Cellular Growth and Form - Course 1: From tissues to cells: size and complexity Thomas Lecuit - Collège de France
←
→
Page content transcription
If your browser does not render page correctly, please read the page content below
Cellular Growth and Form Course 1: From tissues to cells: size and complexity Thomas Lecuit chaire: Dynamiques du vivant 1
How to account for the extraordinary diversity of shapes? ppinterest.com pin pi int nterreesstt..com cco om PLANCTON Aux origines du vivant, Editions Ulmer, octobre 2013, Christian Sardet Thomas LECUIT 2020-2021
In search of the principles of biological shapes… «Le savant doit ordonner; on fait la Science avec des faits comme une maison avec des pierres ; mais une accumulation de faits n'est pas plus une science qu'un tas de pierres n'est une maison.» Henri Poincaré (1854-1912) La science et l’hypothèse (1902) «La Science remplace du visible compliqué par de l'invisible simple. » Jean Perrin (1870-1946) Thomas LECUIT 2020-2021 3
Plasticity and constraints in morphogenesis Tissue shape: 2017 and 2018 Tissue size: 2019 • Variation in shapes • Variation in size: Size Shape (6 orders of magnitude in Metazoa) Amoeba proteus 1 mm Escherichia coli 1 μm 100 μm 10 μm 10 mm Paedophryne Megaphragma amauensis mymaripenne 1 mm 10 cm 100 cm Lecuit T. and Le Goff L. Nature. 2007 ;450(7167):189-92. doi: 10.1038/nature06304. 10 m Goliathus • cacicus Multicellularity: diversification Blue whale 1m of cell types, modularity of developing shapes. 100 m Thomas LECUIT 2020-2021 4
Plasticity and constraints in morphogenesis 40 My 60-65 My • Evolutionary radiation with extensive or limited shape variation Drosophilidae Membracidae Nicolas Gompel (LMU Munich) granivores scaling shear Tiaris bicolor Geospiza fuliginosa • Internal constraints: Geospiza magnirostris Geospiza fortis Geospiza fortis depth — historical, genetic (networks), Galapagos Islands Geospiza magnirostris Pinta group 1 length Genovesa Geospiza scandens functional and physical. Fernandina Santiago Pinzón Baltra Geospiza conirostris Geospiza difficilis Santa Cruz San Cristóbal Camarhynchus parvulus Isabela Floreana Camarhynchus psittacula Camarhynchus pallida group 2 parabola 0 = Ax2 + Bxy + Cy2 + Dx + Ey Pinaroloxias inornata Certhidea olivacea Geospiza parvula Certhidea olivacea Platyspiza crassirostris group 3 insectivores O. Campas et al. and A. Abzhanov, M. Brenner. PNAS (2010)∣ 107:3356–3360 Thomas LECUIT 2020-2021 5
Plasticity and constraints in morphogenesis 10 h TP1 18 h TP2 maternal Otx ßCat Ets1 Notch SoxB1 GCad zygotic Mif7 Dkk RBM8A ßCat Tcf GSK3 Frzld 24 h TP3 2 redox gradient development Apical_E/M Otx Blimp1 Wnt8 ActvB RhoA SoxB1 Nodal Lefty Hnf6 28 h TP4 dimensionality Pmar HesC Hnf6 ES SoxC Otx Blimp1 Wnt8 HesC Gsc FoxG Chordin 1 Alx1 Ets1 TBr Delta Nrl SuH FoxA Hox11/13 Eve Sip1 Otx BMP2/4 reduction 38 h TP5 Tel Erg Hex Tgif FoxN2/3 Notch Delta GataE Nrl Dri Mitf Dri FoxB FoxO VEGFR Tgif Gcm Bra Not Bra Hes 1 /A VegF Brn124 Hnf6 Alx1 Nk1 Lim1 0.5 ec 5 _L SM27 SM50 Msp130 Msp-L C-lectin 0.06 3 45 h TP6 0. to Hex Snail GataC Fmo1,2,3 Tbx2.3 IrxA Dlx SM30-E GCad Ficolin CyP 0.35 06 SM32 CollA P16 P19 Kakapo Endo16 Apobec Gelsolin Lhx2.9 Nkx2.2 Hmx 0. Endo_ 1 es skeletogenic endomesoderm ectoderm 90 h TP7 L/A M Sherrard K et al Current Biology 20, 1499–1510 Garfield DA et al. PLoS Biol 11(10): e1001696. (2013) doi:10.1371/journal.pbio.1001696 Genospace Morphospace much, much lower dimensional space >15.000 genes 10 functional alleles per gene? • viability/functional fitness dimension: 1015000 !!! • constraints: historical, physical etc • few effective parameters See also, for a discussion: Ard A. Louis. Studies in History and Philosophy of Biological and Biomedical Sciences 58 (2016) Contingency, convergence and hyper-astronomical numbers in biological evolution Thomas LECUIT 2020-2021 6
