Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018

Page created by Ricardo Parsons
 
CONTINUE READING
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Checkpoint inhibition e tumori
          Romano Danesi
           Farmacologia
          Università di Pisa
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Progetto Formativo SIE 2018 - 2019
                            LE NUOVE IMMUNOTERAPIE IN EMATOLOGIA
                                       Hilton Milan Hotel, Milano, 5 luglio 2018

                                                         DICHIARAZIONE
                                              Relatore: Romano Danesi
Come da nuova regolamentazione della Commissione Nazionale per la Formazione Continua del Ministero della Salute, è richiesta la trasparenza
delle fonti di finanziamento e dei rapporti con soggetti portatori di interessi commerciali in campo sanitario.

• Posizione di dipendente in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
• Consulenza ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
• Fondi per la ricerca da aziende con interessi commerciali in campo sanitario (Pfizer, Novartis, AstraZeneca, Sanofi)
• Partecipazione ad Advisory Board (Pfizer, Novartis, AstraZeneca, Sanofi)
• Titolarietà di brevetti in compartecipazione ad aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)
• Partecipazioni azionarie in aziende con interessi commerciali in campo sanitario (NIENTE DA DICHIARARE)

                                                                                                                                      2
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
A diagram depicting the tumor microenvironment

TL Whiteside. Oncogene (2008) 27, 5904–5912                   3
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Expression and function of NOS isoforms

Bogdan C. Nat Immunol 2001;2(10):907-16             4
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Overview of immune-system NO function

Bogdan C. Nat Immunol 2001;2(10):907-16           5
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Tumors recruit MSC from the bone marrow

TL Whiteside. Oncogene (2008) 27, 5904–5912   6
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Accumulation and expansion of Treg in the tumor
  microenvironment

                                                    7
TL Whiteside. Oncogene (2008) 27, 5904–5912
Checkpoint inhibition e tumori - Romano Danesi Farmacologia Università di Pisa - Milano 5.7.2018
Mechanisms for ‘immunoediting’ of tumor cells
 in the microenvironment

                                                 8
TL Whiteside. Oncogene (2008) 27, 5904–5912
Mechanisms orchestrated by the tumor that contribute to its
    escape from the host immune system

• Interference with the induction of anti-tumor
  immune responses
    – Decreased expression of costimulatory molecules on the
      tumor or APC
    – Alterations in TCR signaling in TIL
    – Death receptor/ligand signaling and ‘tumor counterattack’
    – Dysfunction of DC and inadequate cross-presentation of
      tumor-associated antigens to T cells
    – DC apoptosis in the tumor microenvironment
  TL Whiteside. Oncogene (2008) 27, 5904–5912
                                                                  9
Mechanisms orchestrated by the tumor that contribute to its
    escape from the host immune system

• Inadequate effector cell function in the tumor
  microenvironment
    – Suppression of T-cell responses by Treg
    – Suppression of immune cells by myeloid suppressor cells
      (MSC)
    – Apoptosis of effector T cells in the tumor and in the
      periphery
    – Microvesicles (MV, exosomes) secreted by human tumors
      and inducing apoptosis of CD8+ effector T cells

  TL Whiteside. Oncogene (2008) 27, 5904–5912
                                                                  10
Mechanisms orchestrated by the tumor that contribute to its
    escape from the host immune system

• Insufficient recognition signals
    – Downregulation of surface expression of HLA
      molecules on tumor cells
    – Downregulation of surface TAA displayed by tumor
      cells: antigen loss variants
    – Alterations in APM component expression in tumor
      cells or APC
    – Suppression of NK activity in the tumor
      microenvironment
  TL Whiteside. Oncogene (2008) 27, 5904–5912
                                                                  11
Mechanisms orchestrated by the tumor that contribute to its
   escape from the host immune system

• Development of immunoresistance by the
  tumor
   – Lack of susceptibility to immune effector cells
   – Immunoselection of resistant variants
   – Tumor stem cells

 TL Whiteside. Oncogene (2008) 27, 5904–5912
                                                                 12
What is Tumor Mutational Burden (TMB)?

                   Tumor mutational burden
                   (TMB) is the total number of
                   mutations per coding area of
                   a tumor genome.

