 11 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
IoT Operating Systems to manage Infrastructures example Mindsphere Operating System of Infrastructures Siemens Software and Digital Services Energy Fleet Trading/ Railigent Car Sharing Your App Management Blockchain Fault Demand Leak Intermodal EnergyIP eCar Traffic Detection Management Detection Storage Traffic Your App Charging Management Management MindSphere – the cloud-based, open IoT operating system Microgrid and transportation – electric devices Holistic IT Security Concept © Siemens AG 2017 Page 12 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Technology adoption in the U.S. Time until used by 1/4 of American population Hardware Software 46 years 26 years 16 years snapchat 7 years months 1873 1926 1975 1991 2016 © Siemens AG 2017 Page 13 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Agenda 1 Trends 2 Energiespeicher und Sektorkopplung 3 Innovationsfelder der Digitalisierung 4 Ausblick © Siemens AG 2017 Page 14 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Increasing electrification in all sectors – Heading towards an “all-electric world” Global power generation capacity in TW Final energy consumption in Germany 2015 3.0% Other (e.g. heat) 10.1 49% Mobility PV 30% Wind Renewables Huge potential 730 6.5 Hydro and distributed TWh for further power gene- 1,216 ~2466 electrification Biomass Nuclear TWh TWh ration grow 520 Gas above average Power TWh 21% Oil E-Mobility, E-Highways Coal Share of renewable power ~30% Electrical heating/cooling, 2015 2030 heat pumps etc. Source: Siemens Energy 2020 Project 2014 – Base Case Scenario CAGR 15 – 30e Source: umweltbundesamt.de/Arbeitsgemeinschaft Energiebilanzen, status 7/16; IHS © Siemens AG 2017 Page 15 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy storage applications and sector couplings Application cases by location of storage Central Distributed Large Utilities Small utilities, municipalities, industry – prosumer Pumped storage H2/Chemicals Battery Thermal Electricity Electricity H2/ H2 Fuel Electricity Heating, Cooling Methane for car (gas grid) Grid balancing Power to gas Grid stability, self-supply, Power-to-heating and -cooling and stability Power-to-chemicals electro-mobility © Siemens AG 2017 Page 16 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy storage applications and sector couplings Application cases by location of storage Central Distributed Large Utilities Small utilities, municipalities, industry – prosumer Pumped storage H2/Chemicals Battery Thermal Electricity Electricity H2/ H2 Fuel Electricity Heating, Cooling Methane for car (gas grid) Grid balancing Power to gas Grid stability, self-supply, Power-to-heating and -cooling and stability Power-to-chemicals electro-mobility © Siemens AG 2017 Page 17 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
District Heating Storage N-Ergie AG, Nürnberg Hight ca. 70m 1500 MWh Thermal Capacity in operation since 1/2015 Status May 9, 2014 Status Jan 6, 2015 © Siemens AG 2017 Page 18 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy storage applications and sector couplings Application cases by location of storage Central Distributed Large Utilities Small utilities, municipalities, industry – prosumer Pumped storage H2/Chemicals Battery Thermal Electricity Electricity H2/ H2 Fuel Electricity Heating, Cooling Methane for car (gas grid) Grid balancing Power to gas Grid stability, self-supply, Power-to-heating and -cooling and stability Power-to-chemicals electro-mobility © Siemens AG 2017 Page 19 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Power-to-power Energy Storage technologies Time in use Days/months H2 / Methane storage (stationary) Redox flow batteries Diabatic Hydro pumped adiabatic CAES storage Hours Li-ion NaS Batteries Minutes Flywheel energy storage Technology Chemical storage Double layer capacitor Electrochemical storage Seconds Superconductor Mechanical storage coil Electrical storage 1 kW 10 kW 100 kW 1 MW 10 MW 100 MW 1,000 MW Source: Study by DNK/WEC “Energie für Deutschland 2011“, Bloomberg – Energy Storage technologies Q2 2011 CAES – Compressed Air Energy Storage © Siemens AG 2017 Page 20 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Winning Energy storage technologies (from todays perspective) Time in use Days/months H2 / Bulk Hydro pumped storage Hours Li-Ion Batteries Minutes Technology Chemical storage