44!%+ &%+)"%+*+'#*+""+4,&,)*,4-#&''$%++#84-&#,+"&% Constraints and plasticity in Development and Evolution -%"*,&,#!")2-&#,+"&%* 4%&$*+4-#&''$%+ 3-4 Juin 2021 — 9h-18h "1.%$4""/"%44$*37/6 $98$" %"4'# Detlev Arendt (EMBL Heidelberg) Virginie Courtier-Orgogozo (Paris) Stanislas Dehaene (Collège de France) Claude Desplan (NYU) Organisateurs: Caroline Dean (John Innes Center) Denis Duboule (chaire: Evolution des Liam Dolan (Oxford) Hopi Hoekstra (Harvard) génomes et développement) Laurent Keller (Univ. Lausanne) Thomas Lecuit (chaire: Dynamiques du Natacha Kurpios (Cornell Ithaca) vivant) Shigeru Kuratani (Kobe) L. Mahadevan (Harvard) Marie Manceau (Collège de France) Nipam Patel (Woods Hole) Olivier Pourquié (Harvard) Luis Quitana-Murci (Pasteur & Collège de France) Eric Siggia (Rockefeller University) Vikas Tervidi (EMBL Barcelona) Elly Tanaka (IMP Vienna) Günter Wagner (Yale Univ.) 7
Plan Course 1: From tissues to cells: size and complexity 1. Universal classes of tissue shapes 2. Impact of multicellularity in shape space —Is multicellularity required for tissue shape? 3. Complexity of unicellular organisms —Large single cells can «behave» like multicellular organisms —From the most complex unicellulars to the most simple multicellulars Thomas LECUIT 2020-2021 8
Universal classes of Shapes All forms arise from few «elementary shape transitions» operating across scales Spatial and temporal combination of such operations Folding Thomas LECUIT 2020-2021 9
Universal classes of Shapes All forms arise from few «elementary shape changes» across scales Spatial and temporal combination of shape changes EXTENDING LOOPING/COILING (A) (B) (C) BRANCHING GEOMETRY CHANGE (A) (C) (E) INVAGINATING 5 μm 20 μm 500 μm (D) (E) 2 mm (D) 2 mm (F) CAVITIZING 5 μm (B) TOPOLOGY CHANGE 1 mm 100 μm ??? ??? 200 μm ??? Bending, Folding, Looping Branching Thomas LECUIT 2020-2021 10
Universal classes of Shapes Arise from basic physical principles •(near) Equilibrium shapes: — surface tension: minimal surfaces Gtot = γ •A γ = ƒ(cortical tension, adhesion) limb bud 0.02 N/m pigmented 0.01 N/m epithelium heart 0.008 N/m liver 0.005 N/m neural M. Steinberg et al retina 0.002 N/m Thomas LECUIT 2020-2021 11
Universal classes of Shapes Arise from basic physical principles • (near) Equilibrium shapes: — elasticity: buckling ds dA R1 R bending the mesentery sheet R2 area of (C) Young areal bending deformed sheet × STIFFNESS modulus moment stiffness Estretch = EmЄ2 h λ2 thickness of E I Kbend λ sheet bending the gut tube λ (D) 3 cm DEFORMATION 1 1 1 + R R1 R2 d λ radius of radius of curvature curvature in orthogonal length of segment directions EI 1 2 mm Ebend ≈ λ 2 λ2 L 2 Kbend 2 ENERGY 1 1 1 ∫ ∫ EI curvature ds dA + 2 0 R(s) 2 R1 R2 from Rob Phillips (CalTech) and Christina Hueschen (Stanford Univ.) after Thierry Savin, et al, L. Mahadevan and Cliff Tabin. Nature (2011) 476:57-62. Thomas LECUIT 2020-2021 12
Universal classes of Shapes Arise from basic physical principles • Dynamic steady-state shapes: —Aggregation -activity driven self-organisation (A) (C) traction elasticity one many none —Flow, pulses, waves of contraction (B) 45.8 kPa 6.12 kPa control 0.418 kPa 0.195 kPa 0.025 kPa pattern geometry 500 400 300 zoom 200 elasticity 500 μm 100 0 .8 co .12 0. l 0. 8 0. 5 5 ro 41 19 02 45 nt 6 (kPa) elasticity cross section DAPI 100 μm force balance ∇ σviscous + σelastic + σtraction = 0 after Shyer et al. Science 357, 811-815 (2017) Wave of tissue folding (Drosophila embryo) Bailles and Collinet et al. Nature 572, 467-473 (2019) Thomas LECUIT 2020-2021 13
Origin of tissue and organism shape diversity • Developmental Modularity: metamers (segments) and tagma • Modular control of size and shape in each segment: morphological diversification head thorax abdomen Pycnogonida Drosophila melanogaster Marrella (Burgess Shale) Buthus occitanus Scutigera forceps Crayfish 500 Mya https://www.alamy.fr/ Thomas LECUIT 2020-2021 https://www.gutenberg.org/ 14
