CINECA HPC Infrastructure: state of the art and road map - Carlo Cavazzoni, HPC department, CINECA - PRACE materials
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
CINECA HPC Infrastructure: state of the art and road map • Carlo Cavazzoni, HPC department, CINECA www.cineca.it
Installed HPC Engines Eurora (Eurotech) FERMI, (IBM BGQ) PLX, (IBM DataPlex) hybrid cluster 64 nodes 10240 nodes Hybrid cluster 1024 SandyBridge cores 163840 PowerA2 cores 274 nodes 64 K20 GPU 2PFlops peak 3288 Westmere cores 64 Xeon PHI coprocessor 548 nVidia M2070 (Fermi) 150 TFlops peak 300TFlops peak
FERMI @ CINECA PRACE Tier-0 System Architecture: 10 BGQ Frame Model: IBM-BG/Q Processor Type: IBM PowerA2, 1.6 GHz Computing Cores: 163840 Computing Nodes: 10240 RAM: 1GByte / core Internal Network: 5D Torus Disk Space: 2PByte of scratch space Peak Performance: 2PFlop/s Available for ISCRA & PRACE call for projects
The PRACE RI provides access to distributed persistent pan-European world class HPC computing and data management resources and services. Expertise in efficient use of the resources is available through participating centers throughout Europe. Available resources are announced for each Call for Proposals.. European Tier 0 National Peer reviewed open access Tier 1 PRACE Projects (Tier-0) PRACE Preparatory (Tier-0) Local DECI Projects (Tier-1) Tier 2
4. Node Card: 32 Compute Cards, 3. Compute card: Optical Modules, Link Chips, Torus One chip module, 16 GB DDR3 Memory, 2. Single Chip Module 1. Chip: 16 P cores 5b. IO drawer: 7. System: 8 IO cards w/16 GB 20PF/s 8 PCIe Gen2 x8 slots 5a. Midplane: 16 Node Cards 6. Rack: 2 Midplanes
I/O drawers I/O nodes PCIe 8 I/O nodes At least one I/O node for each partition/job Minimum partition/job size: 64 nodes, 1024 cores
PowerA2 chip, basic info • 64bit RISC Processor • Power instruction set (Power1…Power7, PowerPC) • 4 Floating Point units per core & 4 way MT • 16 cores + 1 + 1 (17th Processor core for system functions) • 1.6GHz • 32MByte cache • system-on-a-chip design • 16GByte of RAM at 1.33GHz • Peak Perf 204.8 gigaflops • power draw of 55 watts • 45 nanometer copper/SOI process (same as Power7) • Water Cooled
PowerA2 FPU • Each FPU on each core has four pipelines • execute scalar floating point instructions • four-wide SIMD instructions • two-wide complex arithmetic SIMD inst. • six-stage pipeline • maximum of eight concurrent • floating point operations • per clock plus a load and a store. 9
EURORA #1 in The Green500 List June 2013 What EURORA stant for? EURopean many integrated cORe Architecture What is EURORA? Prototype Project Founded by PRACE 2IP EU project Grant agreement number: RI-283493 Co-designed by CINECA and EUROTECH Where is EURORA? EURORA is installed at CINECA When EURORA has been installed? March 2013 Who is using EURORA? All Italian and EU researchers through PRACE 3,200MFLOPS/W – 30KW Prototype grant access program
Why EURORA? (project objectives) Address Today HPC Constraints: Evaluate Hybrid (accelerated) Flops/Watt, Technology: Flops/m2, Intel Xeon Phi; Flops/Dollar. NVIDIA Kepler. Efficient Cooling Technology: Custom Interconnection Technology: hot water cooling (free cooling); 3D Torus network (FPGA); measure power efficiency, evaluate (PUE & evaluation of accelerator-to- TCO). accelerator communications. Improve Application Performances: at the same rate as in the past (~Moore’s Law); new programming models.