Electrochemical storage Seconds Mechanical storage Electrical storage 1 kW 10 kW 100 kW 1 MW 10 MW 100 MW 1,000 MW Source: Study by DNK/WEC “Energie für Deutschland 2011“, Bloomberg – Energy Storage technologies Q2 2011 CAES – Compressed Air Energy Storage © Siemens AG 2017 Page 21 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy Storage for very different purposes Weeks Application Segmentation Reserve capacity Days Reserves • Response to emergencies Consumer / Prosumer Decentralized generation Variable generation Conventional power plants (PV, Wind) Firming Hours Time shifting • Residential/ commercial selfsupply • Avoid curtailment • Industrial peak shaving • On-grid + grid upgrade • Rules for grid integration deferral • Energy arbitrage • Increase flexibility Minutes • Remote areas/ off-grid (time shifting) / load optimization Distribution grid Transmission grid • Ensure stability • Ensure power System Seconds • Load optimization system stability stability 1 kW 100 kW 1 MW 10 MW 20 MW Power © Siemens AG 2017 Page 22 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
InovCity Évora, Portugal: Energy storage pilot project with EDP 472 kW/ 360 kWh SIESTORAGE system MicroGrid Controler Main applications Energy backup, voltage regulation, peak shaving, Islanding Turnkey solution © Siemens AG 2017 Page 23 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Electrification of Mobility Siemens key applications in the process of being “electrified” eBus: Sustainable eFerry: CO2-free Taxibot: Innovative eHighway: Electric eAir: Hybrid electric public transportation shipping aircraft towing truck road freight transport airliner – DC charging post, off- – World’s 1st all-electric – Pilot-controlled taxiing – Hybrid trucks supplied – Fuel consumption board and on-board car ferry developed without aircraft engines with electricity from ~51% of aircraft pantographs with Fjellstrand running overhead contact lines operating costs shipyard (Norway) at up to 90km/h – Flexible, fast-charging – Major fuel savings, – Electric propulsion: system mounted on – Powered by three emission & noise – Increased system >25% fuel, emission mast or roof of a bus battery packs reduction, foreign efficiency and energy and noise reduction stop object damage savings – 1st ferry (360 passen- – Development of hybrid – Implemented by the gers, 120 vehicles) in – Certification granted, – Cooperation with electric airliner in Hamburger Hochbahn operation since 2015 three Taxibots Scania, demonstration research cooperation AG operating in Frankfurt projects in Sweden and with Airbus California © Siemens AG 2017 Page 24 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy storage applications and sector couplings Application cases by location of storage Central Distributed Large Utilities Small utilities, municipalities, industry – prosumer Pumped storage H2/Chemicals Battery Thermal Electricity Electricity H2/ H2 Fuel Electricity Heating, Cooling Methane for car (gas grid) Grid balancing Power to gas Grid stability, self-supply, Power-to-heating and -cooling and stability Power-to-chemicals electro-mobility © Siemens AG 2017 Page 25 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Pump Storage Capacity of Germany (ca. 40 GWh max) and equivalent chemical energy (fuel) storage The 9 biggest Pumped Hydro Plants in Germany: With respect to stored Energy equivalent cube of: Goldistahl: Markersbach: Wehr: 1060 MW, 8,5 GWh 1050 MW, 4 GWh 992 MW, 6 GWh 16 m: Diesel 166 m: (CH4, 1 bar) Waldeck II: Säckingen: Hohenwarte II: 480 MW, 3,4 GWh 370 MW, 2 GWh 320 MW, 2,1 GWh 230 m: (H2, 1 bar) 40 m: (H2, 200 bar) Witznau: Erzhausen: Waldshut: 248 MW, 0,63 GWh 223 MW, 0,94 GWh 176 MW, 0,4 GWh Quelle: UBA- Datenbank, 2011 © Siemens AG 2017 Page 26 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Pumped Hydro Storage Capacity of Germany compared to wind-energy in-feed in north-eastern Germany Vattenfall High Voltage - Grid (Februar 2008) Pumped Hydro Pumpspeicher in Germany: 40 GWh in Deutschland 7000 MW 40.000 MWh 540GWh IfR , TU - Braunschweig Quelle: VDE © Siemens AG 2017 Page 27 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy storage applications and sector couplings Application cases by location of storage Central Distributed Large Utilities Small utilities, municipalities, industry – prosumer Pumped storage H2/Chemicals Battery Thermal Electricity Electricity H2/ H2 Fuel