Origin of tissue and organism shape diversity • Modularity: metamers (segments) and tagma • Modular genetic control of shape Bcd, Lab Pb Zen Dfd Scr (Ftz) Antp Ubx AbdA AbdB Drosophila Hox complex anterior posterior Hox1 Hox2 Hox3 Hox4 Hox5 Hox6 (central) Hox7 (posterior) ancestral Hox complex spinal cord mammalian hindbrain Hox complex A1 A2 A3 A4 A5 A6 A7 A9 A10 A11 A13 HoxA anterior posterior B1 B2 B3 B4 B5 B6 B7 B8 B9 B13 HoxB C4 C5 C6 C8 C9 C10 C11 C12 C13 HoxC D1 D3 D4 D8 D9 D10 D11 D12 D13 mesoderm HoxD Ed Lewis, C. Nüsslein-Volhard and E. Wieschaus (Nobel 1995) Denis Duboule and many other groups Rob Philipps, Jane Kondev, Julie Theriot, Hernan G. Garcia. Thomas LECUIT 2020-2021 Physical Biological of the Cell (Garland Science) 15
Plan Course 1: From tissues to cells: size and complexity 1. Universal classes of tissue shapes 2. Impact of multicellularity in shape space —Is multicellularity required for tissue shape? 3. Complexity of unicellular organisms —Large single cells can «behave» like multicellular organisms —From the most complex unicellulars to the most simple multicellulars Thomas LECUIT 2020-2021 16
Impact of multicellularity on the morphospace • Multicellularity occurred in at least 16 independent eukaryotic lineages • Multicellularity allowed: 1) escape from predation 2) solution to motility/division antagonism (centriole required for both ciliogenesis and formation of mitotic spindle) 3) exploration of new differentiated cell functions • Molecular data support monophyletic origin of all Metazoa, including Porifera (sponges) Thomas LECUIT 2020-2021 17
Impact of multicellularity on the morphospace • Choanoflagelates are aquatic protozoans that share many features with animals, and thus are considered the closest unicellular relatives of animals • Facultative multicellular (colonial) states in Choanoflagelates (A) (B) cell ECM 5 m Salpingoeca rosetta (C) King N. Developmental Cell 2004 Thomas LECUIT 2020-2021 18
Impact of multicellularity on the morphospace Saville-Kent explored the great diversity of Infusoria (Choanoflagelates) William Saville-Kent (1865-1908) Manual of the Infusoria 1880-1882 Thomas LECUIT 2020-2021 19
Impact of multicellularity on the morphospace (A) 1.0 scaled ECM stiffness d1 t1 0.8 rosettes • r1 Morphogenesis of cell aggregates 0.6 disks (ı) 0.4 cups and cones • c2 Mechanical model of self-assembly 0.2 d 0.9 2 c3 trees of cell aggregates. c1 0.14 0.8 cell 0.7 0.6 0.06 0.10 e asp 0.02 volum • ect 0.5 3 effective parameters can change (Į ) ratio e ECM relativ (ĭ) outcome of cell interactions and 0.9 ı= 0.6 1.0 Į= 0.8 1.0 ĭ= 0.04 shape 0.8 0.8 0.8 • Adhesion/cell coupling via the ECM 0.6 0.6 ı ı 0.7 Į • 0.4 0.4 Geometric parameter: aspect ratio 0.6 0.2 0.2 0.5 0.02 0.06 0.10 0.14 0.02 0.06 0.10 0.14 0.5 0.6 0.7 0.8 0.9 ĭ ĭ Į (B) rosette disk disk cup cone cup tree r1 d1 d2 c1 c2 c3 t1 cell Cell ECM 90° 90° 90° 90° 90° 90° 90° ECM • Cell aggregates can (model) and rosettes disks cups and cones trees do (experiments) form rosettes, r2 d3 c4 t2 disks, cups, cones or trees r3 d4 c5 t3 Thomas LECUIT 2020-2021 10 m 10 m 10 m 10 m 20 Ben Larson et al, L Mahadevan and N. King (2019) www.pnas.org/cgi/doi/10.1073/pnas.1909447117
Impact of multicellularity on the morphospace • Ligth induced morphological change in colony of Choanoflagelate (Choanoeca flexa) (A) (C) LIGHT apical relaxed form (flagella in) 0s flagellum feeding collar cell body basal bacteria 3s 4 m (B) darkness light rhodopsin 6s flow N retinal PDE DARK Choanoeca flexa inverted form (flagella out) 10 m cGMP swimming C 5ƍ GMP inversion T. Brunet et al., and N. King. Science 366, 326–334 (2019) Thomas LECUIT 2020-2021 21
Impact of multicellularity on the morphospace • Collective contractility drives colony shape changes (A) (B) (C) collar myosin II light on light off closure F-actin ring 1.0 normalized sheet area ring 0.8 ring contraction ring relaxation collar opening 0.1% DMSO 0.6 (negative control) ring 2 M latrunculin B 2 M blebbistatin 2.2 M ML-7 0.4 –20 –15 –5 5 15 25 5 m 2 m time (s) Thomas LECUIT 2020-2021 T. Brunet et al., and N. King. Science 366, 326–334 (2019) 22