                   Rizvi et al. Mutational landscape determines
                   sensitivity to PD-1 blockade in non-small cell
                   lung cancer. Science. 2015;348(6230):124-128

                                                            13
The landscape of tumor mutation burden

                                                        14
Chalmers ZR et al. Genome Medicine (2017) 9:34
moAbs targeting PD-1 or PD-L1

           (B7-DC-Fc fusion protein)

             (durvalumab)
              (atezolizumab)
                (avelumab)

 Kim C. Ohaegbulam et al. Trends Mol Med 2015, Vol. 21, No. 1

                                                                15
Interactions between PD-1 and anti-PD-1
moAbs
              PD-1/PD-L1                   PD-1/Pembrolizumab PD-1/Nivolumab
 PD-1

 PD-L1
 binding site                   Pembro                                    Nivo
                                binding sites                             binding sites

   Ju Yeon Lee et al. Nature Communica;ons Oct 2016 DOI: 10.1038/ncomms13354
                                                                                          16
Interactions between PD-L1 and anti-PD-L1
             moAbs

Shuguang Tan et al., Protein Cell DOI 10.1007/s13238-017-0412-8
                                                                  17
Binding kinetics of anti-PD-L1 moAbs

Shuguang Tan et al., Protein Cell DOI 10.1007/s13238-017-0412-8
                                                                  18
Binding affinity (Kd, nM) of PD-1/PD-L1 to their
ligands and blocking antibodies
                                                                                  Kd, nM
                              PD-1:PD-L1 270-526
                              PD-1:PD-L2 590
                          PD-1:nivolumab   2.6
                     PD-1:pembrolizumab 0.028
                      PD-L1:atezolizumab 1.75
                         PD-L1:durvalumab 0.67
                           PD-L1:avelumab 0.046
                        PD-L1:BMS-936559 0.83
 Kathleen M. Mahoney et al. Clinical Therapeutics, DOI 10.1016/j.clinthera.2015.02.018 ; Shuguang Tan et al. Protein Cell DOI 10.1007/
                                                                                                                                         19
 s13238-017-0412-8
Comparison table of moAbs anti-PD-1

              Nivoluma Pembrolizumab Pidilizumab   AMP-224
                  b
Humanized        --           ✓            ✓          --
Fully human      ✓            --           --         --
Ig subclass    IgG4         IgG4         IgG1      Fusion
                                                   protein
ADCC/CDC         --          --           ✓          ✓
KD              +/++         ++           +          ?

                                                             20
Comparison table of moAbs anti-PD-L1

              Atezolizumab Durvaluma   Avelumab   BMS-93655
                               b                      9
Humanized         ✓           --          --         --
Fully human       --          ✓           ✓          ✓

Ig subclass      IgG1       IgG1         IgG1       IgG4
                modified   modified
ADCC/CDC          --          --          ✓          --
KD               +/++         ++         +++         ++

                                                              21
Schematic representation of target-mediated
             drug disposition (TMDD)

Rong Deng et al. Expert Opin. Drug Metab. Toxicol. (2012) 8(2):141-160   22
Effect of the antibody affinity (Ka) on total and
               free mAb concentration 48 hr after bolus
               injection

Kenji Fujimori et al. J NucIMed1990:31:1191-1198                   23
Determination of representative body weight
            for flat-dose calculation

X. Zhao et al. Annals of Oncology 28: 2002–2008, 2017   24
Simulated nivolumab Cavg1 across body
            weight in patients across tumor types

X. Zhao et al. Annals of Oncology 28: 2002–2008, 2017   25
Comparison of summary of exposures in
            patients across tumor types

X. Zhao et al. Annals of Oncology 28: 2002–2008, 2017   26
Comparison of summary of exposures in
          patients across tumor types

X. Zhao et al. Annals of Oncology 28: 2002–2008, 2017   27
Conclusions

•   Monoclonal antibodies have complex pharmacokinetic and
    pharmacodynamic characteristics that are dependent on several
    factors.
•   Therefore, it is important to improve our understanding of the
    pharmacokinetics and pharmacodynamics of monoclonal
    antibodies from a basic research standpoint.
•   It is also equally important to apply mechanistic
    pharmacokinetic/pharmacodynamic models to interpret the
    experimental results and facilitate efforts to predict the safety
    and efficacy of monoclonal antibodies.

                                                                   28
You can also read