EURORA prototype configuration 64 compute cards 128 Xeon SandyBridge (2.1GHz, 95W and 3.1GHz, 150W) 16GByte DDR3 1600MHz per node 160GByte SSD per node 1 FPGA (Altera Stratix V) per node IB QDR interconnect 3D Torus interconnect 128 Accelerator cards (NVIDA K20 and INTEL PHI)
Node card K20 Xeon PHI 13
Node Energy Efficiency Decreases! 14
HPC Service
HPC Engines HPC Services HPC Workloads FERMI Eurora PLX (IBM BGQ) (Eurotech hybrid) (IBM x86+GPU) PRACE LISA Projects Agreements 0.3PFlops peak ISCRA Training Labs Industry #12 Top500 #1 Green500 2PFlops peak 0.17PFlops peak ~3500 x86 procs 548 NVIDIA 163840 cores 1024 x86 cores Data Processing GPU 163Tbyte RAM 64 Intel PHI 20 NVIDIA Workloads FERMI PLX Power 1.6GHz 64 NVIDIA K20 Quadro High Big Web 16 Fat nodes viz DB througput mem serv. Data mover Data mover processing HPC Data store NUBES FEC Workspace Cloud serv. We Archive FTP Tape Repository b 1.5PB 1.8PByte 3.6PByte External Data Sources PRACE EUDAT Labs Projects HPC Cloud Nubes FEC PLX Store Network Custom IB Gbe Fibre FERMI EURORA EURORA PLX Store Nubes Infrastructure Internet Store
CINECA services • High Performance Computing • Computational workflow • Storage • Data analytics • Data preservation (long term) • Data access (web/app) • Remote Visualization • HPC Training • HPC Consulting • HPC Hosting • Monitoring and Metering • … For academia and industry
Road Map
(data centric) Infrastructure (Q3 2014) Cloud SaaS APP External Data Sources service PRACE EUDAT New Other Data Sources storage Core Data Store Laboratories Human Brain Prj Repository Tape Internal data 5PByte 5+ PByte sources Core Data Processing Scale-Out Data We Processing Big viz mem DB b serv. FERMI Data mover processing Workspace We 3.6PByte X86 Cluster Archive FTP b New Analytics APP analytics Parallel APP
New Tier 1 CINECA Procurement Q3 2014 Requisiti di alto livello del sistema Potenza elettrica assorbita: 400KW Dimensione fisica del sistema: 5 racks Potenza di picco del sistema (CPU+GPU): nell'ordine di 1PFlops Potenza di picco del sistema (solo CPU): nell'ordine di 300TFlops
Tier 1 CINECA Requisiti di alto livello del sistema Architettura CPU: Intel Xeon Ivy Bridge Numero di core per CPU: 8 @ >3GHz, oppure 12 @ 2.4GHz La scelta della frequenza ed il numero di core dipende dal TDP del socket, dalla densità del sistema e dalla capacità di raffreddamento Numero di server: 500 - 600, ( Peak perf = 600 * 2socket * 12core * 3GHz * 8Flop/clk = 345TFlops ) Il numero di server del sistema potrà dipendere dal costo o dalla geometria della configurazione in termini di numero di nodi solo CPU e numero di nodi CPU+GPU Architettura GPU: Nvidia K40 Numero di GPU: >500 ( Peak perf = 700 * 1.43TFlops = 1PFlops ) Il numero di schede GPU del sistema potrà dipendere dal costo o dalla geometria della configurazione in termini di numero di nodi solo CPU e numero di nodi CPU+GPU
Tier 1 CINECA Requisiti di alto livello del sistema Vendor identificati: IBM, Eurotech DRAM Memory: 1GByte/core Verrà richiesta la possibilità di avere un sottoinsieme di nodi con una quantità di memoria più elevata Memoria non volatile locale: >500GByte SSD/HD a seconda del costo e dalla configurazione del sistema Cooling: sistema di raffreddamento a liquido con opzione di free cooling Spazio disco scratch: >300TByte (provided by CINECA)
Roadmap 50PFlops EURORA or PLX Power EURORA 50KW, PLX 350 KW, BGQ upgrade 400KW; BGQ 1000KW, Data consumption 1000KW + ENI repository 200KW; - ENI EuroExa STM / ARM EuroExa STM / ARM PCP Proto 1PF in a EuroExa STM / ARM towards exascale R&D Eurora board prototype rack PF platform ETP proto board Eurora or PLX Eurora industrial multi petaflop Tier-1 towards Deployment prototype 150 TF upgrade 1PF peak, 350TF scalar system Tier-0 50PF exascale Time line 2013 2014 2015 2016 2017 2018 2019 2020