Impact of multicellularity on the morphospace • Suggests that collective cell dynamics is required for emergence of complex shapes such as invagination. • Such collective cell dynamics rests on a limited set of cellular processes such as contractility and cell-cell coupling T. Brunet et al., and N. King. Science 366, 326–334 (2019) Thomas LECUIT 2020-2021
Tissue shape: is multicellularity required? — Drosophila embryo gastrulation without cells Syncytial divisions 1 cell : 1 nucleus 1 cell : 5000 nuclei Cellularisation: 5000 cells Membrane invagination leads to the Patrick Keller — Janelia Farm formation of many cells at once Thomas LECUIT 2020-2021 24
Tissue shape: is multicellularity required? — Drosophila embryo gastrulation without cells • Bulk cytoplasmic flow in the ventral mesoderm is associated with tissue invagination • Bulk flow is similar to predicted Stokes flow given known boundary conditions (active cortical flow driven by actomyosin contractility) • Suggests that tissue behaves as a homogenous fluid (cytoplasm) active cortical flow bulk cytoplasmic flow apical wild type 0 20 AB (μm) basal 40 yolk 60 3μm min–1 80 –80 –40 0 40 80 measurements μm μm minML –1 (μm) min–1 0 4 0 4 Vx 3 Vy 3 20 2 20 1 2 40 0 40 1 –1 0 –2 60 –3 60 –1 –4 –2 80 80 –80 –40 0 40 80 –80 –40 0 40 80 predicted Stokes flow μm μm min–1 min–1 10 V 4 10 V 4 x 2 y 2 30 0 30 0 –2 50 –4 50 –2 –80 –40 0 40 80 –80 –40 0 40 80 Thomas LECUIT 2020-2021 25 He et al. and E. Wieschaus. Nature (2014) 508:392-396
Tissue shape: is multicellularity required? — Drosophila embryo gastrulation without cells d Wild type Acellular • In an acellular embryo (syncytium) Junction Membrane bulk cytoplasmic flow still occurs • Acellular flow is similar to predicted Stokes flow, and also wild type acellular similar to flow in cellularized tissue 0 0 20 20 AB (μm) AB (μm) 40 40 60 60 3μm min–1 2μm min–1 80 80 –80 –40 0 40 80 –80 –40 0 40 80 • ML (μm) ML (μm) «tissue» furrowing occurs (albeit more slowly) in acellular embryo. angle of furrow (degrees) 60 Measurement versus theory wild type acellular 10 40 30 20 θ 50 0 –80 –40 0 40 80 –20 0 2.5 5 7.5 10 12.5 0 4 8 12 16 20 time (min) He et al. and E. Wieschaus. Nature (2014) 508:392-396 Thomas LECUIT 2020-2021 26
Tissue shape: is multicellularity required? — Drosophila embryo gastrulation without cells • Cortical flow can be predicted from pattern of MyosinII and geometry. • Flow still occurs in acellular embryo Lye CM, et al , and B. Sanson. (2015) PLoS Biol 13(11): e1002292. doi:10.1371/journal. pbio.1002292 See also: Dicko M, Saramito P, Blanchard GB, Lye CM, Sanson B, Étienne J. PLoS Comput Biol. 2017 Mar 27;13(3):e1005443. Streichan S. et al eLife. 2017 Thomas LECUIT 2020-2021 27
Tissue shape: is multicellularity required? — Tubulogenesis in Salamanders: Morphogenesis is independent of cell size and cell number. • Cell size compensates for change in cell number • A single cell forms a lumen (A) (C) larvae haploid (n) diploid (2n) pentaploid (5n) (B) diploid (2n) pentaploid (5n) pronephric tubules Fankhauser G. 1945. J Exp Zool 100: 445–455. Thomas LECUIT 2020-2021 28
Tissue shape: is multicellularity required? — Mouse embryo lumenisation without cells? • Formation of the blastocoel in mouse embryos occurs in non-muscle Myosin-II heavy chain mutants that block cytokinesis • This leads to the formation of intracellular lumenisation and growth of a vacuole M.F. Schliffka et al, and J-L. Maître. bioRxiv https://doi.org/10.1101/2020.09.10.291997 mzMyh9+/-;mzMyh10+/- embryo Thomas LECUIT 2020-2021 29
Tissue shape: is multicellularity required? — Physarum polycephalum: an acellular self-organised optimal transport system • A plasmodial myxomycete (Protist, Amoebozoa) • Contains 1000s to millions of nuclei in a syncytium called plasmodium • Grows towards food source • Self-organizes a hydrodynamic network to distribute food to the entire cell/organism 1 cm/hr Heather Barnett Life cycle Thomas LECUIT 2020-2021 30