Electricity Heating, Cooling Methane for car (gas grid) Grid balancing Power to gas Grid stability, self-supply, Power-to-heating and -cooling and stability Power-to-chemicals electro-mobility © Siemens AG 2017 Page 28 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Power-to-X: H2O and CO2 electrolysis form the basis for long-term bulk energy storage, mobility, and manifold chemical processes Power-to-X: A Water Electrolysis – B CO2 Electrolysis – C e-Fuels and Ammonia Generation Conversion Applications Hydrogen Energy storage, mobility, re-electrification, H2 as feedstock O2 H2 N2 H2O Ammonia Fertilizers, H2 energy carrier Haber-Bosch Water A electrolysis CO2 Photovoltaics 2CO B electrolysis Methanol Re-electrification, mobility (synthetic fuels), chemical industry Chemical synthesis CO2 Fermentation CO Chemicals & Fuels Chemical products, mobility (synthetic fuels) C Wind power CO CO as feedstock Direct synthesis Liquid Fuels Mobility (synthetic fuels) Source: Siemens AG (simplified) © Siemens AG 2017 Page 29 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energiepark Mainz Hydrogen-Electrolysis hall Key facts Three SILYZER 200 In total about 4 MW DC nominal load and DC 6 MW overload High dynamic: load changes within sec. 35 bar pressure at gas outlet Produced were so far up to 500 kg(H2)/day -> Fuel for about 50.000 km in a fuel cell passenger car* Assumption: Passenger Fuel cell car consumption © Siemens AG 2017 about 1 kg/100km Page 30 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energiepark Mainz Realization © Siemens AG 2017 Page 31 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Agenda 1 Trends 2 Energiespeicher und Sektorkopplung 3 Innovationsfelder der Digitalisierung 4 Ausblick © Siemens AG 2017 Page 32 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Challenges Energy System Stakeholder challenges • Complexity and Uncertainty (Technology, Regulation) Data • System Dynamics (Stability) Analytics • Vulnerability (Physical and Cyber Attacks) turns data Competitive advantage through: into • Adaptability, flexibility, speed • Forecasting accuracy knowledge • Decision Quality © Siemens AG 2017 Page 33 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
In a digital world, Cyber Security is essential and requires a holistic approach that is more than the sum of its features • Monitoring of • Vulnerability Handling • Security & Privacy by • Proven protection concepts • Support of operational components Design based on international security: • Incident Handling • Secure Processes standards - Access control • Threat Intelligence • Security Patch Management • Certified processes: - Security log and event - ISO/IEC 27001, management - IEC 62443-2-4 Founding member and board member European Energy – Information Sharing EE-ISAC and Analysis Center (www.ee-isac.eu) Assess Implement Manage Siemens as a trusted partner Energy Expert Cyber Security helps customer Platform (EECSP) – Guidance for European Commission on policy and to secure the grid regulatory directions Smart Grid Task Force EG 2 – Network Codes for TSO and DSO © Siemens AG 2017 Active in Standardization Page 34 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Digital Twins allow us to further push the limits of Technologies and Products
“Digital twin” in Power Generation Value for the customer Optimizing the products already in the design phase by using massively historical data Advanced quality assessment and risk optimization Better service and maintenance of the product in the field Cost savings along the entire value chain © Siemens AG 2017 Page 36 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Energy Management requires an open and standard-based end-to-end architecture from field level to applications and services Planning Operations Maintenance and Simulation and Control and Usage DIGITALIZATION PSS® grid planning and simulation: Digital Twin Data Spectrum Power grid operations/ control: Central Data EnergyIP applications, analytics: distributed, “Internet of Things” Software and Services model Madel 10 10 MindSphere 10 10 01 01 01 01 01 01 01 01 01 01 01 01 11 11 11 11 Substation: Field area networks: AUTOMATION Automation and protection Sensors, meters, controls, concentrators EM Assets Other Siemens and 3rd party ELECTRIFICATION HV AIS HV GIS PT DT MV Swg LV systems LV Circuit Breakers PAC meters 123 © Siemens AG 2017 Page 37 