Roadmap to Exascale (architectural trends)
HPC Architectures Hybrid: Server class processors: Server class nodes Special purpose nodes Accelerator devices: Nvidia Intel two AMD model FPGA Homogeneus: Server class node: Standar processors Special porpouse nodes Special purpose processors
Architectural trends Peak Performance Moore law FPU Performance Dennard law Number of FPUs Moore + Dennard App. Parallelism Amdahl's law
Programming Models fundamental paradigm: Message passing Multi-threads Consolidated standard: MPI & OpenMP New task based programming model Special purpose for accelerators: CUDA Intel offload directives OpenACC, OpenCL, Ecc… NO consolidated standard Scripting: python
But! 14nm VLSI 0.54 nm Si lattice 300 atoms! There will be still 4~6 cycles (or technology generations) left until we reach 11 ~ 5.5 nm technologies, at which we will reach downscaling limit, in some year between 2020-30 (H. Iwai, IWJT2008).
Thank you
Dennard scaling law (downscaling) new VLSI gen. old VLSI gen. L’ = L / 2 V’ = V / 2 do not hold anymore! The core frequency and performance do not F’ = F * 2 grow following the D’ = 1 / L2 = 4D Moore’s law any longer P’ = P L’ = L / 2 V’ = ~V Increase the number of cores F’ = ~F * 2 to maintain the D’ = 1 / L2 = 4 * D architectures evolution on the Moore’s law P’ = 4 * P The power crisis! Programming crisis!
Moore’s Law Economic and market law Stacy Smith, Intel’s chief financial officer, later gave some more detail on the economic benefits of staying on the Moore’s Law race. The cost per chip “is going down more than the capital intensity is going up,” Smith said, suggesting Intel’s profit margins should not suffer because of heavy capital spending. “This is the economic beauty of Moore’s Law.” And Intel has a good handle on the next production shift, shrinking circuitry to 10 nanometers. Holt said the company has test chips running on that technology. “We are projecting similar kinds of improvements in cost out to 10 nanometers,” he said. So, despite the challenges, Holt could not be induced to say there’s any looming end to Moore’s Law, the invention race that has been a key driver of electronics innovation since first defined by Intel’s co-founder in the mid-1960s. From WSJ It is all about the number of chips per Si wafer!
What about Applications? In a massively parallel context, an upper limit for the scalability of parallel applications is determined by the fraction of the overall execution time spent in non-scalable operations (Amdahl's law). maximum speedup tends to 1/(1−P) P= parallel fraction 1000000 core P = 0.999999 serial fraction= 0.000001
HPC Architectures Hybrid, but… two model Homogeneus, but… What 100PFlops system we will see … my guess IBM (hybrid) Power8+Nvidia GPU Cray (homo/hybrid) with Intel only! Intel (hybrid) Xeon + MIC Arm (homo) only arm chip, but… Nvidia/Arm (hybrid) arm+Nvidia Fujitsu (homo) sparc high density low power China (homo/hybrid) with Intel only Room for AMD console chips
Chip Architecture Strongly market driven Mobile, Tv set, Screens Video/Image processing New arch to compete with ARM Intel Less Xeon, but PHI Main focus on low power mobile chip ARM Qualcomm, Texas inst. , Nvidia, ST, ecc new HPC market, server maket NVIDIA GPU alone will not last long ARM+GPU, Power+GPU Power Embedded market Power+GPU, only chance for HPC AMD Console market Still some chance for HPC
You can also read