Tissue shape: is multicellularity required? — Physarum polycephalum: an acellular self-organised optimal transport system • Self-organisation of network morphology • Phase gradient of contraction across network • Peristaltic wave drives long-range cytoplasmic flow in the plasmodium (b) (c) 2p 3p/2 p p/2 500 μm 0 2000 μm Alim K. 2018 Fluid flows shaping organism morphology. Phil. Trans. R. Soc. B 373: 20170112. http://dx.doi.org/10.1098/rstb.2017.0112 100 μm Thomas LECUIT 2020-2021 31
Tissue shape: is multicellularity required? • Obviously yes, But: • No, to a certain extent: • It reflects the amazing self-organising properties of intracellular material (non genetic, non deterministic information). —Compartmentation in absence of membranes —Cell-like units can divide (a sperm-supplemented cycling X. laevis egg extract) Spontaneous emergence of cell-like organization in Xenopus egg extracts Xianrui Cheng1* and James E. Ferrell Jr.1,2* Thomas LECUIT 2020-2021 Cheng et al., Science 366, 631–637 (2019) 32
Tissue shape: is multicellularity required? • Obviously yes, But: • No, to a certain extent: • It reflects the self-organising properties of intracellular material (non genetic, non deterministic information). • The efficacy of continuum physical models is a consistent with this: In such coarsed-grained descriptions, cell individuality is lost and tissues are described as a continuous medium driven by active mechano-chemical processes. Elasticity theory, Active matter theory etc. • Especially in large cells (or acellular tissues). • Large single cells can behave like multicellular organisms Thomas LECUIT 2020-2021 33
Plan Course 1: From tissues to cells: size and complexity 1. Universal classes of tissue shapes 2. Impact of multicellularity in shape space —Is multicellularity required for tissue shape? 3. Complexity of unicellular organisms —Large single cells can «behave» like multicellular organisms —From the most complex unicellulars to the most simple multicellulars Thomas LECUIT 2020-2021 34
Size and complexity • Large single cells can behave like multicellular organisms Paramecium caudatum Megaphragma mymaripenne 7500 cells in brain Motility Feeding Amoeba proteus Environment sensing 200 μm Alexey Polilov. Arthropod Structure & Development 41 (2012) 29e34 Thomas LECUIT 2019-2020 35
Size and complexity: « single cell organisms » • Pure self-organisation of single cell • Genetic determination of 5000 cells https://sguenther.eu/data/life-in-perspective/fruit-fly-embryo/ 5000 cells 10-100 fates 1 cell 1 fate Thomas LECUIT 2020-2021 36
Size and complexity: single cell organisms • Multicellular tissue dynamics • Giant cell dynamics Trichoplax adhaerens motility Amoeba proteus motility 200μm Several 1000 cells 1 cell (from Manu Prakash, Stanford Univ.) Thomas LECUIT 2020-2021 37
Size and complexity: « single cell organisms » rosophila ggastrulation Drosophila D astrulation • Multicellular tissue dynamics Drosophila melanogaster embryo • Giant cell dynamics Megaphragma mymaripenne Spirostomum ambiguum Ciliate Thomas LECUIT 2020-2021 38
Unicellulars versus Multicellulars • Unicellular organisms contribute approximately ⅔ of the total biomass of marine organisms (protists and bacteria) and 10% of land organisms. • Protists (non animals/plants/fungi, 30% of biomass), are mostly unicellular non- photosynthetic eukaryotes, and photosynthetic algae. • Biomass of marine and land protists is 3 times the biomass of all land animals! A B Y. Bar-On and Ron Milo Cell 179:1451 Y Bar-On, Rob Phillips and Ron Milo PNAS 115: 6506–6511 Thomas LECUIT 2020-2021 39
Unicellulars versus Multicellulars • Complex Organisation (ie. differentiated cell) • Division • Regeneration • Motility • Behaviour: food uptake, attack/killing • Cooperative behaviours (in some cases) Thomas LECUIT 2020-2021 40