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Digital Substation / Scope 1 1 1 Non-conventional Instrument Merging Units (MU) Process Bus transformers (NCITs) Converts analog primary values in Communicate field data to protection Provide primary values to the merging digital information and control system based on units based on new principles (Sampled Measured Values) IEC61850-9-2 1 Digitalization of Process Level 2 Grid Operation Support 3 Asset Management Support 4 Cyber Security 2 3 4 5 3 Substation Control Room Sensors Station bus based on IEC61850 with Provides more information of current 5 Integrated Engineering Protection and Automation status of the electrical equipment © Siemens AG 2017 Page 38 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI Page 38
Microgrid IREN2 research project in Wildpoldsried, Germany Solution Combining micro grid and Virtual Power Plant to form a topological power plant, which can be operated in island mode Benefits • Stable and economically optimized grid operation • Black start capability • Profitable use of renewable resources • Ancillary services from the distribution grid © Siemens AG 2017 Page 39 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Island of Ventotene, ENEL, Italy: SIESTORAGE and SICAM Microgrid Manager Sustainable and independent microgrid 10-15% Oil/CO2 savings Off-grid electrification… Increased use of renewable energy and optimized fuel engine operation Grid stabilization © Siemens AG 2017 Page 40 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Reference projects demonstrate the broad range of different prosumers in a distributed energy system Battery storage system Data analytics decision- Turnkey integrated Intelligent microgrid for safeguards power making support for power supply Savona University supply at VEO GESTAMP solution for Südzucker − Black start capability of − Real-time monitoring via − Drawing power from the − Highly energy-efficient power plant's gas turbine web portal high-voltage grid, but also conventional and renewable at any time and without − Early detection of feeding electricity from the sources are controlled in feeding in power from the machinery failure and on-site power plants into real-time public grid inefficient processes the grid − The campus can generate − This island network keeps − Customized reports enough electricity and heat the critical production to satisfy its needs processes at the steel mill − Worldwide implementation autonomously operating possible © Siemens AG 2017 Page 41 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
At the front edge of digital innovation: Elhub: Market transaction management, Statnett, Norway DSO Generation TSO Retailers 3rd party and other entities EnergyIP® 8 • Meter Data Management (MDM) application • Market Transaction Management (MTM) End-Point/ Market Metering Siemens Player Entities Points EnergyIP Integration Benefits MTM • Peak avoidance • Distributed optimization • CO2 and cost avoidance • Allocation of grid losses and unaccounted energy Wind Solar e-Mobility End user DSO DSO: Distribution System Operators TSO: Transmission System Operators MTM: Market Transaction Management © Siemens AG 2017 Page 42 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Possible advantages of the blockchain technology No verification costs to prove the No separate Cost reduction: Security: origin e.g. of financial (real-time) peer-to-peer Immutable records & renewable energy, management process necessary transactions with integrated performance payment / currency Trust of source validation any more Blockchain analytics across shared data New Business Models: (e. g. price data, (P2P) energy trading Optimization: (incl. e. g. regulation Multi-stakeholder market data, load power), grid charging, Data available in one profiles, grid collaboration in different use nodal pricing, distributed / shared database utilization) cases EV-Charging © Siemens AG 2017 Page 43 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Innovative Microgrid solution using blockchain technology supporting New York’s Reforming the Energy Vision (REV) program © Siemens AG 2017 Page 44 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Application of Artificial Intelligence (including Machine Learning) Act Analyze Prescriptive Analytics Inform Predictive Analytics Diagnostic Analytics Descriptive Analytics What happened? Why did it happen? What will / should happen? What shall we do? Business • Service statistics • Root cause identification • Condition monitoring • Power optimization Applications • Sales reports • Fault analysis • Fault prediction • Load balancing Machine Learning Data Mining © Siemens AG 2017 Page 45 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Definition and Evolution of AI Definition of AI Creating machines that perform functions that require intelligence when performed by people (Kurzweil, 1990) Before 2011 2011 – 2016: Expected by 2030+ 1946: Zuse’s 1997: IBM 2005: Honda’s 2011: Watson 2014: Alexa, 2016: ~2020: All-over 202x: Fully 20xx: Robots Z3, Deep Blue humanoid wins Amazon’s AlphaGo virtual personal autonomously may build first defeats robot Asimo Jeopardy! intelligent beats Lee assistants as driving cars robot programmable world’s chess comes to life against most assistant Sedol in a Go interface for become “children” on electronic champion successful debuts match consumers market-ready their own computer Kasparov contestants Major breakthroughs Algorithmic Usage of huge Increasing Open platforms advances in deep datasets leverage full computing power and data bases learning potential of AI © Siemens AG 2017 Page 46 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Use Case: Next Generation Root Cause Analysis Sensor processing Reasoning Image processing Learning Decision Speech recognition Creativity Text processing High Level View Detailed AI Work Flow Efficiency & competitiveness © Siemens AG 2017 Page 47 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Use Cases in Power Generation: Gas Turbine Emission Reduction Wind Turbine Control Benefit for Gas Turbines: Reduced costs from emissions Benefit for Wind Turbines: Increased Energy yield Sensor processing Reasoning Image processing Learning Decision Speech recognition Creativity Text processing © Siemens AG 2017 Page 48 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Artificial Intelligence Deep Learning Example: Online Decision Support for Power Grids Growing share of renewable energy and Growing distributed share power generation call for of renewable enhanced capabilities of intelligent devices. • Wide area monitoring combined with Wide-Area Fault • Increase quality of supporting information decision support Disturbance Localization and in case of faults Classification • Disturbance identification and Classification • Localization of faults even in difficult cases compensation Operation Center: Disturbance Classification Infield: Fault location using neural networks Model Training Model Generation Model Deployment Stream Data Recognize Contingencies Inter- Counter preter Measures TIME contingency Source code Embedded Analytics Framework (LEAF) © Siemens AG 2017 Page 49 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Agenda 1 Trends 2 Energiespeicher und Sektorkopplung 3 Innovationsfelder der Digitalisierung 4 Ausblick © Siemens AG 2017 Page 50 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
The three essential grids in context of an energy cell concept Electricity (transmission) grid Energy cells can be Digital Grid Community Factory Power plant Dedicated storage facility Cell 1 Gas grid Energy cells contain Power generation Thermal and gas grids Cell 3 Energy storage Power-to-X (-value) Dynamic load control ICT, self-organizing, Cell 4 self-healing intelligence Cell 2 Cells negotiate energy Resiliency exchange among … themselves (peer-to-peer) © Siemens AG 2017 Page 51 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Outlook 1 More Wind- and PV, Electrification, Distributed Energy Systems 2 Sector-couplings and Energy Storage increasingly relevant 3 Digitalization is keykey enabler enabler (simulation, (simulation, operation, operation, market market integration) integration) 4 Emerging Sharing Economy concepts for Prosumers 5 Artificial Intelligence gaining momentum © Siemens AG 2017 Page 52 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
Thank you very much! michael.g.weinhold@siemens.com Unrestricted © Siemens AG 2015 siemens.com
Disclaimer This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated. Trademarks mentioned in this document are the property of Siemens AG, it's affiliates or their respective owners. © Siemens AG 2017 Page 54 Die Digitalisierung des Energiesystems, Niedersächsische Energietage, Hannover, 7.11.2017 Michael Weinhold, EM TI
You can also read