Complexity of unicellulars • Division of cells in spite of complex organisation • In multicellular organisms, complex cells (ie. differenciated cells) are non mitotic (the absence of cell division relaxed a contraint on cell complexity and allowed increase in cell size with complex shapes) 100μm Green alga — Micrasterias rotata 10 μm https://www.pinterest.fr/pin/174373816795440020/ Thomas LECUIT 2020-2021 Podocyte 41
Complexity of unicellulars • Stentor coeruleus: Complex organisation of a Ciliate Vance Tartar 1911-1991 Thomas LECUIT 2020-2021 42
Complexity of unicellulars • Regeneration: Stentor coeruleus (Ciliate) 1960 1901 Thomas H. Morgan 1866-1945 Biological Bulletin , Jun., 1901, Vol. 2, No. 6 (Jun., 1901), pp. 311-328 Thomas LECUIT 2020-2021 43
Complexity of unicellulars • Behaviour - Predation: Stentor coeruleus (Ciliate) direction of metachronal wave cilium membranelle membranellar band moniliform macronucleus oral pouch/ intermembranellar gullet region connections basal bodies locus of stripe contrast holdfast ciliary roots basal fibre 0 mm s–1 50 100 150 (b) control K. Wan et al, and W. Marshall https://www.youtube.com/watch?v=PZoaKzEXzi8&t=86s Philos Trans R Soc Lond B Biol Sci . 2020 Feb 17;375(1792):20190167. Thomas LECUIT 2020-2021 44
Complexity of unicellulars • Behaviour - Predation: Lacrymaria olor (Ciliate) helical • Lacrymaria is a unicellular cytoskeleton predator that hunts using extreme morphology retracted dynamics !!!! captured 50μm • prey Morphology dynamics result in dense stochastic sampling of extended the local environment • Behavior emerges from fast prey and slow response of helical cytoskeleton to cyclic stress fast slow emergent cellular dynamics + plasma microtubules dynamics hunting behavior membrane seconds minutes cytoplasm centrin probability low high Coyle et al., 2019, Current Biology 29, 3838–3850 November 18, 2019 https://doi.org/10.1016/j.cub.2019.09.034 Thomas LECUIT 2020-2021 45
Complexity of unicellulars • Behaviour - Collective protection: Spirostomum • One of the largest Ciliates (up to 2 mm long) undergoes ultra fast contraction Mi Ma Fv Ex Ci Cs Sg 1 mm Rapid Slow contraction relaxation 200 Acceleration (m s–2) 100 0 –100 100 μm Start –200 –2.5 0 2.5 5 20 250 350 600 ms –10 0 10 20 Time (ms) Spirostomum ambiguum Ca2+ channels Ca2+ pumps Myonemes Microtubules Fluid dissipation A. JTM. Mathijssen et al. and M. Prakash. Nature. 2019 Jul;571(7766):560-564. doi: 10.1038/s41586-019-1387-9 Thomas LECUIT 2020-2021 46
Complexity of unicellulars • Behaviour - Collective protection: Spirostomum — At rest, metachronal waves of cilia cause fluid flow — Ultrafast contraction causes inertial flow Spirostomum ambiguum c PIV experiment d PTV experiment LNS theory Simulated tracers 0 6 mm s–1 ||v|| 0 20 ms 200 200 e 1.0 Fluid inertia f 1.0 0.8 High viscosity 0.6 v/vmax 0.8 0.4 0.2 0.6 v/vmax 0 –5 0 5 10 15 20 25 30 0.4 Time (ms) 0.2 Low viscosity 0 –5 0 5 10 15 20 25 30 Time (ms) Organism Water 3% MC A. JTM. Mathijssen et al. and M. Prakash. Nature. 2019 Jul;571(7766):560-564. doi: 10.1038/s41586-019-1387-9 Thomas LECUIT 2020-2021 47
Complexity of unicellulars • Behaviour - Collective protection: Spirostomum a b 2 mm — A gradient of flow causes a Flow strength vf ( U) gradient of membrane tension U at the cell surface —This elicits opening of gated c mN m–1 0 0.3 mechanosensitive calcium 2× channels and cell contraction —The critical strain rate decreases with cell size: large mN m–1 cells are more d 1.0 e 0.07 0.34 mechanosensitive Cumulative probability Critical strain rate (1/s) 0.8 0.6 mN m–1 200 Critical strain rate (1/s) 0.4 0.07 0.34 150 0.2 100 0 0 0.1 0.2 0.3 0.4 50 Membrane tension (mN m–1) P = 1.9 × 10–12 r = –0.950 0 0.4 0.6 0.8 1.0 Organism length (mm) A. JTM. Mathijssen et al. and M. Prakash. Nature. 2019 Jul;571(7766):560-564. doi: 10.1038/s41586-019-1387-9 Thomas LECUIT 2020-2021 48
Complexity of unicellulars • Behaviour - Collective protection: Spirostomum — A hydrodynamic «trigger wave» propagate cell contraction in a population of Spirostomum. —The percolation probability depends on cell density. c Pairwise Pair airwis wise w is s interactions int n errac ction on ns a 1 M S 1 U T y 1 0 –1 00 s–1 100 1 –1 –1 x (mm) (mm mm m m) 1 1 mm t=0 64 ms f Below transition: n = 1 per p mm2 g Near N ear tran on: n = 2 p transition: an nsit s ion ion: io per m 2 er mm er h Abo Above ove on: n = 3 p e transition: tra ttr rra ansi n tio ns per m 2 e mm er b Organism density, n (no. per mm2) 0.5 1.0 Signal velocity (m s–1) Percolation probability 0.4 0.8 I II III 0.3 0.6 0.2 0.4 0.1 0.2 F G H 0 0 5 ms ms 4 mm 24 243 2 3 ms s 4 mm m 10 105 05 ms s 4 mm 0 1 2 3 4 5 A. JTM. Mathijssen et al. and M. Prakash. Nature. 2019 Jul;571(7766):560-564. Thomas LECUIT 2020-2021 doi: 10.1038/s41586-019-1387-9 49
The most simple multicellular Plachozoa: Trichoplax adheraens (A) (B) (C) — The most simple animal, a marine organism without distinct shape 3–5 mm —Forms a thin sheet, contains 6 cell types only, without muscle and nerve dorsal cell. dorsal epithelial cell —Trichoplax move and change shape constantly and split.—What is the nucleus sac difference between large single cell ventral and small sheet of cell? ?? μm S. Amon et al. and M. Prakash. PNAS 115: E10333–E10341 (2018) www.pnas.org/cgi/doi/10.1073/pnas.1802934115 Thomas LECUIT 2020-2021 50
The most simple multicellular Plachozoa: Trichoplax adheraens mean mean intensity [a.u.] intensity [a.u.] x[mm] Tplax epithel. Embryo epithel. Cells in vitro Area reduction rate [1/sec] C 0s 5s D 0s 4s Sponge epithel. Molecular assays 102 order of 101 magnitude —Ultrafast cell contraction 100 depends on MyosinII contractility 100um 35um −1 10 E 0s 3s F 3s 4.5s −2 —Active cohesion mechanism 2 2 10 Dorsal Closure Embryogenesis Spontanous Invaginaon Axis elongaon Osmoc shock Gastrulaon Gastrulaon +ATP Rythmic Gohst cytokin. MDCK monolayer 1D bundles-max Twitch RVD 2D bath 1D rings 1D bundles 8 8 6 6 7 ensures tissue integrity 1 7 3 11 3 5 5 4 4 20um 2um t. an ge n M ast Hu use og As lax Fly ns ia m on Fr Tp Ye id co o (A) Sp Re 0200 sec 0300 0350 area change rate (sec–1) 100 m –0.5 0 0.5 (B) external forces (C) tissue under tension locomotion (i) simultanous softening 100μm (ii) simultanous contractions (iii) active cohesion contraction softening S. Amon et al. and M. Prakash. PNAS 115: E10333–E10341 (2018) www.pnas.org/cgi/doi/10.1073/pnas.1802934115 Thomas LECUIT 2020-2021 51
Size and complexity: comparing cells and tissues — Metazoan cells during development: simple shapes and small size • Are cells simple building blocks with a limited diversity of shapes and size? • In animals and plants, most cells exhibit simple morphology. • Simple cell shapes underly complex tissue shapes: epithelial cells, mesenchymal cells. • Tissue multicellular complexity requires collective properties of large number of simply shaped cells • Single cell complexity emerges from self-organising properties of cellular material Elsev Thomas LECUIT 2020-2021 52
Summary Complexity tends to increase with size —Many small cells in large tissue —Or single large cells Stems from self-organising properties of living matter: —Emergence of macroscopic order from homogenous disordered/stochastic lower scale state —Fluctuations amplified through feedbacks Thomas LECUIT 2020-2021 53
The cell as a complex organism Thomas LECUIT 2020-2021 54
The cell in 1665: simple and static Robert Hooke (1635-1703) Micrographia (1665) Thomas LECUIT 2020-2021 55
The cell in 2020: complex and dynamic T. Falk et al. Nature Methods volume 16, 67–70 (2019) Dong Li et al. and E. Betzig; Science 28 Aug 2015: Vol. 349, Issue 6251, aab3500 DOI: 10.1126/science.aab3500 Thomas LECUIT 2020-2021 56
The cell in 2020: numbers! Model bacterium (E. coli) vs. Mammalian cell line (HeLa) Diffusion limited on-rate Clathrin-mediated d endocytosis 107-109 M–1 s-1 Passage across 1 min membrane Diffusion over 10 μm Ligand-induced 1-10 s conformational change Channel Transporter 1 ms 0.1 μs 1-10 ms Molecular motor 1 μm/s DNA replication DNA replication Diffusion over ver 1 μm 103 nt/s 103 nt/min 10-100 ms Cell movement - 10 μm/s Cell movement - 1 μm/min Transcription 10-100 nt/s 10-100 nt/s 1 min/gene [1 kbp] 10 min/gene [10 kbp] Cell cycle Cell cycle 1 hr 1 day Translation 10 aa/s 10 aa/s 1 min/protein [300 aa] 1 min/protein [300 aa] Flagellar rotation 100 Hz Protein folding 1 ms - 1 min Cellular pool half-life (dominated by) 1s Metabolite (turnover) 1 min 10 min mRNA (degradation) 10 hr Sizes not to scale 1 hr Protein (dilution) 1 day Vbacteria : Vcell line ~1 : 1,000 Maya Shamir,1 Yinon Bar-On,1 Rob Phillips,2 and Ron Milo1 Cell 164, 2016 DOI http://dx.doi.org/10.1016/j.cell.2016.02.058 Thomas LECUIT 2020-2021 57
The shape space of single cells (A) (B) (C) 2 μm 10 μm 20 μm (D) (E) (F) • Extensive variety of shapes • Extensive variety of size 20 μm 40 μm 50 μm (G) (H) (I) (J) 80 μm 100 μm 200 μm Thomas LECUIT 2020-2021 5 mm 58
Equilibrium cell shapes • surface tension: minimal surfaces Gtot = γ •A γ = ƒ(cortical tension, adhesion) (A) (B) (C) (D) Thomas LECUIT 2020-2021 59
Cell shape as a dynamical steady-state • Cell shape is dynamically but not genetically encoded. It is self-organised (A) (A) area aspect y ratio n = 695 cells m2 x x/y 1,000 800 3 population 600 mean±s.d. 400 2 individual 200 1 100 75 50 25 100 300 500 700 100 75 50 25 100 300 500 700 cell count time (s) cell count cell count 10 m front (B) radius speed m m s–1 shape mode 1 area 90 0.3 70 mean –2ı –1ı n = 710 +1ı +2ı 50 0.2 30 0.1 81.8% of 10 total variance shape mode 2 aspect ratio 120 80 40 60 40 20 (B) 20 s 610 s 830 s 1,230 s 11.7% of total variance shape mode 3 angle 10 m (C) m 2 area aspect ratio µm s–1 speed 600 610s 830s 1,230s 4 0.4 2.5% of 3 0.3 400 total variance 0.2 2 shape mode 4 L/R asymmetry 200 0.1 1 400 800 1,200 1,600 time (s) 0.9% of total variance K. Keren et al and J. Thériot. Nature, Vol 453|475 2008|doi:10.1038/nature06952 Thomas LECUIT 2020-2021 60
The cell as a complex organism 4 big problems • Cell internal heterogeneity: compartmentation of activities • Cell polarity: vectorial organisation • Cell motility • Cell size: 2020 Thomas LECUIT 2020-2021 61
Cell size — volume Statement of the problem: • Cell size varies between cell types in Animals but within a given cell type there is very little size variation (ex. epithelial cell). So cells control their volume tightly. —Why is cell size regulated? • Cell size is tightly coupled to cell function, for example, neuron, oocyte, red blood cells, Ciliates etc. • Cell size is physically constrained, e.g.: —diffusion of metabolites limits cell size. —surface to volume ratio for exchange with environment —diffusion of signalling molecules limits communication within cells (unless other transport mechanisms operate such as motor driven or by trigger waves) —energetically: synthesis of ribosomes and translational capacity limits cell growth. Given maximal rate of rRNA transcription, there is a limit to cell growth, unless polyploidy or multinucleation (ex. muscle cells, ciliates etc). • Cell size is governed by protein synthesis, osmotic flow and cell cycle which operate at different time scales: how is this integrated? Thomas LECUIT 2020-2021 62
Cell size — scaling Statement of the problem: • Cell size is tightly regulated N but varies strongly during embryonic cleavage (by a factor of 2 for N divisions) • Cells grow 2-fold before they divide or may grow while they increase their ploidy • As cells change their volume do internal organelles scale? What are the mechanisms of scaling? • When cells display symmetric structures (eg. flagella or cilia) how is the size of these structures controled Thomas LECUIT 2020-2021 63
• Lectures 77 $/-/-+/-/. " %% %%% $!"3"!".-5..0- #76#!$33$$7 $!") .2%!/-/- ঞvv࢘Ѵ-1;ѴѴѴ;Ĺ|-bѴѴ;;|1olrѴ;b|࣐ /1%!/-/- (oѴl;1;ѴѴѴ-bu;Ĺ7࣐|;ulbm-m|vr_vb1oŊ1_blbt;v;|u࣐]Ѵ-ঞom -.!7!/-/- uobvv-m1;;|7bbvbom1;ѴѴѴ-bu;vĹѴ-1;ѴѴѴ;l;vu;Ŋ|Ŋ;ѴѴ; -47!/-/- obv7;ruorouঞomv1;ѴѴѴ-bu;v 33 $) om|u-bm|;v;|rѴ-vঞ1b|࣐-1ouv77࣐;Ѵorr;l;m|;|7;ѴĽ࣐oѴঞom Ő-;1 ;mbv 0oѴ;ķ1_-bu;ݽoѴঞom7;v]࣐mol;v;|7࣐;Ѵorr;l;m|ő "-0,-1$/-/. #76#! $!3&" ""% % %$#!!# ' %% 64 %%&
You can also read